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ABSTRACT

In this work, we theoretically investigate the relative intensity noise (RIN) properties of quantum dot (QD) lasers
through a rate equation model including the Langevin noises and the contribution from the off resonance energy
levels. It is shown that the carrier noise significantly enhances the RIN which can be further reduced by properly
controlling the energy separation between the first excited and the ground states. In addition, simulations
also unveil that the RIN of QD lasers is rather temperature independent which is of prime importance for the
development of power efficient light sources. Overall, these results indicate that QD lasers are excellent candidates
for the realization of ultra-low noise oscillators hence being advantageous for fiber optics communication networks,
short reach optical interconnects and integrated photonics systems.
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1. INTRODUCTION

The relative intensity noise (RIN) of semiconductor lasers degrades the signal-to-noise ratio (SNR) and increases
the bit-error rate of optical signals hence setting a limit of a high-speed communication system.1,2 A low RIN floor
across the operating range is usually required to achieve a large SNR. System limitations due to poor SNR can
be compensated by increasing the bias current of the laser source but at the price of a larger energy consumption.
In radar related applications, the intensity noise of the laser is also of first importance since it is expected to be
closed to that of the shot noise over a bandwidth ranging up to 20 GHz.3 Compared to quantum well (QW)
lasers, significant breakthroughs have been achieved by using quantum dots (QD) as gain media. QD lasers can
produce energy- and cost-efficient devices with outstanding temperature stability, low threshold current, reduced
phase and intensity noises and richer complex dynamics.4,5 For instance, recent works have shown that the sole
ground state (GS) emission makes QD lasers highly insensitive to external optical perturbations whereas those
emitting exclusively on the first excited state (ES) exhibit a plethora of nonlinear dynamical behaviors.6–8 As for
the intensity noise, prior works have experimentally shown a RIN level as low as -160 dB/Hz on both InAs/GaAs
and InAs/InP QD lasers,9,10 whereas it was found slightly higher e.g. from - 140 dB/Hz to -150 dB/Hz in
QD lasers directly grown on silicon.11 The RIN of QD lasers has been theoretically investigated however being
significantly underestimated because prior models were not taken into account the carrier noise12 or when doing
so, it was only that from the GS level.13 Therefore, this work goes a step forward by numerically reporting on
the RIN of QD lasers analyzed by a rate equation model incorporating the Langevin noises associated with both
spontaneous emission and carrier noise through the contributions of both resonance and off-resonance energy
levels. It is shown that the carrier noise in both the GS and ES significantly enhances the RIN, while that in the
carrier reservoir (RS) does not, hence showing that the inclusion of the ES contribution is required for getting
an accurate description of the laser intensity noise. On the other hand, the energy separation between ES and
GS is found to have a strong impact on the RIN meaning that a large energy separation namely a small vertical
coupling is more suitable for RIN reduction due to the suppression of the carrier noise contribution of the ES.
Finally, simulations unveil that the RIN of QD lasers is rather temperature independent, which is also of vital
importance for stable and energy efficient low noise QD oscillators.
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2. NUMERICAL MODEL

QDs are assumed to be neutral hence electrons and holes are treated as electron-hole pairs meaning that the
system only consists of excitonic energy states. Carriers are supposed to be directly injected from the contacts
into the RS, so the carrier dynamics in the barrier are not taken into account. The model is based on the
assumption that the active region includes only one QD ensemble incorporate a two-fold degenerate GS as well
as a four-fold degenerate ES. As shown in Figure 1, the carriers are at first captured from the RS into the ES
with capture time τRS

ES , and then relax from the ES down to the GS with a relaxation time τES
GS . On the other

hand, some carriers can also be thermally reemitted from the ES to the RS with an escape time τES
RS , which

is governed by the Fermi distribution for the quasi-thermal equilibrium without external excitation. Similar
dynamic behavior is followed by the carrier population on the GS level with regards to the ES carriers with an
escape time τGS

ES . The differential rate equations describing carrier and photon dynamics are expressed as:14

Figure 1. Schematic of the electronic structure and carrier dynamics in the InAs/InP QD structure.
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where I is the bias current, q the elementary charge, NRS,ES,GS the carrier populations in the RS, ES, and GS,
respectively and SGS the photon number in the GS level. It is worth noting that the model only considers the
stimulated emission from the GS transition and that from the ES is not taken into account. In addition, carriers
also recombine spontaneously with a spontaneous emission times τsponRS,ES,GS . Finally, it is noted that ρES,GS

correspond to the carrier occupation probabilities in the ES and GS, while Γp is the optical confinement factor,
τp the photon lifetime, vg the group velocity and βsp the spontaneous emission factor in the lasing mode.

Modeling of the RIN is conducted through the inclusion of the Langevin noise sources related to both carrier
and spontaneous emission noises.15 Thus, FRS,ES,GS , and FS represent the carrier noise and the photon noise
respectively. Moreover, the correlation strength of two Langevin noise sources is defined as 〈Fi(t)Fj(t

′)〉 =
Uijδ(t − t′), where indexes i, j refer to RS, ES, GS and S with Uij the diffusion coefficients between two noise
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sources which are delta-correlated. Based on the steady-state solutions from (1) - (4), the diffusion coefficients
of all the Langevin noise source are derived as:1
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The above Langevin noise sources perturb the laser system away from its steady-state condition. Linearizing the
rate equations (1) - (4), the differential rate equations can be expressed in the frequency domain such as:
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Where NB is the total dot number, the gain variation is determined by both the carrier and photon density
variations: dgGS = aGSdNGS − apdSGS , with aGS refers to GS differential gain and ap deals with the gain
is compressed at high photon densities. Therefore, following Cramer’s rule, the RIN of GS in the QD laser is
calculated by:

RIN(ω) =
|δSGS(ω)|2

S2
GS

(14)

with δSGS(ω) the photon number variation in the frequency domain and SGS presents the average photon
number. The laser under study is an InAs/InP QD laser emitting near 1550 nm and exhibiting a threshold
current (Ith) of 48 mA at room temperature. All material and optical parameters of the QD laser used in the
simulations are listed in Table 1 in appendix,14 unless stated otherwise.
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3. NUMERICAL RESULTS AND DISCUSSION

Figure 2 unveils the contribution of carrier noise (FRS,ES,GS) to the RIN spectra of the QD laser at different bias
currents of 2×Ith, 3×Ith and 4×Ith, respectively. The RIN remains stable at low frequencies typically below 1.0
GHz, while it strongly decreases above the resonance frequency peak of the QD laser. It is noted that the random
division of reflected and transmitted photons at the cavity facets which should result in a noise floor at high
frequencies in the RIN spectrum is not included in the calculations.1 Compared with the RIN spectra without
FRS,ES,GS (dot curves), the inclusion of the FRS,ES,GS (solid curves) significantly strengthen the magnitude of
the RIN over the frequency range especially at low frequencies (< 1.0 GHz). For instance, the RIN extracted at
1 MHz at 2×Ith is enhanced from -150 dB/Hz to -140 dB/Hz when the carrier noise is included.

Figure 2. Contribution of FRS,ES,GS to the RIN at bias currents of 2 × Ith, 3 × Ith and 4 × Ith respectively. The solid
lines are with carrier noise while the dot lines are not.

Figure 3 depicts the bias current dependence of the damping factor and the resonance frequency of the RIN
spectra including the FRS,ES,GS . At a higher bias current, both the damping factor and the resonance frequency
are increased which is in agreement with Figure 2 showing that the resonance frequency peak scales up with the
bias current while its amplitude is reduced.

Figure 3. The bias current dependence of the damping factor and the resonance frequency of the RIN spectra including
the FRS,ES,GS .
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Figure 4. Calculated RIN spectra at 2×Ith for cases including the carrier noise sources FRS,ES,GS , FES,GS , FGS and
without FRS,ES,GS .

The contribution of the carrier noise in each state to the laser RIN is now illustrated in Figure 4 at 2 × Ith for
cases with FRS,ES,GS (solid line), FES,GS (dash line), FGS (dash-dot line) and without FRS,ES,GS (dot line),
respectively. In comparison with the RIN spectrum without the carrier noise (FRS,ES,GS), FGS enhances the RIN
amplitude over the whole frequency range, while FES only increases the RIN at frequencies below the resonance
frequency. In particular, it has to be noted that the contribution of FRS remains perfectly negligible.

As FGS and FES clearly dominate the laser intensity noise, simulations unveil that it can be compressed by
controlling the ES-GS energy separation ∆EES

GS , namely, the vertical coupling between ES and GS. In the
simulation, the RS-GS energy separation is fixed such as ∆ERS

GS = 3×∆EES
GS while the carrier capture and

relaxation times are supposed to be constant hence independent of the energy separation.16 However, since the
threshold current varies with the ES-GS energy separation, it is better to fix the photon number for comparing
the impact of the energy separation ∆EES

GS on the RIN. Figure 5 depicts the RIN spectra when assuming for
example a pretty large variation of ∆EES

GS from 50 meV to 160 meV with a step of 10 meV. The photon number is
still at 2×105 which corresponds to a pumping condition already far from the laser threshold for which a typical

Figure 5. The RIN spectra plotted as a function of the ES-GS energy separation increasing from 50 meV to 160 meV with
a step of 10 meV and at a fixed photon number of 2×105.
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Figure 6. Calculated RIN at 1 MHz as a function of the bias current at 283 K, 293 K and 303 K, respectively. The inset
shows the RIN values plotted as a function of temperature assuming a bias current of 160 mA.

photon number of 1×103 usually occurs. Simulation proves that a large ES-GS energy separation compresses the
low-frequency part of the RIN before the resonance frequency peak. For instance, the RIN at 1 MHz is found to
be reduced by as much as 6 dB from -143 dB/Hz at 50 meV down to -149 dB/Hz at 160 meV. However, the RIN
tends to an intrinsic limit value associated with the FGS when further increasing ∆EES

GS , since the ES-GS energy
separation can only minimize the contribution from the ES. As a consequence, a large ES-GS energy separation,
namely, a small vertical coupling between the ES and the GS is more beneficial for low intensity noise operation
in QD lasers due to the reduced carrier noise from the ES. This also proves that the inclusion of ES contribution
in the model is necessary for accurately characterizing the RIN properties in QD lasers.

The effect of the temperature on the RIN of QD lasers is now investigated. This study is particularly motivated
by our previous work in which a rather temperature insensitive behavior was also unveiled between 283 K and
303 K for the optical linewidth of InAs/InP QD lasers.17 Figure 6 presents the evolution of the calculated
low-frequency RIN (at 1 MHz) as a function of the bias current between 283 K and 303 K. The RIN is at first
drastically reduced near the threshold and a further decrease is achieved at high bias currents owing to the
strong damping factor. In addition, for a bias current of 160 mA, the inset also shows that the value of the RIN
increases from - 147.2 dB/Hz at 283 K to - 147 dB/Hz at 293 K, and -146.7 dB/Hz at 303 K with a variation of
0.5 dB/Hz over the temperature range of 20 K. These results demonstrate the RIN of QD lasers is pretty stable
over temperature variations.

4. CONCLUSIONS

To sum, this work shows that the carrier noise in the ES and GS significantly enhances the RIN, while that in
the RS is negligible hence showing that the inclusion of the ES contribution is of paramount importance for a
better and accurate analysis of the intensity noise. Since the energy separation between ES and GS is found
to have a strong impact on the RIN, hence a large energy separation namely a small vertical coupling is more
suitable for low intensity noise operation due to the suppression of the carrier noise in the ES of QD lasers.
In the end, simulations also unveil that the RIN of QD lasers is rather temperature independent, which is in
encouraging for the realization of stable and power efficient light sources. Overall, results show that QD lasers
can be used as ultra-low noise oscillators not only in fiber optic communication networks but also for short reach
optical interconnects in high performance computers and in board-to-board and chip-to-chip integrated photonic
systems.
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APPENDIX A. MATERIAL AND OPTICAL PARAMETERS OF QD LASER

Table 1. Material and optical parameters of the InAs/InP(311B) QD laser.

Symbol Description Value

ERS RS transition energy 0.97 eV

EES ES transition energy 0.87 eV

EGS GS transition energy 0.82 eV

τRS
ES RS to ES capture time 6.3 ps

τES
GS ES to GS relaxation time 2.9 ps

τES
RS ES to RS escape time 2.7 ns

τGS
ES GS to ES escape time 10.4 ps

τsponRS RS spontaneous emission time 0.5 ns

τsponES ES spontaneous emission time 0.5 ns

τsponGS GS spontaneous emission time 1.2 ns

τp Photon lifetime 4.1 ps

T2 Polarization dephasing time 0.1 ps

βsp Spontaneous emission factor 1×10−4

aGS GS Differential gain 5.0×10−15 cm2

aES ES Differential gain 10×10−15 cm2

aRS RS Differential gain 2.5×10−15 cm2

ξ Gain compression factor 2.0×10−16 cm3

Γp Optical confinement factor 0.06

NB Total dot number 1×107

DRS Total RS state number 4.8×106

VB Active region volume 5×10−11 cm3

VRS RS region volume 1×10−11 cm3
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