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ABSTRACT

Semiconductor passively mode-locked lasers are of broad interest due to their potential applications as sources
of ultra-short, high frequency light pulses. In spite of the complex dynamics of such devices, a relatively simple
delay differential equation model can reproduce the manifold modes of operation experimentally observed. Using
such a model we investigate the modes of operation of passively mode-locked lasers. We calculate key model
parameters from experimentally measured quantities and thus are able to reproduce experimentally observed
features, such as the onset of fundamental mode-locking, pulse width and repetition rate. Despite the simplicity
of the gain model used within our approach, nano-structured lasers, such as quantum-dot lasers, can be effectively
described. This enables us to make predictions about device behavior in dependence of operational parameters
and allows for device optimization.
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1. INTRODUCTION

Passively mode-locked (ML) lasers are of broad interest due to their potential applications as sources of ultra-
short, high frequency light pulses. They have been the subject to extensive research both theoretically and
experimentally.1–6 In recent years this is particularly true of quantum-dot (QD) semiconductor mode-locked
lasers, which are of particular interest due to their favorable properties, such as low threshold currents, low
line-width enhancement factors, broad gain spectrum and fast carrier dynamics.1

Several theoretical approaches have been developed to study passively mode-locked lasers.2,7–9 Of these
approaches the delay differential equation (DDE) model developed by Vladimirov and Turaev has been widely
used in recent years.10–13 This model assumes a unidirectional ring cavity, comprised of a gain section, an
absorber section and a spectral filtering element. It describes the laser dynamics through a delay differential
equation for the slowly varying electric field amplitude, coupled to two ordinary differential equations determining
the carrier dynamics in the gain and absorber sections. The advantage of this model, for example, compared
with a finite-differential traveling wave model, is the greatly reduced computational cost.3 The DDE model in
its original form does not include details of the carrier exchange processes between the QD levels and quantum
well reservoirs of QD semiconductor lasers. The model has been extended to include such process,3,14,15 however
this increases the size of the system of equations by at least two and greatly increases the dimensionality of the
parameter space. The question we wish to answer in this paper is whether this added complexity is needed to
simulate and make predictions about the dynamics of QD semiconductor ML lasers (QDMLL). We do this by
using the DDE model in its original form to quantitatively reproduce the experimental results of a QDMLL and
investigate the dependence of the ML solution on key parameters.

In this study we model the QDMLL used in the experiments presented in Ref. 16 and Ref. 12. The laser used
has a linear cavity of total length 8mm, of which 7mm are the gain section and 1mm is the absorber section.
The pulses produced had a repetition frequency of 4.96 GHz with a pulse width of 5.12 ps.12 We improve the
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Figure 1. Fits to the modal gain measurements presented in Ref. 16. These fits are used to obtain upper and lower bounds
for the ratio of the differential gain in the absorber and gain sections, s, shown in the right panel.

approach to simulate QDMLLs, using the DDE model, that was made in Ref. 12. We use some of the methods
of calculating parameter values from experimental measurements that were used in this work.

The paper is organised into three subsequent sections. In Section 2 the DDEs and the methods for calculating
the DDE parameter values from experimental measurements are introduced. In Section 3 the results are presented
and discussed and finally, in Section 4 the conclusions are presented.

2. MODEL AND CALCULATION OF PARAMETERS

2.1 DDE Model

The set of DDEs derived by Vladimirov and Turaev9 is given by

dA (τ)

dτ
= γ
√
κe[

1
2 ((1−iαg)G(τ−T )−(1−iαq)Q(τ−T ))]A (τ − T )− γA (τ) , (1)

dG (τ)

dτ
= g0 − ΓG (τ)− e−Q(τ)

(
eG(τ) − 1

)
|A (τ) |2 (2)

and
dQ (τ)

dτ
= q0 −Q (τ)− s

(
1− e−Q(τ)

)
|A (τ) |2. (3)

These equations describe a ring cavity laser with a gain section, an absorber section and a spectral filter. The
three dynamical variables are the dimensionless electric field amplitude A, saturable gain G and saturable loss
Q. G and Q describe the gain and resonant losses for one roundtrip in the laser cavity.

In Eqs. (1)-(3) the non-resonant linear intensity losses per roundtrip are described by κ. The gain spectrum is
taking into an account by a Lorentzian-shaped spectral filter with full-width at half maximum γ. The parameters
αg and αq are the linewidth-enhancement factors (α-factors) in the gain and absorber sections, respectively. The
unsaturated gain and losses, introduced by pumping the gain section and applying a reverse bias to the absorber
section, are given by g0 and q0, respectively. The parameter Γ is the ratio of the relaxation time in the absorber
and gain sections (τq/τg), and s is the ratio of the differential gain in the absorber and gain sections (gqΓq/ggΓg).

Equations 1-3 are formulated in a frame of reference co-moving with the pulse propagating in the cavity, with
retarded time τ = 1

τq

(
t− z

v

)
in units of the absorber relaxation time τq. The delay time T = 1

τq
L
v is the cold

cavity roundtrip time (L is the ring cavity length).
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2.2 Calculation of model parameters from experimental results

Adding together the total intensity losses and gain for one roundtrip one obtains the following threshold condition
for lasing:16 (

gmod (J)− αi
)

2Lg − (a0 + αi) 2Lq − αm2 (Lq + Lg) = 0, (4)

with

αm =
1

2 (Lg + Lq)
ln

(
1

R1R2

)
. (5)

Here Lg and Lq are the lengths of the gain and absorber sections, respectively, gmod (J) is the current dependent
modal gain, a0 is the unsaturated absorption, αi is the internal loss, αm is the mirror loss and R1, R2 are the
facet intensity reflectivities. From Eq. (1) above the following threshold condition for lasing can be obtained:

κe(G−Q) = 1. (6)

This is obtained by assuming steady state lasing, and corresponds to the total intensity losses and gain for one
roundtrip. The non-linear intensity losses per roundtrip are defined as

κ = R1R2e
−2αi(Lg+Lq). (7)

Using this definition for κ and and the two threshold conditions (Eqs. 4 and 6) one obtains

Gth = gmod (J) 2Lg (8)

and
Qth = a02Lq (9)

where Gth and Qth indicate the gain G and saturable loss Q at threshold, respectively. The threshold conditions
for Eqs. (2) and (3) are gth0 = ΓGth and qth0 = Qth, respectively. Therefore, in terms of experimentally measurable
quantities we have

gth0 = Γgmod (J) 2Lg (10)

and
qth0 = a02Lq. (11)

Mode-locking occurs above the threshold current, and as g0 is current dependent its value will depend on the
current at which mode-locking is achieved. However, the unsaturated absorption q0 depends only on the reverse
bias applied to the absorber section and is not influenced by the pump current injected into the gain section.
It is therefore given by the threshold condition, q0 = a02Lq. Mode-locking is achieved at 1.1-1.5 times the
lasing threshold current, J th.5,12,17 The unsaturated gain is proportional to [ggΓg]J (J − J tr), where J tr is the
transparency current of the linearised gain and [ggΓg]J is the slope of the gain function linearised at J . The
range of possible values for g0 is given by

g0 =
[ggΓg]xJth

(
xJ th − J tr

)
[ggΓg]Jth (J th − J tr)

gth0 , (12)

with x=1.1-1.5. Here [ggΓg]X is the linearised gain at current X.

The ratio of the differential gain in the absorber and gain sections, s, can be calculated from the experimentally
measured modal gain using12

s ≡ gqΓq
[ggΓg]J

=

[
∂gmod (J) /∂J

]
gmod(J)=0[

∂gmod (J) /∂J
] , (13)

The function describing the current dependence of the modal gain is obtained by fitting experimental data, as
done in Ref. 16. In this study the authors have fit a function of the form

gmod (J) = gmax

[
1− exp

(
J tr − J

ε

)]
(14)
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to the experimental data. To obtain upper and lower bounds for the value of s we fit these modal gain measure-
ments as shown in fig. 1 (a). The green curve fits the data well for currents much larger than the transparency
current, however, near transparency the slope of this function is too shallow, leading to the maximum absorption
being much smaller than the maximum gain. The blue curve describes the gain at low currents more accurately.18

In fig. 1 (b) the resulting minimum and maximum s values are plotted.

Finally, the spectral filter coefficient γ can be obtained from the width of the optical spectrum.

Using the experimental measurements given in Ref. 16 and Ref. 12 we calculate the DDE model parameters as
described above. In Ref. 16 and Ref. 12 the recovery times of the absorber and gain sections were not measured.
We must therefore estimate these from measurements carried out on similar devices.19,20 The experimentally
measured quantities and calculated DDE model parameter values are summarized in Table 1. Based on the data
available we have a range of possible values κ, Γ and s, but we do not have any experimental indications for
the values of the amplitude-phase coupling in the absorber sections. In the subsequent section we therefore first
investigate the influence of the these parameters on the output of a the simulated ML laser.

Table 1. Physical parameters (left column) used to calculate the simulation parameters (right column).

Physical Parameter Value DDE Parameter Value

Lg 1 mm q0 5.74

Lq 7 mm T 5.74

αi 1.6-3.3 cm−1 κ 0.0015-0.02

R1R2 0.30 γ 39.15

gmod(J th=462 Acm−2) 9.2 cm−1 Γ 0.117-0.35

a0 28.7 cm−1 s 7-55

τq 35 ps19 αg varied

τg 100-300 ps20 αq varied

3. RESULTS AND DISCUSSION

In this section the dependence, of the output of the simulated ML laser, on key model parameter is investigated.
We then use these results to find model parameters, within the range of experimentally calculated values, that
reproduce the output of the QDMLL studied in Ref. 16 and Ref. 12.

For high non-resonant losses, κ, we do not find ML within the appropriate DDE parameter range. For
κ = 0.0015 the ratio of the differential gain in the absorber and gain sections, s, has to be larger than 120 for
ML to occur, which is much larger than the values we get from the measured modal gain curves (see fig. 1 (b)).
In the subsequent simulations we therefore use κ = 0.02, the lower loss limit of the experimentally determined κ
range.

In fig. 2 the influence of the ratio of the differential gain in the absorber and gain sections, s, the unsaturated
gain, g0, and the relaxation time in the gain section, τg, are shown. White regions indicate continuous wave
(CW ) emission, orange regions indicate fundamental or harmonic ML (ML) and blue regions indicate quasi-
periodic ML or deformed pulses (other). The laser is off in the gray regions (off). The threshold unsaturated
gain, gth0 , depends on τg (Eq. 10), accordingly the laser turns on at increasing values of g0 in subplots (a) to (d),
which correspond to τg = 300ps, τg = 200ps, τg = 100ps and τg = 50ps, respectively. With decreasing τg we also
find that larger s values are needed to achieve ML. Furthermore, the onset of ML is shifted further away from
the lasing threshold to larger values of g0. However, in all four cases (subplots (a)-(d)) the onset of FML occurs
within 1.1-1.5 times threshold, which is consistent with the experimental results.12,16

The areas of ML are more prevalent for smaller values of the unsaturated gain. For fixed s and increasing
g0 the system goes through a series of bifurcations, exhibiting harmonic and quasi-periodic ML and eventually
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Figure 2. Bifurcation diagrams showing the mode of operation of the simulated ML laser in dependence of the ratio of
the differential gain in the absorber and gain sections, s, and the unsaturated gain, g0, for τg = 300ps (a), τg = 200ps
(b), τg = 100ps (b) and τg = 50ps (d). Gray regions (off) indicate that the laser is off, white regions (CW ) indicate
continuous wave emission, orange regions (ML) indicate fundamental or harmonic ML and blue regions (other) indicate
quasi-periodic ML or deformed pulses. Parameters: αg = αq = 0.5, κ = 0.02, remaining parameters as in Table 1.

Figure 3. Bifurcation diagrams showing the mode of operation of the simulated ML laser in dependence of the ratio of the
differential gain in the absorber and gain sections, s, and the unsaturated gain, g0, for αg = αq = 0.25 (a), αg = αq = 1
(b) and αg = αq = 2 (c) with τg = 300ps, and for τg = 300ps (d,e) and τg = 200ps (f,g) with unequal α-factors in the
gain an absorber sections . Gray regions (off) indicate that the laser is off, white regions (CW ) indicate continuous wave
emission, orange regions (ML) indicate fundamental or harmonic ML and blue regions (other) indicate quasi-periodic
ML or deformed pulses. Parameters: κ = 0.02, remaining parameters as in Table 1.
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continuous wave emission. This is consistent with previous theoretical studies on the dependence of the laser
output on g0.9,21

In fig. 2 the amplitude-phase coupling in the gain and absorber section was chosen to be 0.5. In figure 3
we show similar bifurcation diagrams for different α-factors. In fig. 3 (a)-(c) τg = 300ps and the α-factors in
the gain and absorber sections are chosen to be equal. Here we see that with increasing α-factors the regions
of fundamental ML decrease. With unequal α-factors in the gain and absorber sections we also observed less
fundamental ML in the s-g0 parameter space (fig. 3 (d)-(g)). The amplitude-phase coupling influences the pulse
shape, for larger or unequal α-factors the pulses can be deformed, have multiple peaks or the peak height can be
modulated over multiple cavity round trips. These effects cause the reduction in the regions of ML. Comparing
fig. 2 (a) with fig. 3 (d), and fig. 3 (a) with fig. 3 (d), we can see that changing only αq has less of an effect on
the ML regions than changing only αg. The gain section of the laser is longer than the absorber section, therefore
it is expected that the amplitude-phase coupling in the gain section has a greater effect on the dynamics of the
laser. The amplitude-phase coupling, however, does not have a great influence on the transition to continuous
wave emission (transition from colored to white region in figures 2 and 3).

To find parameter values, within the experimentally calculated ranges, that reproduce the experimentally
observed frequency and pulse width, we calculate these quantities for the observed regions of fundamental ML
(figures 4 and 5). Panel (a) of fig. 4 shows the pulse repetition rate as a function of s and g0. Here regions
of fundamental and harmonic ML are clearly distinguishable. Up to about g0 = 3.0 fundamental ML with a
frequency of about 5 GHz is simulated. Above g0 = 3.0 harmonic ML, up to fourth order, can be observed.
Within the region of fundamental ML (white region in fig. 4 (a)) there is very little variation in the repetition
rate in s-g0 space (frep = 4.95 ± 0.05 GHz). In fig. 4 (b) the corresponding pulse widths are plotted. Regions
in white indicate a pulse with of 5 ps, corresponding to the experimentally measured pulse width. The black
curves depicted in this plot enclose the experimentally determined range for s and g0. The simulation results in
fig. 4 are for τg = 300ps and αg = αq = 0.5, for these parameter values we can not simulate a pulse width of
5.12 ps in the appropriate s and g0 ranges.

In fig. 5 pulse repetition rates and pulse widths are plotted for various τg and amplitude-phase couplings. In
(a) and (b) αg = 0.5, αq = 0.25 and τg = 300ps. Compared with fig. 4 (αg = αq = 0.5 and τg = 300ps) the
regions with pulse widths of about 5 ps are shifted to lower s values. However, the simulated pulse widths within
the experimentally determined s-g0 region are all larger than 5.12 ps. Varying the amplitude-phase coupling, we
were not able to simulate the experimentally observed pulse widths within the experimentally determined s-g0

Proc. of SPIE Vol. 9134  91342K-6
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 02 Feb 2021
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



60

50

40

30

20

60

50

40

30

20

1.0

(a)
Ty=300ps-

ag = 0.5, aQ = 0.25

1.5 2.0

g0

2.5 30

10

5

10

8

6

4

2

60

50

°' 40

30

20

60

50

°' 40

30

20

1.5

Tg = 200ps
g = 0.5, aq = 0.25

2.0 2.5

90

3.0 35

10

5

10

8

6

4

2

I I

I I

60

50

40

30

20

60

50

40

30

20

1.5

20

15

10

5

10

2.0 2.5

90

3.0 35

6

4

2

1.0
0.8
0.6
0.4
0.2
0.0

0 5 10 15 20
time / ps

Figure 5. Pulse repetition rate in regions of ML in s-g0 parameter space for αg = 0.5, αq = 0.25, τg = 300ps (a),
αg = αq = 0.5, τg = 200ps (c) and αq = 0.25, τg = 300ps, τg = 200ps (e). Pulse full width at half maximum in regions
of fundamental ML in s-g0 parameter space for αg = 0.5, αq = 0.25, τg = 300ps (b), αg = αq = 0.5, τg = 200ps (d) and
αq = 0.25, τg = 300ps, τg = 200ps (f). In the light gray regions there is no ML. The dark gray regions in the bottom
panel indicate pulse widths larger than 10 ps. The black lines in the bottom panel indicate the experimentally determined
range for s in the g0 range 1.0gth0 -2.4gth0 . Parameters: κ = 0.02, remaining parameters as in Table 1.

Figure 6. Time trace of electric field intensity. Parameters: τg = 200ps, κ = 0.02, αg = 0.5, αq = 0.25, g0 = 2.34, s = 47,
remaining parameters as in Table 1.

region for τg = 300ps. In (c)-(f) of fig. 5, τg is chosen to be 200 ps. For equal amplitude-phase coupling in the
gain and absorber sections we can not simulate the experimentally observed pulse widths within the appropriate
s, g0 range (fig. 5 (c) and (d) show the simulation results for αg = αq = 0.5). However, for αg = 0.5, αq = 0.25 we
are able to closely simulate the experimental results. For s = 47 and g0 = 2.34 the simulated repetition rate and
pulse width are 4.96 GHz and 5.19 ps, respectively. The simulation results in dependence of the amplitude-phase
coupling allow us to give bounds to αg and αq. We find the αg < 1 and αq < 0.5.

In Ref. 12 frequency-resolved optical gating (FROG) measurements were also performed. Time traces of
these measurements showed asymmetric pulses with a shallow leading edge and steep trailing edge. In fig. 6 a
time trace of a simulated pulse for s = 47 and g0 = 2.34 is shown. The pulse shape is in qualitative agreement
with the measured pulse shape from Ref. 12.

As we are able to reproduce the pulse repetition rate, pulse width and pulse shape using the DDE model
and the method of calculating the model parameters from experimentally measured quantities that is given in
Section 2.2, we believe this model also has predictive capabilities. Given the necessary input parameters this
model should be able to predict the possible pulse width and dependence on the pump current.
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4. CONCLUSIONS

Using the relatively simple DDE model developed by Vladimirov and Turaev, which does not include details
of the quantum dot structure, we are able to reproduce the pulse repetition rate, pulse width, and pulse shape
of a quantum-dot passively mode-locked laser. This is done using realistic parameters values, calculated from
experimentally measured quantities. Furthermore, we are able to simulate key features in dependence of the pump
current. Firstly, the onset of mode-locking is shown to occur shortly after the lasing threshold, as observed in
experiments. Secondly, for large values of the unsaturated gain, which depends on the pump current, continuous
wave emission is observed.

We have investigated the model dependence on the amplitude-phase coupling and have shown that given
experimental details concerning the pulse properties we can give upper bounds for αg and αq, i.e. αg < 1 and
αq < 0.5 for the simulated QDMLL. The amplitude-phase coupling has a significant effect on the laser dynamics
within the ML regime, however for the borders of the continuous wave regime it has little effect.
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10. K. Lüdge, Nonlinear Laser Dynamics - From Quantum Dots to Cryptography, Wiley-VCH, Weinheim, 2012.
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