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ABSTRACT
We present a novel automatic system for performing explicit
content detection directly on the audio signal. Our modu-
lar approach uses an audio-to-character recognition model, a
keyword spotting model associated with a dictionary of care-
fully chosen keywords, and a Random Forest classification
model for the final decision. To the best of our knowledge,
this is the first explicit content detection system based on
audio only. We demonstrate the individual relevance of our
modules on a set of sub-tasks and compare our approach to a
lyrics-informed oracle and an end-to-end naive architecture.
The results obtained are encouraging with a F1-score of 67%
on a industrial scale explicit content dataset.

Index Terms— Explicit content detection, keyword spot-
ting, lyrics transcription, CTC training, music information re-
trieval

1. INTRODUCTION

For over three decades [1], a parental advisory label has been
found on musical recordings when they include explicit con-
tent (e.g. lyrics potentially unsuitable for children). As of
today, this labelling is mainly done manually following guide-
lines [2]. This process is slow and hard to scale to industrial-
size catalogs. Existing automatic approaches are scarce and
rely on the availability of the lyrics in text format.

Lyrics transcriptions could be obtained from audio us-
ing singing voice recognition algorithms. However, although
Automatic Speech Recognition (ASR) methods have recently
shown impressive progress [3], singing voice transcription
still raises challenging issues [4]. First, in comparison to
speech, singing voice characteristics are often more varied.
The pitch, the pronunciation and the vowels duration can fluc-
tuate greatly. Second, the accompaniment can be considered
as a highly correlated noise with a level comparable to the
signal of interest. A pre-processing step of voice separation
is generally used to improve results [5], although still not on
par with those obtained on a capella singing [6]. Third, until
recently [7], no open dataset was available to train statistical
models at scale.

When lyrics are available, explicit content detection can
be approximately achieved through assessing the presence of
words from a fairly small specialized dictionary. In fact, as
proven in [8], state-of-the-art deep neural network algorithms
perform just slightly better than dictionary-based methods
with suitable keywords. This suggests that detecting a set
of carefully chosen keywords directly on the audio signal
is a good proxy to perform the explicit detection task in
the general case. Keyword Spotting in audio is an actively
studied task, achieving high performances on speech signals
[9]. A few attempts to transfer them to singing voice have
been proposed [10, 11]. One existing approach relies on
a keyword-filler Hidden Markov Model (HMM) algorithm
[11]. This method presents several limitations. First, ex-
pert knowledge is required for the tedious task of creating
a pronunciation dictionary. Second, model training requires
synchronized annotations, at the phoneme level, between au-
dio and text. Since no readily accessible dataset exists for
polyphonic music, such annotations are generated with an
acoustic model trained on speech, by aligning textual lyrics
to music, leading to sub-optimal model performance.

In this paper, we address the task of explicit musical con-
tent detection from audio only. Namely, given a piece of mu-
sic, we aim at classifying an audio recording as either ex-
plicit or non-explicit. Our proposed work is, to the best of
our knowledge, the first audio-based detection system of ex-
plicit content in music. Our approach is based on an Audio-
To-Character (A2C) recognition model recently proposed for
singing voice transcription [12] and a keyword spotting model
associated with a dictionary of carefully chosen keywords in
relation to the explicit detection task. In [13], authors have
demonstrated the better performance of this architecture over
the keyword filler. To the best of our knowledge, it is the
first time that such an architecture is used for Keyword Spot-
ting (KWS) on singing voice. The key advantages of this
method are that it requires no expert knowledge and is usable
with unsynchronized annotations. The decoding is directly
performed on the output of the A2C and, contrary to end-to-
end KWS approach like in [14], new keywords can be added
easily to the dictionary without retraining the model. Finally,



Fig. 1. General overview of the proposed modular explicit content detection system

the explicit label is inferred by a binary classifier using the
output of the keyword spotting system. In this study, we re-
strict ourselves to recordings with English lyrics.

2. PROPOSED METHOD

A general overview of our system is given in Figure 1. A
monophonic song S is sliced into L segments of equal size.
It is worth noting that L may be different for each song since
it depends on the song duration. The system takes as input an
acoustic feature tensor X ∈ RN×T×L built from S, with T
the number of temporal frames per segment and N the fea-
tures dimension. Given a dictionary D, the predictive model
L D is the composition of three modules:

L D(X) = F ◦ GD ◦H (X) (1)

For a given input tensor X, the audio-to-character module H
outputs a 3D-tensor R. Given X`, the matrix of acoustic fea-
tures extracted from the `th segment, each coefficient ri,j,`
provides an estimation of the posterior probability of ci, the
ith character being uttered at tj , the jth frame. :

ri,j,` = hi,j(X`) = P̂ (ci, tj | X`), (2)

for 1 ≤ i ≤ |C|, 1 ≤ j ≤ T , 1 ≤ ` ≤ L, C being the set of
characters outputted by the model. It consists of 26 lowercase
letters of the Latin alphabet, plus the word-boundary ”space”
token, the instrumental token ”I”, the apostrophe and the CTC
blank token ε introduced in section 2.2. Note that H relies
on the design of h : RN×T → [0, 1]|C|×T , that takes a seg-
ment represented by an acoustic feature matrix and predicts a
posteriogram on characters.

For a given input tensor R = H (X), a vector V is out-
putted by the keyword spotting module GD, whose each co-
efficient vn gives an estimate of the (log) posterior probability
of kn, the nth keyword of the dictionary D, by averaging on
all segments:

vn = mean
`=1,...,L

log P̂ (kn | R`), (3)

where R` is the `th matrix in tensor R.
For a given input vector V = GD ◦H (X), an explicit la-

bel L D(X) is outputted by the binary classifier F discrim-
inating the content of the song S as explicit or not-explicit.

Among these three modules, only modules H and F require
to be learned. Learning H boils down to learning model
h which can be done using a dataset of annotated segments
{(Xi, ui)

nseg

i=1 } where Xi is a matrix of acoustic features de-
scribing a segment and ui is the corresponding sequence of
characters. Learning F requires to apply the pre-processing
GD ◦H to the training dataset {(Xi, yi)

nsongs

i=1 } containing
songs annotated by explicit/non explicit labels.

2.1. Audio-to-character recognition

The model h on which A2C module H relies is implemented
with a Convolutional Recurrent Neural Network (CRNN)
trained with a Connectionist Temporal Classification (CTC)
algorithm. The Recurrent Neural Network (RNN) CTC has
been successfully applied to ASR [3]. To reduce the dimen-
sion of features and accelerate training, we use additional
convolutional layers. For RNN layers, we choose bidirec-
tional Long Short-Term Memory (LSTM), so that outputs at
each frame depend of the entire input sequence [15].

The CTC algorithm [16] allows to train RNN models
without aligned annotations. To do that, a ”blank” symbol
(noted ε) is introduced to represent a non-emission token.
Any character, including ε, can be emitted at each frame by
the model. The total probability of the output character se-
quence is maximized using the CTC algorithm by marginal-
izing over all possible alignments for a given input. The
objective function being differentiable, the network is trained
with back-propagation through time. More details for CTC
algorithm are given in [16].

2.2. Keyword spotting

Following the work of [13], we implement GD as a CTC-
based decoding function. For a given searched keyword k,
we consider k′ which is the keyword k with an ε at the begin-
ning, end, and between every character to allow the use of ε
during decoding. A decoding network of size |k′| × T is con-
structed from k′. The goal of the decoding function is to find
the path in the network that maximize the CTC scoring for the
keyword k′. To do that, we define network’s node αs,j as the
CTC score of the sub-sequence k′1:s after j frame. A forward-
backward algorithm can be used to compute efficiently αs,j
scores, by merging together paths that reach the same node.
αs,j is then computed recursively from α’s of the previous



frame. Only transitions between blank and non-blank char-
acters, and between pair of distinct non-blank characters are
allowed. As ε at the beginning and end of the sequence is op-
tional, there are two valid starting nodes and two final nodes.
The coefficients α’s are initialized as follows:

αs,0 = P (k′s, t0 | X`) for s ∈ {0, 1} and αs,0 = 0,∀s > 1

Recursion is given by:

αs,j = (

τ=1∑
τ=0

αs−τ,j−1)P (k
′
s, tj | X`), if k′s ∈ {ε, k′s−2}

αs,j = (

τ=2∑
τ=0

αs−τ,j−1)P (k
′
s, tj | X`), otherwise

(4)

Finally, keyword probability is given at each step j by:

P (k, tj) = α|k′|−1,j + α|k′|−2,j (5)

We consider the detection score s of the keyword k to be the
maximum of the keyword probability over all time step:

s(k) = max
j=1,...,T

P (k, tj) (6)

We found empirically that with these computation rules, we
can only find keywords at the beginning of segments. In prac-
tice, keyword probabilities after the first sung word in the
recording are artificially low. To prevent this and allow the
keyword detector to be fired at any time, we choose to reini-
tialize the first node at each time step:

α0,j = P (k′0, tj | X`) (7)

As naive CTC scoring is numerically unstable, computations
are done in log-space using the log-sum-exp trick [17].

3. EXPERIMENTS

3.1. Recognition model

The main component h of the A2C model H is trained with
the DALI dataset introduced in [7]. DALI contains 5358 au-
dio tracks with time-aligned lyrics at paragraph, line and word
levels. It is composed of varied western genres (e.g. rock, rap
and electronic). Tracks are downsampled to 16 kHz and con-
verted to mono. Vocals from each song are then extracted
using Spleeter [18]. For each song, training samples are gen-
erated by segmenting the track using a window of 5 seconds
with a hop size of 2.5 seconds. The character sequence asso-
ciated with a segment is created by concatenating all words
whose start position are within the segment. In case no words
start within a segment, we generate a token ”I” (for ”Instru-
mental”). Character sequences are transformed to fit the set
of characters C outputted by the model: each character se-
quence is converted to lower-case and non-valid characters

are discarded. Finally, we make an artist aware split [19] be-
tween train, validation and test dataset of 70%-1%-14%. We
respectively obtain datasets of 384, 5 and 63 hours of music.

The model h is composed of 2 convolutional layers, fol-
lowed by 3 layers of bidirectional LSTM and a dense layer.
For each input sample, values of mel-scale log filterbanks
coefficient and energy plus deltas and double-deltas are ex-
tracted. A Hann window of 32 ms with a step size of 16 ms is
used. For the convolutional part, the size of filters and max-
pooling are respectively 3 × 3 and 2 × 3. The number of
features map of each layer is 32. Each recurrent layer has a
dimension equal to 256. A dropout of 0.1 is applied between
recurrent layers. The last layer is a single affine transforma-
tion followed by a softmax function which outputs the proba-
bilities of characters from vocabularyC. The model is trained
using the CTC loss implementation of [20]. The loss is mini-
mized using ADAM with a learning rate of 10−4, a batch size
of 32, 4000 training epochs with 250 steps per epoch. We
use validation-based early stopping. For transcription, clas-
sic beam search decoding [15] is used, using a beam width of
100.

Finally, we obtain a Character Error Rate (CER) of
47.41% on the test dataset. This is on par with results reported
by [12] on a different dataset. An example of posteriogram
R` inferred using the trained network is pictured in Figure 2.
R` consists of a sequence of spikes, associated with detected
characters, separated by ε character.

3.2. Keyword spotting

Fig. 2. A positive sample for keyword ”hate”. Top: Poste-
riogram R` inferred by acoustic model H . Bottom: Decod-
ing matrix composed of coefficients α. Ground truth: ”to see
we’re over and i hate when”. Transcription with beam search:
”e se where over and i hae we”. Decoding line and ground
truth position of keyword are displayed in the figure

Following the work of [21] we select the keywords of D



Metrics Audio baseline Our system Lyrics baseline

Precision .61 (.02) .63 (.02) .65 (.02)
Recall .59 (.02) .71 (.02) .84 (.02)

F1-score .60 (.02) .67 (.02) .73 (.02)

Table 1. Results for explicit detection task on the test set
(standard deviation in parenthesis)

based on the explicit and not-explicit lyrics word distribu-
tions. To generate D, we use the importance I defined in [8].
For a chosen keyword, I is computed as the ratio between fre-
quency of the word in explicit and non-explicit lyrics. As in
[8], we manually discard stop words, too common words, too
rare words, onomatopoeia and abbreviations. The dictionary
is constructed with 128 words with the highest importance.

Performance of decoding with dictionary D are assessed
on DALI test set. 75% ofD keywords, with at least one occur-
rence in the test dataset, have a Area Under Curve (AUC) of
Receiver Operating Characteristic (ROC) curve greater than
0.81. Being the first time such metrics are computed for
keyword spotting in the singing case, we cannot compare it
to other results. Since these values are significantly higher
than random, the feature vector V carry some information
on the presence of keywords in D. An example of decod-
ing is displayed in Figure 2. The example is ”positive”, as the
searched keyword is indeed present in the ground truth char-
acter sequence. A decoding line is visible in the figure. Posi-
tion of ”space” character delimiting the decoding line (3.94s
to 4.28s) are quite close to the ground truth position of the
word (3.9s to 4.29s). This result suggests that the acoustic
model H correctly uses the ”space” character and is able to
find words position. This is consistent with results found for
lyrics-to-audio alignment [12].

3.3. Explicit lyrics detection

To train F , we use a private dataset. Songs are either la-
belled explicit or non-explicit. We discard tracks also present
in DALI to avoid overfitting. We notice that the music genre
distribution of explicit tracks and non-explicit tracks, is very
different: rap is strongly over-represented in explicit tracks
(40% of all tracks), but not in the non-explicit ones (few per-
cents). To avoid creating an explicit content detection that
rely mostly on the genre information, we sample both explicit
and non-explicit tracks to obtain same genre distribution for
the two types of songs. The complete dataset then consists
of 2600 non-explicit tracks and 2530 explicit ones. Finally,
we make an artist aware split [19] between training, valida-
tion, test of respectively 70%, 15%, 15%. We create another
dataset the same way for dictionary creation. The dataset con-
sists of 24250 non-explicit tracks and 24250 explicit ones. No
songs are common between the two datasets.

Our model is compared to two baseline systems. The first

one is a classic CRNN audio classifier. This architecture was
successfully used in a variety of music classification tasks,
such as genre recognition [22] or music emotion recognition
[23]. Unlike our system, this classifier tries to directly in-
fer explicit labels from audio in an end-to-end manner. The
model is composed of 4 convolutional layers, followed by 1
gated recurrent units layer and a dense layer. For each input
sample, values of mel-scale log filterbanks coefficient are ex-
tracted using a Hann Window of 48 ms with a step size of 48
ms. The model is trained using a binary cross-entropy loss
which is optimized using an Adadelta optimizer and a batch
size of 1. The model is trained for 3000 epochs with 450 steps
per epoch. We use validation-based early stopping. The sec-
ond baseline is a dictionary lookup based on lyrics as in [8].
Given the dictionary D, this method classifies a song as ex-
plicit if its lyrics contain at least one of the keywords inD and
as non-explicit otherwise. Unlike our system, this baseline is
informed by lyrics at test time. As such, this baseline can be
considered as an oracle (e.g. providing an upper bound for
performance) for our task of detecting explicit content from
audio only.

For F , we use a Random Forest classifier [24]. Hyperpa-
rameters of the classifier are tuned using a first step of random
search and a second step of grid search. Number of keywords
of the dictionary, for our model and for the lyrics baseline,
are tuned on the validation dataset. We report precision, re-
call and F1-score for the explicit class. Since explicit con-
tent might be sensitive to certain audiences, emphasis is put,
at highest F1-score, on the system maximizing the recall. We
use this rule to choose our ”best” parameters on the validation
dataset. The ”best” number of keywords is 128 for the lyrics
baseline and 32 for our model. Baselines and our system with
their ”best” parameters are evaluated on the test dataset. Re-
sults are reported in Table 1. Scores reached by the lyrics
baseline are similar to those found in [8]. Performance of a
naive audio baseline on this challenging task is significantly
outperformed by our modular approach. While yet not equiv-
alent to a lyrics-informed scenario, these results are encour-
aging and show the validity of the proposed method. Perfor-
mances of these systems are still insufficient to be deployed
without human oversight. In [8], authors argue that explicit
detection is an inherently hard task. They propose using these
systems as tools to help annotators making the final labelling.

4. CONCLUSION

We address the novel task of explicit musical content detec-
tion from audio only. Despite the task being challenging, our
proposed modular approach yield promising results. More-
over, the system’s decisions can be explained in terms of spe-
cific keyword presence probability which is a desirable prop-
erty given the sensitivity of the task. Future works will inves-
tigate keyword decoding augmentation with a character level
language model as in [25].
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