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ABSTRACT

Photonics integrated circuits on silicon are considered as a key technology for data centers and high-performance
computers. Owing to the ultimate carrier confinement and reduced sensitivity to crystalline defects, semicon-
ductor quantum dot lasers directly grown on silicon exhibit remarkable properties such as low threshold current,
high temperature stability and robust tolerance to external reflections. This latter property is particularly impor-
tant for achieving large-scale integrated circuits whereby unintentional back-reflections produced by the various
passive/active optoelectronic components can hinder the stability of the lasers. In this context, it is known that
quantum dot lasers are more resistant to optical feedback than quantum well ones thanks to the low linewidth
enhancement factor, the large damping, and the possible absence of upper lasing states. In this work, we the-
oretically investigate the reflection sensitivity of quantum dot lasers directly grown on silicon by studying the
peculiar role of the epitaxial defects, which induce nonradiative recombination through the Shockley-Read-Hall
process. By using the Lang and Kobayashi model, we analyze the nonlinear properties of such quantum dot
lasers through the bifurcation diagrams and with respect to the nonradiative lifetime. In particular, we show
that the increase of the Shockley-Read-Hall recombination shrinks the chaotic region and shifts the first Hopf
bifurcation to higher feedback values. We believe that these results can be useful for designing novel feedback
resistant lasers for future photonics integrated circuits operating without optical isolator.
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1. INTRODUCTION

A unique feature of semiconductor lasers is their low tolerance for external optical feedback (EOF). The physical
processes involved in a semiconductor laser under EOF rely on the so-called phase-amplitude coupling driven
by the linewidth enhancement factor (α-factor) in the active region between the returned light field and the
intracavity field.1 Optical feedback is coupled into the laser cavity through the output facet and causes a
perturbation on the photon density hence leading to a fluctuation of the carrier density and thus the optical
gain. The intensity fluctuation is then modulated by the damping effect and linked to the optical gain, where
the gain variation itself impacts on the refractive index through the α-factor which produces a shift in the lasing
wavelength. In a high-speed communication system, EOF must be absolutely avoided because severe temporal
instabilities in the laser’s output (eg. coherence collapse) can affect the quality of the data transmission.2 In order
to counter these unwanted back-reflections, the inclusion of expensive and bulky optical isolators are required
in order to maintain the laser’s stability. Consequently, the development of feedback insensitive transmitters
remains of paramount importance especially for silicon-based integrated technologies where current on-chip
optical isolators do not exhibit yet sufficient isolation ratio and insertion loss.3

Owing to their quasi-class A behavior, quantum dot (QD) lasers display a natural higher dynamical stability
against EOF than conventional bulk and quantum well (QW) ones. As they exhibit less complicated trajectories
and smaller region of chaotic dynamics, QD lasers offer a great potential for reflection insensitivity. The improved
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performance of QD lasers against EOF is linked to their large damping factor and reduced phase-amplitude
coupling.4 It was also proved that QD lasers emitting on the sole ground state (GS) transition are more stable
than those operating on the excited state (ES) or within the dual-state lasing regime (GS + ES).5 In addition, the
higher threading dislocations (TD) and epitaxial defects induced shorter carrier lifetime is also touted to further
enhance the stability of the laser against EOF. Indeed, the epitaxial growth causes a high density of defects
which induces non-radiative recombination through the Shockley-Read-Hall (SRH) process.6 All these features
make QD lasers excellent candidates for isolation-free related applications.7 The motivation of this work is to
better analyze the influence of the nonradiative recombination on the QD laser’s optical feedback sensitivity. To
do so, we investigate both numerically and analytically the case of an epitaxial QD laser on silicon subjected to
EOF. With the increase of the SRH recombination, the first Hopf bifurcation is found to occur at higher feedback
levels whereas the chaotic bubbles is smoothly eliminated. The results are found in agreement with the recent
experiments hence confirming the enhanced stability of such epitaxial QD lasers against EOF. Overall, this work
brings further insights in the understanding of QD laser physics, which are useful for designing feedback resistant
lasers for isolation-free applications in photonics integrated circuits.

2. NUMERICAL MODEL

The QD model is established to take into account the EOF produced by a distant reflector of amplitude reflectivity
r3. We use the Lang and Kobayashi (LK) approach which is based on two ordinary delay differential equations
for the complex electrical field and for the carrier number.8 The LK model is well-suitable for analyzing the
nonlinear dynamics of a semiconductor laser under EOF hence highlighting many complex behaviors like mode
hopping, low-frequency fluctuations (LFF), the onset of the coherence collapse, and coexisting attractors with
time-periodic intensities. In what follows, it has to be noted that multiple round-trips of the electric field in
the external cavity are excluded, as the effective feedback strength for such round-trips rapidly decreases, which
restricts the validity of the model to low feedback levels.9 Also, the Langevin noises should be taken into account
to fully understand the transient and dynamical behaviors of the semiconductor laser. In this work, the Langevin
noises are not considered in order to separate the deterministic chaos from the stochastic noise. As a consequence
of that, the QD laser’s differential equations read as follows:

dN

dt
= J − N

τc
−GN (N(t)−N0)|E|2 (1)

dE

dt
=

1 + iα

2
(GN (N(t)−N0)− 1

τp
)E +

k

τin
E(t− τ)e−iω0τ (2)

with τp, τin, τ and τc the photon lifetime, the cavity round-trip time, the external cavity round-trip time, and
the carrier lifetime, respectively. Other parameters are k the power reflected from the external cavity with
respect to that from the laser mirror and J the pumping term. The solitary laser is assumed to oscillate in a
single longitudinal mode with angular frequency ω0 while N0 is the carrier density at the transparency for the
solitary laser and GN the dynamic gain defined as GN=∂G/∂N . Using a dimensionless form, the LK equations
describing the complex electrical field Y and the carrier number Z are given by:10

dY

ds
= (1 + iα)ZY + ηe−iΩθY (s− θ) (3)

T
dZ

ds
= P − Z − (1 + 2Z)|Y |2 (4)

with s = t/τp and Ω the dimensionless angular frequency of the solitary laser. We note T = τc/τp as the
ratio of the carrier lifetime to photon lifetime, θ = τ/τp the ratio of the external cavity round-trip time to
the photon lifetime, P the dimensionless pumping current above threshold, and η > 0 the feedback strength.
In what follows r3 is treated as the bifurcation parameter proportional to η. As aforementioned stated, the
epitaxial growth of InAs QDs on silicon substrate embrace several challenges such as the control of the epitaxial
defects which introduce nonradiative recombination centers through the SRH process.11 The relation between
the nonradiative recombination lifetime and the defect density can be written as follows:12

1

τSRH
=

1

τ0
SRH

+
Dπ3σ

4
(5)
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with τ0
SRH the lifetime of dislocation-free GaAs-based QD lasers, D the diffusion coefficient and σ the TD

density. The defect density in GaAs-based QD lasers is typically in a range of 103–104cm-2 or less, and the
corresponding τSRH is on the order of 10 ns, which is much longer than the spontaneous emission lifetime (∼1.0
ns). Therefore, in QD lasers grown on native substrate, this additional nonradiative recombination term can be
neglected in the simulations.13 However, a different situation occurs in silicon-based QD lasers where the defect
density (106–108cm-2 ) is at least two orders of magnitude higher than that in GaAs-based QD ones.14 Here, the
nonradiative carrier lifetime can be as low as 0.1 ns, therefore becoming shorter than the spontaneous emission
lifetime. To account for this phenomenon, the carrier equation (eq.(1)) is reformulated as follows:

dN

dt
= J − N

τc
− N

τSRH
−GN (N(t)−N0)|E|2 (6)

where the effective carrier lifetime (τ ′c) is indeed shortened by the SRH process through the relationship:

1

τc′
=

1

τc
+

1

τSRH
(7)

3. NUMERICAL RESULTS

The effect of the nonradiative recombination on the QD laser’s feedback sensitivity is analyzed through the
bifurcation diagram. The evolution of the first Hopf bifurcation along with the chaotic bubbles are analyzed and
discussed. Equations (1)–(2) can be solved numerically by using the fourth-order Runge–Kutta method. The
simulation parameters for the QD laser are given in Table 1 if not otherwise specified. In the simulations, the
time step is 0.5 ps and the time span is 2 µs.
In this section, we compare the bifurcation diagrams obtained by considering different values of the SRH lifetime

Table 1. Material and optical parameters of the QD laser during the simulation

Symbol Description Value

GN Gain coefficient 8.4×10-13m3s-1

N0 Carrier density at transparency 1.4×1024m-3

τp Photon lifetime 1.927×10-12s

τc Carrier lifetime 2 ×10-9s

τin Round-trip time in internal cavity 8.0×10-12s

τSRH nonradiative recombination lifetime 0.1∼10 ns (variable)

r2 Reflectivity of laser facet 0.5

r3 Reflectivity of external mirror 0.01 (variable)

j = J/Jth Normalized injection current 1.01

L External cavity length 0.3 m

α Linewidth enhancement factor 2

λ Optical wavelength 1.5×10-6m

c Speed of light 2.9×108ms-1

τ = 2L/c Round-trip time of feedback light in external cavity 2.0×10-9s

ω = 2πc/λ Optical angular frequency 1.2×1015s-1

according to the equation (5) which was derived from an approximation method.12 Fig.1 shows the evolution of
the SRH lifetime with respect to the TD density, assuming the latter varying from 105 cm−2 to 107 cm−2. The
non radiative recombination process is found inversely proportional to the TD density. The simulation shows
that the SRH lifetime ranges from 0.1 ns to 7 ns, which validates the parameters taken in Table.1. In order to
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Figure 1. SRH lifetime obtained by an approximation method as a function of threading dislocation density.

further investigate the influence of the SRH lifetime on the chaotic dynamics and the first Hopf bifurcation, we
start by analyzing the situation of an epitaxial QD laser operating right above the threshold (1.01×Jth) with
α=2. Even if it was shown that the α factor of an epitaxial QD laser can be as low as 0.32,15 we consider here
a larger value to better emphasize the impact of this parameter on the bifurcation diagram. Fig.2 displays the
computed bifurcation diagram that is to say the evolution of the local extremums of the normalized intensity as
a function of the bifurcation parameter r3 and for different values of the SRH lifetime. In the simulations, the
external cavity length is fixed to 30 cm. Fig.2(a) shows that when r3 is increased from zero, the first external
cavity mode (ECM) is initially stable and then undergoes a Hopf bifurcation, indicating the birth of sustained
relaxation oscillations. The laser becomes unstable and enter a chaotic bubble via a period-doubling bifurcation.
For r3 = 0.0044, the next higher ECM (mode 2) becomes stable and temporarily coexists with the unstable mode
1. For these values of r3, the second ECM (mode 2) is stable and corresponds to the maximum gain mode.16

Then, mode 2 undergoes a Hopf bifurcation for r3 = 0.0171 and follows a dynamic route from quasi-periodic to
chaos as shown for r3 = 0.0265. For a further increase of r3, the next ECM (mode 3) is initially stable, then
undergoes a Hopf bifurcation following a similar route into instabilities, and the bifurcation cascade continues.17

The computed time series corresponding to the different vertical blue dash-dotted lines represented in Fig.1(a)
are displayed in Fig.3. It shows that from (a) to (d), the increase of r3 leads to chaotic oscillations through
period-doubling.

The impact of the SRH lifetime on the bifurcation diagram is also unlocked in Fig.2. Any decrease of τSRH
from (a) to (d) makes the bifurcation diagram of less complexity. As we can see, the different chaotic bubbles are
smoothly eliminated when reducing the nonradiative lifetime, eventually at τSRH = 0.1 ns, the chaotic window
disappears leaving only small periodic oscillations. Nevertheless, at a large feedback strength (r3 = 0.0384), the
blue square window in Fig.2(d) reveals the emergence of LFFs, which is a peculiar signature of low-dimensional
deterministic chaos.18 The time series in Fig.4 confirms the LFF characteristics where the laser intensity starts
to exhibit sudden dropouts at irregular time intervals, followed by a gradual recovery. And the time scale of
these fluctuations is long compared to the intrinsic time scale of the laser oscillations. Last but not least, it is
important to stress that the first Hopf bifurcation is found to be dependent on τSRH . Thus, as we can see in
Fig.4(b), when τSRH decreases, the first Hopf bifurcation occurs at larger values of r3, which means that the
stable operation area associated with mode 1 is expanded. In recent experiments, the epitaxial QD laser on
silicon demonstrated a remarkable stability against EOF without showing any chaotic operation. This intrinsic
feature was explained thanks to the large damping, the low α, and the absence of higher energy states in the
lasing emission process. Here, we think that the SRH recombination are additional mechanisms that play a role
in the evolution of the reflection sensitivity. Shortening τSRH increases the resistance against EOF which is
exactly what happens in epitaxial QD lasers as compared to their counterparts grown on native substrate.

Proc. of SPIE Vol. 11680  116800L-4
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 24 Dec 2021
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Figure 2. Computed bifurcation diagrams of local extremums of the normalized intensity as a function of the bifurcation
parameter r3 for α=2 and different values of τSRH : (a) τSRH=10 ns; (b) τSRH=5 ns; (c) τSRH=1 ns; (d) τSRH=0.1 ns.

Figure 3. Computed time series for different values of r3 and τSRH . From left to right, r3 = 0.004, 0.005, 0.0093, 0.0264
respectively, which correspond to the vertical blue dash-dotted lines displayed in Fig.1(a).
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Figure 4. (a) Computed time series for τSRH=0.1 ns corresponding to the blue dash-dotted rectangle displayed in Fig.1(d);
(b) The evolution of the first Hopf bifurcation with respect to the different values of SRH recombination lifetime according
to the Fig.2. The dashed line is used for guiding the eyes only.

Let us now focus on a real configuration assuming an external cavity length of 4 cm which simulates the situation
of a very short reflection as that occurring on a PIC. The QD laser is still pumped right above the threshold
(1.01×Jth) but now the α is taken at 0.5 to fully match the experimental value.4 Simulations depicted in Fig.5
are obtained for two values of τSRH . It is clear that the bifurcation diagrams do not show a signature with a wide
chaotic dynamics. As we can see for τSRH=10 ns, there only exists the stable solution taking place after a region
located at low feedback levels where periodic oscillations coexist with a narrow chaotic region. Ultimately when
τSRH=0.1 ns, the chaotic region vanishes leaving the periodic oscillation. The results are consistent with the
above-threshold simulations obtained with a larger α. In addition, we also confirm that lowering τSRH slightly
moves the first Hopf bifurcation point to the higher values of r3 here from r3=0.02 to r3=0.03.

Figure 5. Computed bifurcation diagrams for an cavity length of 4 cm. (a) left, α=0.5 and τSRH=10 ns; (b) Right, α =
0.5 and τSRH=0.1 ns

4. ANALYTICAL METHOD

Analyzing the steady state solutions and their linear stability properties lead to valuable information on the effects
of some parameters and, possibly, scaling arguments which may be used to simplify the nonlinear problem. In
this section, we put in practice these ideas by investigating the Hopf bifurcation that is to say the bifurcation from
a steady state intensity to limit-cycle intensity oscillations. A Hopf bifurcation often marks the first instability
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of a cascade of successive bifurcations to gradually more complex responses.17 A basic solution of Eqs.(3) and
(4) is a single frequency solution of the form:

Y = Ase
i(Ωs−Ω0)s

Z = Zs

where As,Ωs and Zs are constants. Substituting these equations into Eqs.(3) and (4) leads to three equations for
these constants while ∆=Ωsθ the external cavity mode frequency satisfies the following transcendental equation:

∆− Ω0θ = −ηθ(α cos ∆ + sin ∆)

The intensity of the laser field is then given by

A2
s =

P + η cos ∆

1− 2η cos ∆
≥ 0

where the inequality restricts the possible values of ∆. As η progressively increases from zero, the number of
possible ECM increases too. Let us determine the conditions for a Hopf bifurcation from a single frequency
solution. From the linearized equations, we determine the characteristic equation for the growth rate λ. The
condition for a Hopf bifurcation is obtained by substituting λ=iω into the characteristic equation. Then by
separating the real and imaginary parts, one obtain two equations for the feedback rate η and the frequency ω
of the oscillations at the Hopf bifurcation point.19 These equations are transcendental which means that they
are difficult to solve numerically. However, approximations were proposed assuming that ε = 1/T is O(10-3) a
small quantity.20 Seeking a solution in power series of ε1/2 leads to the following relationships for η and ω

η = −ε 1 + 2P

2 sin2(ωθ2 )(cos ∆ + α sin ∆)
(8)

ω = ωR + ε
1 + 2P

2
cotωθ (9)

where ωR=(2Pε)1/2 is the relaxation oscillation frequency of the laser. Because ηθ is O(ε1/2), we find that
∆ ' Ω0θ. The approximation of ω is valid for all values of P except at and near points of resonance verifying the
condition ωR=2nπθ−1(n=0,1,2,3...). At these values of ωR, the denominator in Eqs.(8) is zero. Inner solutions
can be constructed near these points but become inadequate if θ is increased. Fig.6 displays the evolution of
η corresponding to the first Hopf bifurcation as a function of τSRH . The blue curve is obtained from Eq.(8)
whereas the red one corresponds to the extraction of the valid data. It is straightforward that when SRH lifetime
decreases, the feedback strength η increases, which means that the first Hopf bifurcation is shifted to stronger
optical feedback. Such a result agrees with the numerical simulations depicted in the previous section.

5. CONCLUSION

In summary, we have investigated numerically the impact of the SRH lifetime on the feedback stability of a QD
laser directly grown on silicon. By considering different τSRH values, we show that the chaotic region shrinks
and that the first Hopf bifurcation is shifted to higher feedback values. In addition, an analytical method based
on the asymptotic approximation was found to nicely reproduce the same tendency. Such results indicate that
epitaxial QD lasers do have a strong robustness against EOF which is of paramount importance for the next
generation of cost-effective PICS operating without optical isolators.
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[18] Heil, T., Fischer, I., Elsäßer, W., and Gavrielides, A., “Dynamics of semiconductor lasers subject to delayed
optical feedback: The short cavity regime,” Physical Review Letters 87(24), 243901 (2001).

[19] Erneux, T., “Asymptotic methods applied to semiconductor laser models,” in [Physics and Simulation of
Optoelectronic Devices VIII ], 3944, 588–601, International Society for Optics and Photonics (2000).

[20] Ritter, A. and Haug, H., “Theory of laser diodes with weak optical feedback. I. small-signal analysis and
side-mode spectra,” JOSA B 10(1), 130–144 (1993).

Proc. of SPIE Vol. 11680  116800L-9
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 24 Dec 2021
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use


