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ABSTRACT thebehaviouralversion of the Fitts law [25], which reads:
Target clicking having proved an indispensableding block of pr =a + blog, (Ha/oa +1), )
interface design, it is little surprise that thesg/accuracy trade-
off of aimed movement has always been a keen conweHCI where |4 ando, denote the mean and the standard deviation of

research. The trade-off is described by the Fétts In HCl and ~ movement amplitude, the logarithmic term beingezhthe index
psychology likewise, the traditional approach hesused on the  of effective difficultylqe.

time-minimisation paradigm of Fitts [5], ignoringher relevant . . .
paradigms in which the Fitts law fails, such as #mead-  1-1 Terminology and Mathematical Notation

minimisation paradigm of Schmidt et al. [18]. Thiaper aims at 10 tackle the subject of this paper, the tradeafffspeed and
unearthing and consolidating the foundations of the accuracy in the execution of aimed movement, vt fieed to fix

speed/accuracy trade-off problem. Taking mean memértime ~ OUr terminology and our mathematical notation (ppendix 1).
as our speed measure and relative spread as ausegeneasure, N this research we care about a number of distinstthat have
we show that a small set of obvious mathematicalnas predict ~ Peen treated somewhat casually in the literaturee Wse
not only the data from the Fitts and the Schmidag@ms but lowercase letters to denote deterministic quastiied uppercase
also the data from the more recent dual-minimisaparadigm of ~ letters to denote randomly-varying quantities. Ttuesnote target

Guiard et al. [7]. The new mathematical framewankairages a  distance and target width, under full control opesimentersd
more complete understanding: not only is it posstol estimate ~ @ndw, whereas we note the time duration and the anagliaf the
an amount of resource, a quantity equivalent to ¢hessic movement, subject to random variabilifyand A. We let |y and
throughput, it is also possible to characterize tesource-  Ox denote the mean and the standard deviation ofndora
allocation strategy— the other, no less important facet of the VvariableX. Notice that the erroE = A—d, being the difference
trade-off problem which has been left aside soFae proposed ~ between the random quantiyand the deterministic quantity is
approach may help HCI practitioners obtain from irthe itself a random quantity; and the variability Bfbeing entirely
experimental data more reliable and more complefermation due to the variability oA, we havese = .

on the comparative merits of design options. . .
P gnop 1.2 Shortcomings of the FittsLaw

Categoriesand Subject Descriptors The Fitts law has been justly praised as an englyicobust rule

CCS — Human-centered computing= Human computer  Of thumb whose mathematical formulation has reckif@mal

interaction (HCI)— Interaction techniques> Pointing justifications in light of information theory [5]RI[9].
Nevertheless the law has some shortcomings thatt rbas

Keywords discussed seriously.

Fitts law, aimed movement, pointing, speed/accuraage-off, ) )

resource, resource allocation. 1.2.1.A Loosely-Constrained Independent Variable

1. THEFITTSLAW We have problems with the right-hand side of Ratg-equations.

All known variants ofiy lack a true zero, meaning that tite
intercept of the Fitts law is uninterpretable [3&cond, it has been

a tradition in the description of the Fitts lawdwmit to specify the
range ofig4 or l4, values over which the law is supposed to hold —
in Meehl's [13] terminology thapielraumor range of interest.

The more exacting the accuracy demand on a movertieat
slower. In his famous 1954 paper Fitts [5] was dblgive this
general observation the form of a simple mathemmbgquation,
known as the Fitts law. In itaskversion, the Fitts law reads:

pr =a + b log, (diw +1), 1) Most corroborations of the Fitts law, withsquares computed
) o over arbitrarily narrow ranges of difficulty, lookather like
where |4 is the average time it takes people to reach geteof confirmations that the Earth is locally flat.

width w whose centre is located at distadcand where andb >

0 stand for empirically adjustable constants. Tdgafithmic term 1.2.2 A Paradigm-Dependent Rule of Thumb

is called the index of difficultyig). Most researchers actually use  The Fitts law being of the formye f (Ua/ca), where the function
f is nonlinear, the relation should remain nonlinehen recast as
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as it is called, does not seem to have troubled-Fitv theorists
too much. Yet, the mere fact that the Fitts lawapparently
jeopardised by a simple rearrangement of the tefrits equation
— or, at the practical level, by a change in the@eeimental
paradigm — raises the concern that the Fitts laldwvithin just
one particular paradigm, lacks generality.

1.2.3 Half of the Question Ignored

A trade-off between two quantitiesandy is a dual phenomenon
with both aconservationfacet and achangefacet: a certain
combination ofx andy is conserved despite a change in the
respective contributions of andy to the conserved quantity.
Being a conservation across a certain transformatian
invariance — e.g., the invariance of shape undeh stansfor-
mations as rotations, translations, or rescalingg] [— is
something far more interesting than a trivial cansy [21].

In the case of the speed/accuracy trade-off of dimevement,
the Fitts law [10][19] amounts to the statementhaf invariance
of the throughput across the variations of the xndedifficulty,
which controls the speed/accuracy balance. Unfatein the
Fitts-law literature has paid little or no attemtiw the variation of
the speed/accuracy balance, the transformationt fatethe
speed/accuracy trade-off. A sign of this concephemhineglect is
visible in the recent ISO standard [10], a set oidglines for
Fitts-law experimentation, which recommends to fitiaoers to
retain only throughput estimates from their dataisTimplies the
problematic assumption that a single number canly ful
characterize the performance achieved with a dewdcean
interaction technique. In fact, quite independently the
throughput, devices and interaction techniques rdéfer to
considerable extents in terms of the speed/accistiategy they
elicit, and in some contexts these differences fmayof much
practical consequence.

2. INVENTORYING AND SIFTING
POSSIBLE SPEED AND ACCURACY
MEASURES

Shouldn't there exist a more general, paradigmgieddent law?
Notice that the Schmidt law and the Fitts law do uee the same
measures of speed and accuracy. To measure spe&thimidt
law uses the ratipia/piy, of dimension [LTY, whereas the Fitts
law uses W, of dimension [T]; and to measure accuracy the
Schmidt law uses the spread, of dimension [L], whereas the
Fitts law uses the dimensionless ratjggx. To be in a position to
see whether or not different paradigms reveal diffe laws, we
must make sure we use the same measures, and sligwalid
ones. But several definitions of movement speedeaacdracy are
possible, and so we need to inventory the possdsiliand
examine the validity of each.

As first identified by Fitts [5], our speed/accwatrade-off
problem involves three crucial quantities, two caktrend
statistics, mean movement time gnd mean amplitude,p and
one dispersion statistic, endpoint spregdor o. In Figure 1
these statistics outlinespeedaxis vertically and aaccuracy axis
horizontally. At the intersection of the two axeansls the scale
parameter g = d, which specifies the absolute magnitude of the
movement. By definition amimedmovement task demands the
specification of a certain target amplitudléhatp, is supposed to
approach, but pis not involved in the trade-off of interest and
does not constitute a utility. The aiming bias3upa - d is indeed

a negative utility (the less the better), but ih@ involved in the

trade-off we are talking about. The two negatividities crucial
here are mean movement time and endpoint spread.

my m,
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Figure 1. Thethree statisticsthat can be combined in the
definition of speed and accuracy. m; and m, denote the first
and the second moment of distributions.

There are three possible basic measures of movespeetd: (1)
absolute slownesg; (in s) as in the Fitts paradigm (Blative
speedua/pr (in m/s) as in the Schmidt paradigm, and rg@ative
slownesgir/pa (in s/m), an unused option.

Likewise there are three possible basic measuremamfement
accuracy: (1)absolute spreaar, (mm) as in the Schmidt para-
digm, (2) relative amplitudeps/oa (-) as in the Fitts paradigm,
and relative spreadoa/ua (-) as in the paradigm we recently
introduced [8]. We now compare the merits of thdiféerent
candidate measures in light of three independéefrier.

2.1 Scalelndependence

More often than not in Fitts-law studies the sqadeameted is
manipulated thoughtlessly in designs simply becéuisehard for
experimenters to obtain a reasonably large ranghffitulties at

a single level ofl. Most designs suffer from a more or less severe
factor confound, a positive correlation, betweee thdex of
difficulty and d [6]. For example the correlation was no less than
+.68 in Fitts's [5] famous tapping experiment, agasy to check
from his Table 1 (p. 254). But the confound waseptally
harmless in his case because to measure movemeed she
author had chosenpand Fitts's data show thdthad essentially
no effect on this dependent variable, in keepinghwihe
isochrony principle reported in the handwritingtédture — there

is little or no change in the time it takes peofecomplete a
given graphical form as they rescale the form up@own, within
limits [20]. Had Fitts instead used relative speedy; as his
speed measure, his experiment would have produceflising
data because this ratio happens to be massively dependent.
Thus, of the three candidate measures of speedugrpgsses the
scale-independence test.

Turning to accuracy, a simple Weber law argumeetligts that
absolute spread, must be about proportional to,pand the
presence of this scale-dependency effect is vdrifiie virtually

any data set. In contrast, the other two candide¢@sures of
accuracy, relative amplitudenfo, and relative spreadia/pia,

which consist of dimensionless ratios, are scateependent by
construction.



2.2 Ratio-Scale Metric

Facing an empirical relation of the foryn= f (x) it is desirable to
have a true physical zero not only on thexis (as is nearly
always the case) but also on thexis, otherwiseg-intercepts are
uninterpretable [7].

All three candidate measures of speed have a e Having
passed the first test, mean movement timeajso passes the
second. As for accuracy, at first sight the ratiggs and its
inverse oa/pa look like equally promising accuracy measures
because it is mathematically trivial to transforneadnto the other.
One should realise, however, that only the lat&iorenjoys a
ratio-scale metric [7]. Relative distance/@,, which underlies
the calculation of all indices of difficulty in thEitts paradigm,
has an arbitrary zero. No one can tell whatoy = 0 might
specify in the physical world becaugebeing a non-negative
random variable it is impossible to have3.0 together witto, >
0. Therefore we disagree with [19]: in a Fitts-lgiet, whosex
axis exhibits an index of difficulty computed frahe ratio [A/0a,
there is no rationale for expecting (or even hopitttat the
intercept will be close to zero, simply becauses thitercept is
uninterpretable.

Unlike the zero of relative amplitude\io,, the zero of relative
spreadaoa/ps doesexist. Just like any coefficient of variation,
relative spreada/pa (Or Og/pp) zeroes out at the point where the
random variability of movement endpoint zeroes atith g, = 0
while ps > 0. The zero of relative spread is simply theotbgécal
limit where movement amplitude becomes a detertiinis
quantity [7]. Therefore below we shall use relatspeeadoa/pia,
rather than relative amplitudefo,, to measure movement
accuracy [8]. It isinaccuracy, not relative accuracy, thai/pa
measures, but the traditional ratig/@, measures neither.

Thus after our second test a single possibility aies for the
measurement of both speed and accuracy, namean@ca/Ua,
respectively. Although we have completed our choésk, let us
see how the two surviving candidates stand a #rndifinal test.

2.3 Length/Angle Neutrality

In many aimed-movement tasksis a length, but in some others
it is an angle. We want our speed and accuracyunesso allow
performance comparisons between tasks that inucdweslational
and rotational sorts of movement. For example Sdhrat al.
[18], who inaugurated the Schmidt paradigm withydus-tapping
movement, expressed effective width in mm whereagiwand
Meyer [25], who did a replication experiment usiagwrist-
rotation movement, expressed effective width inudengdegrees.
Both studies used the Schmidt paradigm, yet thatia dannot be
plotted together because the accuracy measureseédegs. mm)
as well as their speed measures (degrees/s vs. caddifferent
units.

The duration of a movement obviously provides aettigionless,
length/angle-neutral measure of speed — quite enéikerage
speed W/t or its inverse @pa, which involve an angle or a
length.As for accuracy, the dimensionless ratig/lpi, we have
retained has no unit (unlike,, which is either a length or an
angle). Thus our third test provides a further argnt in favour
of the two candidates that already passed thetfisttests: mean
movement time 4L for speed and relative spreag/ia or Ga/pia
for accuracy.

3. AMINIMALIST THEORETICAL
FRAMEWORK

In this section we present a small set of prettyims axioms
regarding the speed and the accuracy variablesawve bhosen
and the trade-off function that relates them. Wk sgie that these
axioms suffice to give birth to a parsimonious neatiatical

model of the speed/accuracy trade-off of aimed mmarg. The

model arises quite straightforwardly from the axsowithout the

need to theorize about substantive issues sucheasiformation

conveyed by the movement (e.g., [5][12][19][9]), about the
cognitive mechanisms of movement programming, ed@tuand

correction (e.qg., [3][14]).

Please note that below we will be somewhat disfigeto an
old convention of Fitts-law research: we shall egstically plot
movement speed {1 on the horizontal axis, treating it as our
variable, and movement accuraayafi,) on the vertical axis,
treating it as ouy variable. When it comes to pointing, we tend to
construe accuracy as the independent variablethmuis because
we look through the prism of Fitts's highly populéme-
minimisation paradigm, in which indeed the accuréteiy) is
something experimenters manipulate and the spegds@qme-
thing they measure. However, the Fitts paradigrjuss one of
several possible experimental approaches to oude-é
problem, as will be recalled in Section 4.1, andre¢his serious
reason to assume that ultimately it is the speesioinovements
that determines their accuracy rather than therse@3].

3.1 Axioms

Let us start with the observation thatandy are bothnegative
utilities, meaning quite simply that the shorter the timd #me
smaller the spread, the better the performancehéntrade-off
function we want to model, ideal performance cqroesls to the
case where the movement would last an average anh@svould
exhibit 0% of relative spread — thus an ideal blo€tkrials would
deliver a data point that fell right at the origihthe graph.

The notion of a speed/accuracy trade-off impliesuanber of
prior assumptions [8][16]. In our view no theory dhe
speed/accuracy trade-off of aimed movement canildgrsvoid
any of the following six prior assumptions, or axia

3.1.1 An Absolute Minimum of Movement Time

In any particular experimental condition there nmest minimum
to the durationT of any individual movement, owing to the
limited acceleration and deceleration capabilitésany effector
system. On the horizontal axis we have the comsttaat

X > Xy >0, Axiom 1

wherex, defines the strictly-positive minimum of; pwhich must
be imposed unconditionally on our model. Whenexecan be
determined, it will be convenient to express oudejpendent
variable as the differencex,, rather tharx.

Note that the particular value taken by, dependent on an
indefinitely large number of parameters (e.g., ecathe
musculature involved, the way instructions werearfalated and
understood by participants, etc.), is uninterpietgier se. Theg
parameter cannot serve to compare data from differe
experiments. If, however, the ceteris-paribus diomliis satisfied
as may be the case within a given experimentabdesietween-
conditions comparisons & may be useful.



3.1.2 An Absolute Minimum of Relative Spread
Since any effector system at rest suffers somedigible
physiological tremor, and any recording device leadinite
resolution [1][22], there necessarily is a strigilysitive minimum
to the value of spread, and hence of relative spreagd/pi to be
recorded in an experiment. Calling that theoretioaimum y,
the vertical axis of our function has the constr#iat

y > y>0.

Whenever the value gf can be determined, it will be useful to
express our dependent variable as the differgngg rather than
y. Just likexy, Yo is a parameter whose value is of little interaest i
and of itself, being subject to indefinitely mamfluences, but it
may possibly allow useful comparisons within a coifed
experimental design.

Axiom 2

3.1.3 A Decreasing Convex Function.

Since the less of one negative utility, the moreahaf other, the
functiony =f (X) or y-yo = f (x-X9) must be strictly decreasing and
strictly convex, with a vertical asymptote »t (where no more
resource is available for thg-minimisation effort), and a
horizontal asymptote aty (where no more resource is available
for thex-minimisation effort):

forx — +oo, y -y, >0

Axiom 3
fory — +oo, X — % > 0.

This assumption is consistent with Norman and Batso
principle of graceful degradation [15] (p. 44).

Yo -

Figure 2. A decreasing and convex trade-off function with
asymptotesat x, and y,,.

Figure 2 summarises our progress so far.

3.1.4 A Certain Combination of x and y Conserved
The trade-off of speed and accuracy must be sugdpmseesult
from the fact that the two concurrent minimisatiefforts draw
from the same limited resource pool. The content tloé
hypothetical pool, whose nature is unknown, maytHmight to
consist of attention or effort. Using the famili@conomic
analogy, it is assumed that some generic curren@omvertible
into speed and/or accuracy and that the amourhisfcurrency
available to a given individual placed in a givétuation is finite
[8]. Were 100% of the resource invested in the dimevement
task, we would have

O, y), x®Oy=c, Axiom 4

where the symbol® denotes some as yet unspecified way of
combining the two variables, and denotes some adjustable
constant. Notice that since we are combining twa@atiee
utilities, ¢ can only work as an estimate of thearcity of the
resource — the smaller the more resource.

3.1.5 Less-than-Total Investment of the Resource
Although the participants are supposed to invest ttiality of
their resource to produce their best possible pedace in every
single experimental condition, human effort is gebjto random
fluctuations. Only occasionally can participantprmach their
best possible performance. Of a block of trials/), wherex = pr

andy = og/{a, We may say:

If (%, y) is doable, then,

Ox >xanddy >y, Axiom 5

(X', y') is doable.

In other words, it is always possible to do wora#: empirical
data points must fall above the limiting curve we bboking for
—ie.,y>f(x) andx > f(y) — or, equivalently, the curve is
necessarily locatedelow the scatter plot

Axiom 5 has one far-reaching implication. Since #mapirical
function we look for characterizes an upper linfiperformance,
regression techniques are inadequate to infer uhetibn from
empirical scatter plots. A least-squares minimisatprocedure
delivers anaveragecurve summarising all data points, including
those obtained in trial blocks with far from contplénvestment

of the resource. But little can be learned fromrpperformance,
and so it isnot the scatter plot that we want to model, but rather
the South-West quadrant of the convex oflthe scatter plot —
what we call theonvex front of performang8].

3.1.6 Resource-Allocation Strategy

Humans can, to an appreciable extent, modulaterbygortion in
which they allocate their resource to the mutualigompatible
speed and accuracy efforts, exhibiting a certairatesic
flexibility. Little can be learned from the Fitts-law liten@wabout
the range of speed/accuracy strategies participargsactually
capable of, most studies having used rather namavges of
difficulty levels?

At this point we need to introduce a conceptuahyportant

distinction between aurvein a plane and aarc on that curve. A
curve corresponds to an infinite function, wherems arc

corresponds to a certain finite interval on a fiortspecified for

example by anx,, and anxy.. TwO extra constraints being
required to determine an interval along a givenveura

curvilinear arc conveys more information than aveur

The trade-off model we are contemplating is amitditheoretical
function extending frony = +eo atx, toy = ypat x = +e0. Such an
infinite function, however, says nothing about thenge of
strategies actually covered in a given data set.sAswn in
Figure 3, that range is a finite subset of the fiamc a curvilinear
arc whose localisation on the infinite curve regsitwo extra
parametersiy, (Wherey = yinay, andxyay (Wherey = ypin).

! One reason why strategic ranges are usually nafrovFitts-law
experimentation is because extreme strategies iffreull to handle
within the classic time-minimisation paradigm.



Speed extremum
(xmim ymax)

Accuracy extremum

(Xmax: ymin)
ymm ==
|
|
O = s
s E 3
x x

Figure 3. Modelling the theoretical trade-off function with an
infinite curve, and the particular subset of the function
actually realised in a data set with a finite curvilinear arc.

Thus, facing a set of experimental data, we mageh
Xmax > Xmin = Xo > 0
Axiom 6
Ymax > Ymin 2 Yo > 0.

While the function’s asymptotes a{, and y, represent the
theoretical minima of Axioms 1-2, the points of cdioates X,
Ymax) and &max Ymin) @reempirical extrema. We will exploit them
below to characterize the resource-allocation eggsat(Section
4.2.3).

3.2 The Homographic Model

One very simple function that satisfies Axioms fotlgh 4 is the
so-called homographic function:

(Y —Yo) (X—Xo) =K, ©))

wherek > 0 is an adjustable constant agdandy, are the theo-
retical minima of Axioms 1 and 2.
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Figure 4. The homographic model with k varied from 0.05
(inner curve) to 0.2 (outer curve).

The homographic model (Figure 4) has just the ptogse we
demand. The function is strictly decreasing andttstr convex
and it links a vertical asymptote xgtto a horizontal asymptote at
Yo (Axioms 1-3). And it conserves the prodictvhich may serve
as a global estimate of the resource (more exacflyesource
scarcity) assumed to be invariant across the vemgtof the
resource allocation (Axiom 4). The model satisfeeg axioms
while being simplest, in two senses: it involvestjwne free
parameter, and it resorts only to one basic aritttnaperation,
the multiplication. The homographic model has juste
undesirable property, the curve symmetry with resfethe axes’
bisector. Our axioms do not allow us to presuppiosevhat
proportions the speed and the accuracy effortsaligtdraw on
the resource, and so an amendment of the modebisler.

3.3 The Weighted Homographic (WHO0)
M odel

To get rid of the rigid symmetry of the homographiodel, we
endow it with a free skewness parameter, obtainihgt we call
theweightedhomographic (WHo) model (Figure 5):

Y =Y0) "™ (x=x0)" =k, (4)

where the weighting exponeats an adjustable coefficient (Oo<
< 1) free to deviate from its neutral value of Ynfsnetry). Ifa =
1, one is back to Equation 3 whose constant thaalgk,2. The
role of a is to allow some degree of asymmetry, it being
understood that the coefficient should not apprdaoh 1.

1
|
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Figure5. The WHo model with k = 0.15 and a = .4 (dotted
line), .5 (continuousline), and .6 (dashed line).

4. DATA FROM THE THREE
PARADIGMS

In this section we consider a selection of speedfacy trade-
offs of the literature and replot all of them with (s) shown on
thex axis andoa/pa (or oa/d, if pa is unknown) shown on the
axis. We assume a negligible difference betwegd and oa/pia

on the ground that pointing experiment produce gelyelittle or

no aiming bias.

We will consider the famous tapping data of Fi&$, the two

relevant data sets of Schmidt et al. [18], andntioee recent data
reported by Guiard et al. [8]. These data setscaremonly sup-

posed to be governed by different laws because dmgnate
from three different paradigms.



4.1 Three Possible Experimental Paradigms

The speed/accuracy trade-off of aimed movement hesn
investigated using three experimental paradigmsireetdifferent
ways to experimentally handle the same crucialssizg i, pa,

and o, (see Figure 1). Note that in all three paradignteain
target level of amplitude is prescribed to the ipgrants, who
have to produce samples of movement such that gior e~ 0

(i.e., they must aim at target centres).

In thetime-minimisatiorparadigm of Fitts [5], the participants are

to minimise the duration of their movements at masi pre-
specified levels of endpoint spread. The Fitts gigra thus treats
mean movement time as the dependent measure ambiend
spread as a constraint. Target width is manipuledi#id the hope
that o, will remain about proportional to it so that theduency
of target misses will remain approximately fixed hich,
however, involves some wishful thinking, as hasnb&eaown
since the nineteen-fifties [2].

Thespread-minimisatioparadigm of Schmidt [18] goes the other

way round, asking the participants to minimise rthemdpoint
spread at various pre-specified levels of moventane. The
Schmidt paradigm thus treats the spread as thenxdepemeasure
and movement time as a constraint, experimentgrgigdhat
will approximately equal the recommended value afross all
the range of nominal target times — wishful thirkiagain, as an
inspection of the published data clearly revéals.

The third possibility is thelual-minimisationparadigm recently
explored by Guiard et al. [8], who asked their jpgants to

minimise both g ando, with various degrees of imbalance. The

participants were encouraged by verbal instructtoripush’ their
data points in various down-left directions cor@sting to a
number of different speed/accuracy
instructions amount to asking them to produce gatats located
as close as possible to various regions of theitipmcurve which
constitutes their trade-off function. In this pagad any pretence
to have direct experimental control over either $peed or the
accuracy of participants’ movements is renouncegticl that

here neither the nor they can be considered an 'independent’

variable: involved in the trade-off are two parient-dependent
random variables.

4.2 Datafrom the Dual-M inimisation

Paradigm

For convenience we start with the data of Guiardl €8], which
will allow us to illustrate in finer detail the nemethodology we
have developed in compliance with Axioms 1-6.

The authors asked their 16 participants to perf@nfixed-

amplitude movementd(= 15cm), trying to minimise juand o,

concurrently, though in variable proportions. Fisets of
instructions served to encourage the participantover their full
spectrum of resource-allocation strategy. The ursions ranged
from a recommendation to perform at maximum spemdat
recommendation to perform with maximal accuracyrqzeixel

error).

Of course we fitted the WHo model separately forchea
participant, but for brevity here we will only cader pooled data.

The shortest movement timalue of the fastest participant will
serve here as an estimate of the theoretical mmirofy: — i.e.,

2 Guiard, Y. & Rioul, O. (in preparation). The Schiialv, a false alarm.

compromises. hSuc

we will set X, = 0.092s. The movement being recorded on a

digitising tablet with higher resolution than thereen, we will
compute the theoretical minimum of spread as theettainty
entailed by screen discretisatien.e., we will sety, = 0.0018.

18%
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10%
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0%

Figure 6. Extracting the convex front of performance from
pooled data. The data points of the convex hull arecircled.
The subset of them that form thecritical South-West
quadrant are connected with thicker line segments.
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Figure7. The WHo model fitted to the Guiard et al. data [8],
with the CFP arc marked with athicker red line—

4.2.1 Convex Front of Performance (CFP)

Figure 6 plots 253 blocks of trials from all 16 fi@pants (15-20
movements per block). As expected, the mass of plztes tend
to cluster against the South-West quadrant of trvex hull of
the scatter plot, the CFP being the subset of émeex hull that
belong to this critical quadrant (11 points here).

4.2.2 Fitting the WHo model to the CFP

One manual fit of the WHo model to the CFP of Feé is
shown in Figure 7, where = .60 andk = 0.070. Note that usual
regression procedures are of no help in the preses# and we
will report nor? scores. Figure 7 should suffice to show that the
model accommodates the data fairly well.

8 Equation 4 can be linearised in log-log coordinaéesl so linear

regression is doable, but in this context the linfahas no sense
mathematically. On the other hand, standard narafiregressioris



4.2.3 Resource, Strategic Style, and Flexibility

The parametek is an estimate of the overall level of performance

of Guiard et al.'s participants (see Equation 4t Hgure 7 shows
not just a curve, it shows a finite curvilinear avhose location
and extent reflect the various strategies that waceually
explored by the participants. Relying on Lagrangi@nimisation,
we developed a simple index to capture this aspktihe data.
LettingA = -dy/dx, thenp =A/(1+)) is a quantity that varies from 1
(or 100%) at xto O (or 0%) atx = +eo. Given that the CFP of
Figure 7 extends frorfd = 85.5% atxy, to B = 0.05% atXyay the
strategic styldor that data set can be characterized as angwera
of these two values,giF Y2 Bmin + Bmay = 42.8%. But we may
also compute a no less useful indexstrhitegic flexibilityas the
difference between these two extrema,= Bmax = Pmin = 85.5%.
While the index of strategic styleglis an indication of the
location of the arc on the trade-off curve, the index otsgic
flexibility Ag is an indication of thextentof the arc.

4.3 Data from the Fitts Paradigm

16%

Fitts (1954) Light-stylus tapping
14%

12% Bmax =68.4%

10%
GA/d 8%

() o
a%
2% Bin = 1.32%

0%

0.0 0.2

0.4

u (s)

0.6 0.8 1.0

Figure8. The WHo model fitted to the Fittsdata [5]. The data
pointsof the CFP arecircled.

The numerical data reported by Fitts [5] consistl6ftabulated
averages corresponding to fodilevels times foumw levels. All

participants being collapsed, obviously we could nse the
method of CFP extraction described in Section 4i.Which we
considered all the individual trial blocks of theui@d et al.
experiment. We estimated the CFP for the Fitts daya
determining which of the 16 data points belongh® ¢onvex hull
of the graph: nine data points happen to satisfy ¢hiterion. As
visible in Figure 8, we obtained an excellent marfitaof the

WHo model to Fitts’s CFP, assuming= 0.092s ang, = 0.001
and setting: = .62 anck = 0.103.

Notice that the} index reaching less extreme values in the Fitts

data (68.4 — 1.32 = 67.1%) than in the Guiard etiaia (85.5 —
0.05 = 85.4%), meaning less strategic flexibilibhis is not
surprising as Fitts’s experiment included neithenax-speed nor

inapplicable in practice due to the model's vett@symptote: in the
region of lowx values, where the slope is very steep, a minotizdn-
tal error may entail a huge residual in the veliitmension— the only
dimension taken into account in ordinary least segslamethods—
yielding in some cases a strongly negatdeWe have no space here to
present and justify our current solution, which bames non-linear
regression with a total least squares minimisatiechnique (Rioul,
Guiard, & Gori, in preparation).

a max-accuracy condition. As for the average gratstyle of
Fitts’ participants, they favoured accuracy moranthdid the
participants of Guiard et al. (L= 34.9% to be compared with
42.8%). Again this outcome is easy to understandFis
explicitly emphasized accuracy in his task insinrd whereas
Guiard et al. used instructions aimed at coverihg tvhole
spectrum of speed/accuracy strategies.

4.4 Data from the Schmidt Paradigm
In their notorious stylus-pointing experiment onstfadiscrete
movements that gave birth to the Schmidt law, Sdheti al. [18]
used nominal movement times in the 140-200ms rafige.data
are shown in Figure 9. With only four data poinistie CFP to
constrain the fit of the WHo model, obviously ourding ofa =
.45 andk = 0.090 is tentative.
25%
Schmidt et al. (1979)
Fast movements

=83.1%

20% B

10%

5%
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0.0 0.1 0.2 0.3 0.4

B (s)

Figure9. The WHo mode fitted to the fast-movement data of
Schmidt et al. [18]

The authors also did an experiment, less successthkir view,
with nominal times in the 200-500ms range. FiguBeshows a
manual fit of the WHo model for these slower movetagin
which we obtained. = .43 and = 0.073.

0.5 0.6 0.7

Comparing the curvilinear arcs of Figure 9 and h@ oan see a
more speedy strategic style in the fast-movemept=(60.4%)
than slower-movement experimeng; 145.5%), in keeping with
the authors' intention. However, the most pronodntiéference
was in the flexibility of the speed/accuracy stggtewith Ag =
45.6% for fast movements and 84.0% for slower margm In
fact, rather surprisingly, it is in the experimeon "slower"
movements that the shortest values efwere recorded. These
differences make sense if it is realized that appér the
performance benefited from more resource in thewedo
movement experimenk & 0.073, to be compared wikhe 0.090).
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Figure 10. The WHo model fitted to the slower-movement

data of Schmidt et al. [18].

Figure 11 offers a superposed view of the fourssCaR the WHo
model idealises them. Dropping the data points twica
cluttering, we just retain the arcs. The merit o€ls arcs is that
they not only outline a certain function, they atp®cify a certain
range along the function, thus answering both thestion of the
resource and the question of the range of resa@li@eation.

20%

Schmidt et al. (1979)
fast movements

10% Fitts (1954)

5% Schmidt et al. (1979)

slower movements

0%
0.0 05 1.0 15 20

By (s)
Figure 11. Plotting the four curvilinear CFP arcstogether.

Remembering that Fitts-law students have believades1979
[18] that the data from the Schmidt paradigm areadépecial
nature that motivates the conjuring up of another, lour result is
good news: from the moment the data are processadunified
fashion the quantitative patterns are strikingiyikr. It is not just
that the shapes of the curves are all describabfleé minimalist
terms of the WHo model. Consider thpielraumof x andy in
Figure 11: we might summarise things by saying tbat
speed/accuracy problem is pretty much a matte0® af relative
inaccuracy that trade with 2 seconds of time. Wihile four
(infinite) curves have similar shapes and fall tygn the same
region of the space of relevance, there is quiteeseariability in
the location and extent of the (finite) curvilineacs, and we have
seen that this variability sensibly reflects th#fedent palettes of
speed/accuracy instructions used in the differepeements.

5. CONCLUSION

5.1 Implicationsfor Basic Research

The above data provide reassuring evidence in fawbthe view
that human aimed movements are indeed governed diggte
speed/accuracy trade-off, and that that trade®ffvhat it is
regardless of the experimental technique with whithis
demonstrated. The high quality of the fits is natpsisingly,
bearing in mind that the WHo model arises from sbvious
axioms. Theorising out of carefully-chosen setdrofsms is an
old recipe of good science and it is certainly st risky of all
— truisms, as far as we can see, are true propasitio

If the present work involves some theorizing, itstemtial
contribution has little to do with the substanttakory of the
subject. Here our concerns are essentially metogial and
empirical, our primary focus being the particuldmage of the
trade-off under study. The WHo model says nothifmtsoever
about the real-time cognitive, physiological, or ygical
mechanisms that might possibly explain the speedfacy trade-
off of aimed movement. For example, this work dnesaddress
the question of whether qualitatively different pes, one ballistic
and the other monitored under the control of visiake place in
the course of an aimed movement viewed as a canifu
kinematic event [4][14][17]. We believe that evetgp forward in
the quest for an accurate and robust mathematesarightion of
the empirical regularity psychologists have beenceoned with
since Woodworth (1899) [24] may be valuable, ifyobécause an
improved description of the observables shouldifate the work
of substantive theorists.

5.2. Implicationsfor HCI

Suppose that a team of HCI researchers, practisoofethe Fitts
law who care about methodology and scrupulousljofolthe
recommendations of the ISO standard [10], desighcanry out
an experiment to compare a promising novel pointeahnique
with some traditional baseline. Also suppose theg tesearch
takes place in an industrial context where safetgritical. Alas,
they find no throughput difference (in our languagedifference
in the amount of resource users have at their dapdhat is,
similar values ofk). According to the ISO standard, the
researchers' intuitions were false and they unlyckasted their
time. But there is reason to be sceptical.

The odds of two qualitatively different techniqugslding non-
different throughputs in a pointing experiment atgat they are,
but there is no question that the odds of the techriques
yielding not just similar throughputs but also teme range of
speed/accuracy strategies, given standardisedrstsictions, are
much lower. Suppose the innovation induces in #8rs more
careful strategies (as revealed by a systematictweyd and
downward shift of thgd index), in comparison with performance
with the baseline technique. If so (recalling thiat our
hypothetical scenario safety is a critical concethg novel
technique must certainly be judged preferable thé tSO
standard, which claims that only the throughputtensf is an
invitation to miss that important conclusion. Imped
experimental procedures and finer analytic tootsutdhallow HCI
researchers to save experimentation time and es@nttake
better informed decisions.
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APPENDIX 1: MATHEMATICAL NOTATION AND TERMINOLOGY

Symbol Variable name Physical dimension Practical unit

Task Parameters under Experimenter Control

d target distance [L] or [] cm or degree
w target width or tolerance [L] or [-] cm or degree
t nominal movement duration [T s

d/w relative target distance [-] -

w/d relative target tolerance [-] %

v=d/t nominal average speed LT or [T cm/s or deg./s

ig index of task difficulty [-] bit

Movement Measures Subject to Random Variability

A movement amplitude [L] or [] cm or degree
T movement duration [T S
E=A-d endpoint error [L] or[-] cm or degree
V=A/T average movement speed LT or [T cm/s or deg./s
| ge index of effective difficulty [-] bit

Movement Statistics for Blocks of Repeated Movements or Higher Aggregates

Ha mean amplitude [L]or [-] cm or degree
My mean movement duration M s

Uy = Ha/ Py mean average speed LT or [T cm/s or deg./s
Mg =Ha-d constant error or aiming bias [L] or [] cm or degree
op = og variable error or endpoint spread [L] or [-] cm ogokse
on! Ma = oe/ Ha relative endpoint spread [-] %

Mal op = Mal oe mean relative amplitude [-] -



