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Université de Paris, 24 rue Lhomond, 75005 Paris, France

4Center for High Technology Materials, University of New-Mexico, 1313 Goddard SE, Albuquerque, NM, USA
†pierre.didier@telecom-paris.fr

Abstract: A combination of unipolar quantum laser, modulator and detector allows us to 
demonstrate a free-space communication at 40 Gbits/s and 9 µm far-infrared wavelength. 
The distance between the emitter and the receiver is 31 meters. 

1. Introduction

The mid-infrared (MIR) and long-wave infrared (LWIR) optical domains hold many promises in terms of free-
space communication because of reduced absorption and atmospheric turbulence, especially between 3-5 µm and
8-12 µm [1]. Previous efforts (some of them more than two-decade old) exhibited proof-of-concept transmissions
using quantum cascade lasers (QCLs) with direct electrical modulation [2, 3]. Yet, the need for cryogenic equip-
ment and/or the limited data rate in the order of a few Gbits/s hindered the large-scale deployment of MIR/LWIR
communication systems, and all results so far were obtained in back-to-back (i. e. centimeter scale) configurations.
External modulators offer a relevant alternative but most of the experimental efforts currently lag behind the direct
modulation schemes in terms of bandwidth [4,5]. Recently, we showed a way to bypass this two-decade old bottle-
neck by developing a full unipolar quantum system that includes a QCL emitting at 9 µm, a quantum well infrared
photodetector (QWIP) and a quantum cascade modulator relying on Stark effect and working at room temperature.
The first efforts showed that, even without signal processing, we could achieve data transmission at 10 Gbits/s in a
back-to-back configuration [6]. Further integration of this breakthrough technology in a telecommunication envi-
ronment allows us demonstrating a free-space communication at 40 Gbits/s with a distance of 31 meters between
the emitter and the receiver by using a multi-pass Herriott cell. We anticipate that our unipolar quantum system
brings a cost-effective, reliable and versatile alternative for free-space data links, and that large-scale deployment
of this technology could benefit people in areas where broadband data connection is not yet available.

2. Experimental setup

Fig. 1: Experimental setup for the high-speed transmission in the LWIR domain with unipolar quantum devices.
A 9 µm wavelength QCL emits around 100 mW of optical power. The QCL’s beam is intercepted by the Stark-
effect modulator that is driven by the amplified signal of an AWG. The resulting signal passes through a 31 meter
Herriott cell, is collected on a broadband detector and is processed with a high-speed oscilloscope.
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The experimental setup of the LWIR free-space communication is described in Fig. 1. The QCL emits 97 mW of
optical power at room temperature and the 9-µm wavelength beam is focused on the external modulator thanks
to a telescope. This modulator has a dimension of 50 µm × 50 µm and is driven by a 15V peak-to-peak signal
that is produced by an arbitrary waveform generator (AWG) at 120 GSa/s, followed by two stages of broadband
amplifiers. Characterization of the frequency response of the full system (modulator, QWIP and amplifiers), gives
a 4 GHz 3-dB bandwidth (not shown here) with a smooth 20dB/decades amplitude decay. Pre-processing of
the signal occurs when uploading signal to the AWG. The 15V peak-to-peak signal is the 215-bit long message
sequence to be transmitted and in our case, it is either a 2-level On-Off-Keying (OOK) modulation format or
a 4-level Pulse-Amplitude-Modulation (PAM-4) format. After being modulated, the optical beam is shaped by
a second telescope before entering the multi-pass Herriott cell. This device allows implementing a free-space
propagation of 31 meters in a compact apparatus. At the output of the multi-pass cell, the beam has an optical
power of 15 mW and is gathered by a cryogenic QWIP with a bandwidth of at least 25 GHz. The electrical signal
from this fast detector is amplified and recorded by an 30GHz-bandwidth oscilloscope with a sampling rate of
100 GSa/s. Traces are then post-processed to account for the free-space channel perturbations and improve the bit
error rate (BER).
3. 31-meter transmission using the multi-pass Herriott cell

Figure 2 a) shows that we can achieve data rates of 30 Gbits/s in the case of an OOK modulation scheme, while
Figure 2 b) shows a transmission at 40 Gbits/s for a PAM-4 modulation scheme. The eye diagrams and histograms
assess the quality of the transmission and allows determining a BER of 7.5× 10−3 and 3.6× 10−2 for the OOK
signal and for the PAM-4 signal, respectively. These BERs are compatible with conventional error codes correc-
tion, which means that the transmission can be considered error-free provided that correction is implemented. The
aforementioned eye diagrams and histograms were obtained using conventional pre- and post-processing. More
precisely on the emitter side, PAM-4 electrical signal were pre-shaped by a digital Root-Raised-Cosine (RRC)
filter to reduce the spectral bandwidth of the signal to be transmitted, in order to accommodate the limited band-
width of our system. On the receiver side, we apply a 31-tap and 401-tap feed forward equalization for OOK and
PAM-4 schemes, respectively.
Overall, we unveiled the potential of unipolar quantum technology for high-speed communication in the mostly
uncharted long-wave infrared domain that is of utter interest for free-space propagation. This breakthrough paves
the way for novel telecom systems and real-field deployment.
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RÉSUMÉ

Les lasers à cascades quantiques sont connus pour leur dynamique non-linéaire lorsqu’ils
sont soumis à une contre-réaction optique. Nous montrons que l’ajout d’une rotation de
polarisation peut provoquer un autre phénomène non-linéaire, à savoir une onde carrée, avec
l’apparition d’une onde transverse électrique en plus de celle transverse magnétique.

MOTS-CLEFS : lasers à cascades quantiques, moyen-infrarouge, contre-réaction optique,
dynamique non-linéaire, retournement de polarisation
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FIGURE 1 : a) trace temporelle expérimentale et b) spectre RF de l’onde TM émise par le LCQ lorsque la contre-
réaction optique est appliquée sans retournement de polarisation. Dans ce cas, il n’y a pas de dynamique TE.

Fig. 2: Characteristics of the transmission after a free-space propagation of 31 meters for two different modula-
tion formats. a) OOK format at 30 Gbaud exhibiting an error rate of 7.5× 10−3. b) PAM-4 format at 20 Gbaud
exhibiting an error rate of 3.6×10−2. In both cases, the blue diagrams show open eyes, with residual errors that
could be corrected, and the green diagrams highlight the 2-level or 4-level intensity pattern, respectively.
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