
Exam for “Systèmes Digitaux” course

Tuesday January 15, 2019

Abstract

This exam is made up of two problems. It is better to answer to some of
them in depth than all of them superficially.

The exam duration is 4 hours. The maximum number of pages is 6. You
cannot use class material.

1 CMOS logic gates: CMOS equality gate

We recall that a Negative MOS (NMOS — ) transistor is:

• open if the gate input is equal to one, and

• closed otherwise.

A Positive (PMOS — ) transistor behaves the opposite way.

Q1.1.

We recall that the “exclusive or” (also known as XOR function) is defined as:

a b z = a⊕ b (XOR of a and b)
0 0 0
0 1 1
1 0 1
1 1 0

We denote by “gnd” the ground and by “vdd” the voltage supply.
Can the XOR function be implemented in one CMOS logic gate? If so, give

a circuit implementation based on transistors. If not, explain how to obtain the
XOR function using multiple CMOS gates?

Q1.2.

Derive a structure for the XOR gate using only NAND gates.
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Figure 1: Structure in transistor of a digital cell

Q1.3.

Study the transistor-based circuit depicted in Fig. 1.
Explain how it works and what function it implements. Comment on its

performance.

Q1.4.

“Wave Dynamic Differential Logic” (WDDL) is a way to realize circuits with
constant activity. For this purpose, each bit a is represented as a pair of two
bits, namely aT (“a true”) and aF (“a false”). Computations in WDDL consist
in the alternation of two phases, denoted “precharge” and “evaluation”.

• In the precharge phase, all the nets are forced to zero, that is for net a,
we have aT = aF = 0. This property holds for the inputs, but also for
any intermediate net, until the output nets of any function. Hence the
qualification of “wave” for this WDDL logic style.

• In the evaluation phase, either aT is asserted, or (exclusively) aF . We thus
have aT ⊕ aF = 1. Again, this property must hold for all the nets in the
circuit.

This way, in a WDDL netlist of 2n wires, the number of bits set is 0 in the
precharge phase and n in the evaluation phase. Similarly, the number of bits
that toggle is constant, namely n (irrespective of the phase). The “Wave” prop-
erty of WDDL logic implies that when inputs are in precharge (resp. evalua-
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Figure 2: Structure of the WDDL AND gate (the false half is missing)
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Figure 3: Structure of the WDDL XOR gate (the false half is missing)

tion), the output is in precharge (resp. evaluation). Notice that the alternation
between the phases results from an external clock.

A positive gate is a CMOS gate that is equal to 0 when all its inputs are
equal to zero, and that can only increase (i.e., the output can increase only
when inputs increase).

Explain why the two-input AND is positive.
We aim to find the structure of a WDDL AND gate, whose inputs are aT ,

aF , bT and bF . As a hint, we provide half of the gate (namely, the logic which
computes zT ) in Fig. 2. Complete this circuit.

Also, we seek the WDDL structure for the two-input XOR gate. Complete
the second half of the gate represented in Fig. 3.

2 Arithmetic: modular operations

Consider a prime number p and an integer d. The ultimate aim is to compute
Md mod p, for a given 0 ≤M < p. A typical application is for cryptography.

In a processor, an addition can be carried out in one clock cycle, whereas a
multiplication usually requires multiple clock cycles.

Q2.1. Addition vs Multiplication

Give an explanation for this fact.

Q2.2. Consideration of signs

Consider an n-bit register, say with n = 32. An integer A can be:
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• unsigned, meaning that 0 ≤ A < 232;

• signed, meaning that −231 ≤ A < 231.

Explain why it is possible to use the same hardware to perform the addition of
two numbers modulo 232, but that it is not possible to reuse the same hardware
to perform the multiplication of two numbers modulo 232. In practice, there is
only one add mnemonic in assembly, which can serve for both unsigned and
signed numbers. But there are two mnemonics for the product (namely mul
for unsigned numbers, and imul for signed numbers).

Q2.3. Modular addition

We consider now a cryptographic algorithm such as RSA (Rivest-Shamir-Adelman).
In this algorithm, operations modulo a prime number p are required. For
the sake of simplification, we assume that p fits in a 32-bit register. More
precisely, we assume that p has its Most Significant Bit (MSB) set, that is
231 ≤ p < 232 − 1. In practical applications, p would be larger, e.g., be
1024 = 32 × 32 bit long. But for this exercise, we consider arithmetic on
32-bit registers.

In the sequel, we focus on the computation of the multiplication of A and B
in Fp. Consider a processor operating on 32-bit words. The arithmetic opera-
tions are described below, considering unsigned numbers, i.e., 0 ≤ A,B < 232:

• add, which performs A+B+ c, where c is the carry flag; the result is one
register, and sets the carry if A+B + c > 232.

• sub, which performs A − B − c, where c is the carry flag, which acts as
a borrow; the result is one register, and sets the c carry if A − B − c is
negative;

Explain how to compute A+B ∈ Zp, where 0 ≤ A,B < p, using instructions
add, sub and (if required) conditional tests.

Q2.4. Modular multiplication

Give an algorithm to compute AB mod p, where 0 ≤ A,B < p < 232, using
the operation obtained previously for computing A+B ∈ Zp.

Q2.5. Exponentiation

Given an algorithm to compute Md mod p using addition and multiplication
modulo p. This algorithm must be optimal, using at most 2 log2(p) multipli-
cations. Justify the complexity of your algorithm and, in particular, why it is
possible to obtain a worse case complexity which is independent of the value of
the exponent d.
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