
Exam for “Systèmes Digitaux” course

Tuesday January 10, 2017

Abstract

This exam is made up of four problems. It is better to answer to some
of them in depth than all of them superficially.

The exam duration is 4 hours. The maximum number of pages is 6.

1 CMOS logic gates

We recall that a Negative MOS (NMOS — ) transistor is:

• open if the gate input is equal to one, and

• closed otherwise.

A Positive (PMOS — ) transistor behaves the opposite way.

1.1 Q1.1

Comment on gate depicted in Fig. 1. Is it Complementary MOS (CMOS) logic?

1.2 Q1.2

If so, what is the Boolean function of y1 and y2 as a function of inputs a and b?

2 Boolean functions

Let n ≥ 1 be a strictly positive number. We call f a Boolean function if it maps
a vector of n bits to one bit.

Let “⊕” (resp. “∧”) denote the addition (resp. multiplication) of two bits, 0
and 1, as depicted below:

• 0⊕ 0 = 1⊕ 1 = 0 and 0⊕ 1 = 1⊕ 0 = 1,

• 0 ∧ 0 = 0 ∧ 1 = 1 ∧ 0 = 0 and 1 ∧ 1 = 1.

1



a

a

b

a b

y2

y1

Figure 1: Gate whose functionality is to be assessed

2.1 Q2.1

What is the structure of F2 = ({0, 1},⊕,∧)?
Let P(N) denote the power set of N = {1, . . . , n}, that is:

P(N) = {∅, {1}, . . . , {n}, {1, 2}, . . . , {1, n}, {2, 3}, . . . , {2, n}, . . . , {1, 2, . . . , n}}.

The algebraic normal form (ANF) of a Boolean-function is the expression:

f(x) =
⊕

I∈P(N)

aI

(∏
i∈I

xi

)
. (1)

In this equation:

• aI are bits (there are 2n of them), and

•
∏

i∈I xi = x2 ∧ x3 if I = {2, 3},
∏

i∈I xi = 1 if I = ∅, etc.

2.2 Q2.2

Explain why the expression (1) is unique. As a hint, notice that the set of
Boolean functions is a space-vector, and find a basis suitable for the ANF.

2.3 Q2.3

As an example, write the ANF of the Boolean function given in Fig. 2.

2



Figure 2: Truth table of one Boolean function with n = 3 inputs.

2.4 Q2.4

The product xI =
∏

i∈I xi is nonzero if and only if xi is nonzero (i.e. equals
1) for every i ∈ I , that is, if I is included in the support of x (the subset of
N corresponding to entries i for which xi 6= 0); hence, the Boolean function
f(x) =

⊕
I∈P(N) aIx

I takes value

f(x) =
⊕

I⊆supp(x)

aI , (2)

where supp(x) denotes the support of x.
If we use the notation f(x) =

⊕
u∈Fn

2
aux

u, with Fn
2 = F2× . . .F2, we obtain

the relation f(x) =
⊕

u�x au, where u � x means that supp(u) ⊆ supp(x) (we
say that u is covered by x). A Boolean function f◦ can be associated to the
ANF of f : for every x ∈ Fn

2 , we set f◦(x) = asupp(x), that is, with the notation
f(x) =

⊕
u∈Fn

2
aux

u: f◦(u) = au. Relation (2) shows that f is the image of f◦

by the so-called binary Möbius transform.
Comment on the OCaml code in Listing 1, especially why it works and how

efficient it is.

Code Listing 1: Algorithm to turn a Boolean function into its ANF

1 let n = 3
2 let mobius f =
3 for i = n - 1 downto 0 do
4 for j = 0 to (1 lsl n) - 1 do
5 if (j lsr i) land 1 <> 0
6 then f.(j) <- f.(j) lxor f.(j - (1 lsl i))
7 done
8 done;
9 f

In the Listing 1, we use the definitions given in Listing 2.

3



FA

a b

co ci

s

Figure 3: Schematic for the FA gate

Code Listing 2: A few definitions of Boolean operators in OCaml

1 x lsl n = x * 2^n
2 x lsr n = x / 2^n (* result is an integer *)
3 land = bitwise and
4 lxor = bitwise xor

2.5 Q2.5

Show that the converse is also true, namely: let f be a Boolean function on Fn
2

and let
⊕

I∈P(N) aIx
I be its ANF, and we have:

∀I ∈ P(N), ai =
⊕

x∈Fn
2 /supp(x)⊆I

f(x).

3 Hardware arithmetic

3.1 Q3.1

Let a, b and ci be three Boolean variables. The Full Adder (FA) is the gate that
computes:

• s = a⊕ b⊕ c, and

• co = (a ∧ b) ∨ (b ∧ ci) ∨ (ci ∧ a).

Given n > 1 and two integers A =
∑n−1

i=0 ai2
i and B =

∑n−1
i=0 bi2

i, where ai
and bi (0 ≤ i < n) are bits. Describe how to compute the sum C = A+ B of A
and B using some FA gates. How many of them are required? Draw the netlist
of this adder, using the symbol of Fig. 3 to represent the FA gate.

Give the Boolean equations of the gate which computes the Least Signifi-
cant Bit (LSB) of C, that is c0 = C mod 2. Indeed, the value c0 can be produced
by a simplified gate called “half-adder” (HA).

4



db0 dc0

FAT
0

a b
co ciFAT

m−1

a b
co ci FAT

n−1

a b
co ci

da0

FAB
n−1

a b
co ciFAB

m−1

a b
co ci

dcn−1dan−1 dbn−1dcm−1dam−1 dbm−1

y0yn−1ym−1ym

x0xn−10 0

init

top

bottom

Figure 4: CSA accumulator

3.2 Q3.2

Imagine that n grows larger and larger (e.g., n = 128 bit). Can you explain the
risk of the straightforward architecture you proposed in Q3.1?

In this part, we optimize the addition, in the case that more than two num-
bers are added. We consider a sequential circuit, which adds many numbers
X =

∑n−1
i=0 xi2

i.
Let p > 0 and m = n + p. We intend to devise an accumulator, able to add

2p such n-bit numbers X , presented sequentially (one after the other). For this
purpose, we use the datapath presented in Fig. 4. The inputs are the consecu-
tive values of X ∈ {0, . . . , 2n − 1}, and one control signal named “init”. As the
circuit is sequential, some values are memorized into flip-flops (one-bit regis-
ters), represented as in Fig. 5 (left). The clock signal (denoted as “clk”) will be
implicit in the sequel.

In the datapath depicted in Fig. 4, there are three layers of combinational
gates:

1. some AND gates,

2. some FA gates termed “top” and

3. others termed “bottom”.

Can you account for their role, starting with the AND gates?
Besides, as a clue to understand the role of the “top” FA, consider only

their critical path. Also notice that inputs a, b and ci of a FA gate are equiva-
lent. What then does the “top” layer of FA gates compute? After 0 < j < 2p

5



x2x1

y

d

q

clk

Figure 5: Schematic of a flip-flop (left) and of an AND gate (right).

inputs X =
∑j−1

j′=0 Xj′ have been presented as input (with init = 1), can you
explain how the partial sum can be retrieved from the contents of flip-flops
dai , dbi and dci (for 0 ≤ i < 2p)? Explain why this architecture is referred to
as “Carry-Save Adders” (CSA). Also comment why the output carries of MSB
(Most Significant Bits) gates FAT

m−1 and FAB
m−1 are unused.

After at most 2p n-bit words X have been presented, how should the com-
putation be finalized?

Explain the role of the “bottom” layer, what does it do?
Assume that m clock cycles are needed to propagate the carries from FAB

0

to FAB
m−1. Propose a method to keep the register values unchanged during the

m clock cycles required for the “bottom” addition to finalize.

4 Combinational and Sequential circuits

4.1 Q4.1

Let p be a prime number, which can be represented in n bits. Specify, either
with a netlist or some pseudo-code, a combinational circuit to multiply two
elements of Fp (the Galois field of p elements).

4.2 Q4.2

Assume you have at hand one such Galois field multiplier. Describe a sequen-
tial circuit (speed is not a concern) which instantiates only one single multiplier
and is able to find the inverse of a nonzero element of Fp.

4.3 Q4.2

Discuss in what respect the time taken to compute the inverse (unintentionally)
leaks information about the data to be inversed. How much information is
available to an attacker?

6



Assume the input of the inverse is x ⊕ k, where x is known but not k (k as
secret key). How many timing measurements are needed to recover the value
k?

7


	CMOS logic gates
	Q1.1
	Q1.2

	Boolean functions
	Q2.1
	Q2.2
	Q2.3
	Q2.4
	Q2.5

	Hardware arithmetic
	Q3.1
	Q3.2

	Combinational and Sequential circuits
	Q4.1
	Q4.2
	Q4.2


