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Cramér-Rao bounds for multiple poles and
coefficients of quasipolynomials in colored noise
Roland Badeau, Member, IEEE, Bertrand David, Member, IEEE, and Gaël Richard, Senior Member, IEEE

Abstract—In this paper, we provide analytical expressions of
the Cramér-Rao bounds for the frequencies, damping factors,
amplitudes and phases of complex exponentials in colored noise.
These expressions show the explicit dependence of the bounds
of each distinct parameter with respect to the amplitudes and
phases, leading to readily interpretable formulae, which are then
simplified in an asymptotic context. The results are presented in
the general framework of the Polynomial Amplitude Complex
Exponentials (PACE) model, also referred to as the quasipoly-
nomial model in the literature, which accounts for systems
involving multiple poles, and represents a signal as a mixture
of complex exponentials modulated by polynomials. This work
looks further and generalizes the studies previously undertaken
on the exponential and the quasipolynomial models.

Index Terms—Performance analysis, Cramér-Rao bound, com-
plex exponentials, polynomial modulation, multiple eigenvalues.

I. INTRODUCTION

E
STIMATING mixtures of complex exponentials in noise
is a very classical problem in signal processing. Such

models are used in a variety of applications, including spectral
estimation, source localization, speech processing, deconvolu-
tion, radar and sonar signal processing [1]. For well separated
frequencies, the Fourier analysis provides a simple, statistically
optimal solution for this estimation problem. However, when
the spectral separation of the components approaches the
Fourier resolution, better performance can be achieved with the
so-called High Resolution (HR) methods such as MUSIC [2]
and ESPRIT [3]. The performance of these parameter estima-
tion methods is generally analyzed by measuring the accuracy
of the estimated poles locations, which contain information
about the frequencies or directions of arrival of the signal
components, and the estimated amplitudes and phases of these
components. To this end, the Cramér-Rao bound (CRB) is a
fundamental tool in estimation theory, because it can be used
to quantify the performance of an estimator, by comparing
its variance to an optimal value, which somewhat can be
considered as a reference target [4]. An unbiased estimator
will be said efficient when the bound is reached, i.e. when
its efficiency, defined as the ratio between its variance and the
CRB, equals 1. The CRB of the model parameters are obtained
by calculating the diagonal coefficients of the inverse of the
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Fisher information matrix [4]. In the literature, a number of
papers have been devoted to the analysis of the Cramér-Rao
bounds of mixtures of exponentials. Several variants of the
model have been investigated, involving either undamped [5]–
[9] or damped [1], [10]–[12] exponentials, and either real [5],
[8] or complex [1], [6], [7], [9]–[12] exponentials. Such
bounds have been used to analyze the performance of some
classical HR approaches, such as the Prony [13], [14] and
Pisarenko [15], [16] methods, and the MUSIC, ESPRIT and
Matrix Pencil [12] algorithms [17]–[19]. In this paper, we
will refer to the most general model (involving complex and
damped exponentials) as the Exponential Sinusoidal Model
(ESM).

Calculating the CRB of each individual parameter of this
model is a difficult task, because of the inversion of the Fisher
information matrix. In the literature, analytic expressions were
obtained in simplified situations: asymptotic expansions of the
CRB’s were calculated in [8], [9] for large observation lengths,
and exact expressions were provided in [11] for models involv-
ing only one or two poles. However, the formulae obtained
in the most general case generally consist of complicated
expressions involving auxiliary matrices, which can be useful
for proving some properties of the CRB [1], [12], but are
difficult to interpret. In comparison, we propose in this paper
new analytical expressions of the Cramér-Rao bounds for
each distinct parameter, which show the explicit dependence
of the bounds with respect to the amplitudes and phases,
leading to readily interpretable formulae. This study is gen-
eralized to the Polynomial Amplitude Complex Exponentials
(PACE) model [20], also referred to as the quasipolynomial
model [21], which naturally emerges when analyzing the CRB
of the classical ESM model. The PACE model is actually
the most general model tractable by HR methods, which
accounts for systems involving multiple poles, and represents
a signal as a mixture of complex exponentials modulated
by polynomials [20]. Moreover, systems involving multiple
poles are encountered in a broad range of applications. For
instance, critically damped harmonic oscillators involve a
double pole [22]. Laguerre functions are a special case of
signals with multiple poles (the exponentials are modulated by
Laguerre polynomials), often used in the estimation of time
delays [23], [24], and in biomedical engineering, for modeling
fluorescence decay [25]. Signals with multiple poles also
appear in quantum physics, as solutions of the Schrödinger
equation for hydrogen-like atoms [26], in laser physics, as
transverse laser modes [27], and in finance, for modeling
the evolution of interest rates [28]. Other systems involving
multiple poles are encountered in [29], [30], where they are
successfully applied to ARMA filter synthesis, in the context
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of system conversion from continuous time to discrete time.
An analysis of the Cramér-Rao bounds for the frequen-

cies and damping factors of complex quasipolynomials with
multiple poles in white noise was first proposed in [21] (real
quasipolynomials were addressed in [31]). Here the investiga-
tion is extended to the Cramér-Rao bounds for the amplitudes
and phases of complex polynomials, and to the case of colored
noise. The novelty also lies in the analytical expressions of the
Cramér-Rao bounds for each distinct parameter, which are then
simplified in an asymptotic context. We show that the Cramér-
Rao bounds for the parameters associated to a multiple pole
present an exponential increase with the order of the pole.
Consequently, it appears that the practical estimation of the
PACE model is only possible if the exponentials are modulated
by polynomials of low order. This work on the Cramér-
Rao bounds is applied in [29], [30] in order to analyze the
performance of the generalized ESPRIT algorithm introduced
in [20] to estimate the PACE model.

The paper is organized as follows. Section II introduces
the general framework: the Cramér-Rao bounds for the ESM
model are presented in section II-A, and the PACE model,
which was presented in [20] as a generalization of the ESM
model, is summarized in section II-B. The extension of these
bounds to the PACE model is presented in section III. The gen-
eral case is addressed in section III-A, and some asymptotic
expansions are proposed in section III-B. Section IV illustrates
the variation of these bounds with respect to some parameters
of the PACE model. The main conclusions of this work are
summarized in section V. Finally, the proofs of the various
results presented below can be found in the appendix.

II. GENERAL FRAMEWORK

A. Cramér-Rao bounds for the ESM model

The general theorem of the Cramér-Rao bound [4] is
summarized below. It relies on the hypothesis of a regular
statistical model.

Definition II.1 (Regular statistical model). Let x be a random
vector of dimension N , and consider a statistical model which
admits a probability density function with respect to a measure
µ, and parameterized by ϑ ∈ Θ, where Θ is an open set of
R

q. The parameterization is called regular if the following
conditions hold:

1) the probability density function p(x; ϑ) is continuously
differentiable, µ-almost everywhere, with respect to ϑ.

2) the Fisher information matrix

F (ϑ) ,

∫
l(x; ϑ) l(x; ϑ)T p(x; ϑ) dµ(x),

where l(x; ϑ) , ∇ϑ ln p(x; ϑ)1(p(x; ϑ)>0) defines the
score function1, is positive definite for any value of the
parameter ϑ and continuous with respect to ϑ.

Theorem II.2 (Cramér-Rao bound). Consider a regular sta-

tistical model parameterized by ϑ ∈ Θ. Let ϑ̂ be an unbiased

estimator of ϑ (∀ϑ ∈ Θ, Eϑ[ϑ̂] = ϑ). Then the dispersion

1In the whole paper, the function 1(.) is one if its argument is true and
zero otherwise.

matrix D(ϑ, ϑ̂) , Eϑ

[(
ϑ̂ − ϑ

)(
ϑ̂ − ϑ

)T
]

is such that the

matrix D(ϑ, ϑ̂) − F (ϑ)−1 is positive semidefinite.

In particular, the diagonal coefficients of the matrix
D(ϑ, ϑ̂)−F (ϑ)−1 are non-negative. Consequently, the vari-
ances of the coefficients of ϑ̂ are greater than the diagonal
coefficients of the matrix F (ϑ)−1. Thus the Cramér-Rao
bounds for the coefficients of ϑ̂ are obtained in three steps:

• calculation of the Fisher information matrix;
• inversion of this matrix;
• extraction of its diagonal coefficients.
From now on, suppose that the observed vector x is of

the form x = s(ϑ) + w, where s(ϑ) is a deterministic
vector, and w is a centered complex Gaussian random vector
of covariance matrix R(ϑ) = E

[
w wH

]
(which we denote

w ∼ N (0,R(ϑ))). Then x ∼ N (s(ϑ),R(ϑ)). It is well
known that the Fisher information matrix of a Gaussian
random vector can be expressed as a function of the model
parameters, as shown in the following proposition [4, pp. 525].

Proposition II.3 (Fisher matrix for a Gaussian density). For

a family of complex Gaussian probability laws, whose covari-

ance matrix is R(ϑ) and whose expected value is s(ϑ), where

R ∈ C1(Θ, C
N×N ) and s ∈ C1(Θ, C

N ), the coefficients of

the Fisher information matrix
{
F(i,j)(ϑ)

}
1≤i, j≤k

are given

by the extended Bangs-Slepian formula:

F(i,j)(ϑ) = trace
(
R(ϑ)−1 ∂R(ϑ)

∂ϑi
R(ϑ)−1 ∂R(ϑ)

∂ϑj

)

+2Re
(

∂s(ϑ)
∂ϑi

H
R(ϑ)−1 ∂s(ϑ)

∂ϑj

)
.

(1)

In the context of time series analysis, the vector x =
[x(0) . . . x(N −1)]T contains the N successive samples of an
observed signal x(t), which is generally modeled as the sum
of a deterministic signal s(t), plus a complex white Gaussian
noise w(t) of variance σ2 (in this case R(ϑ) = σ2IN ).
Moreover, the signal s(t) is supposed to satisfy the ESM model
of order K ∈ N

∗:

s(t) =

K−1∑

k=0

akeδktei(2πfkt+φk),

where fk ∈
]
− 1

2 , 1
2

]
is the frequency, δk ∈ R the damping (or

amplifying) factor, ak ∈ R
∗
+ the amplitude and φk ∈] − π, π]

the phase of the kth component. This model can also be written

in the form s(t) =
K−1∑
k=0

αkzk
t, where the complex amplitudes

αk = akeiφk are non-zero, and the poles zk = eδk+i2πfk

are supposed to be distinct. By applying formula (1) to the
ESM model, one obtains an analytical expression of the
Fisher information matrix. Then the following theorem can
be derived, whose proof is developed in [12]:

Proposition II.4. The Cramér-Rao bounds for the parameters

(φk, δk, fk) do not depend on ak′ for all k′ 6= k, but they are

proportional to 1
a2

k

. The bound for the parameter ak does not

depend on any amplitude. Lastly, the bounds for all parameters

do not depend on any phase, and they are unchanged by a

translation of the full set of frequencies.



BADEAU ET AL.: CRAMÉR-RAO BOUNDS FOR MULTIPLE POLES AND COEFFICIENTS OF QUASIPOLYNOMIALS IN COLORED NOISE 3

Besides, asymptotic expansions of the Cramér-Rao bounds
can be calculated analytically (the case of the complex si-
nusoidal model was addressed in [9], and that of the real
sinusoidal model was addressed in [8]).

Proposition II.5. The Cramér-Rao bound for the standard

deviation of the noise is CRB{σ} = σ2

4N
. Moreover, if all poles

are on the unit circle, the Cramér-Rao bounds for the other

ESM parameters admit the following first order expansions

with respect to N :

• CRB{δk} = 6σ2

N3a2
k

+ O
(

1
N4

)
;

• CRB{fk} = 6σ2

4π2N3a2
k

+ O
(

1
N4

)
;

• CRB{ak} = 2σ2

N
+ O

(
1

N2

)
;

• CRB{φk} = 2σ2

Na2
k

+ O
(

1
N2

)
.

In particular, it can be noticed that the Cramér-Rao bounds
for the frequencies fk are of order 1

N3 , which is seldom
encountered in parametric estimation.

B. Polynomial Amplitude Complex Exponentials (PACE)

The Polynomial Amplitude Complex Exponentials
(PACE) [20], or complex quasipolynomial [21] model, is
a generalization of the ESM model presented above. For
all k ∈ {0 . . . K − 1}, define the partial order Mk ∈ N

∗. A

discrete signal s(t) is a quasipolynomial of order r =
K−1∑
k=0

Mk

if it can be written in the form

s(t) =

K−1∑

k=0

αk[t] zk
t (2)

where the poles zk ∈ C
∗ are distinct, and ∀k ∈ {0, . . . , K-1},

αk[t] is a complex polynomial of order Mk − 1. Note that
the polynomial αk[t] in equation (2) can be represented on
any polynomial basis. However there exists a particular basis,
which leads to a parameterization of quasipolynomials such
that the Cramér-Rao bounds admit a simple closed form,
as will be shown in section III. This is the basis of falling
factorials:

Definition II.6 (Falling factorial). For all m ∈ Z, the falling
factorial of order m is the polynomial2

Fm[X] =





0 if m < 0
1 if m = 0

1
m!

m−1∏
m′=0

(X − m′) if m > 0.

The polynomial αk[t] is then parameterized as follows:

αk[t] =

Mk−1∑

m=0

α
(m)
k zk

−m Fm[t], (3)

which defines the complex amplitudes α
(m)
k of the signal (∀k,

α
(Mk−1)
k 6= 0 since the polynomial αk[t] is of order Mk − 1).

2Note that this definition does not exactly match the classical definition
of the falling factorial [32], [33], from which the multiplicative factor 1

m!
is

missing.

Note that Fm[t] in equation (3) is zero for t ∈ {0 . . . m − 1}.
Finally, substituting equation (3) into equation (2), we obtain
the complete definition of the PACE model:

Definition II.7 (Polynomial Amplitude Complex Exponentials
model). A discrete signal s(t) satisfies the PACE model of

order r =
K−1∑
k=0

Mk if it can be written in the form

s(t) =
K−1∑

k=0

Mk−1∑

m=0

s
(m)
k (t) (4)

where the components s
(m)
k are defined as

s
(m)
k (t) = α

(m)
k Fm[t] zk

t−m. (5)

The real amplitudes and phases are then defined according
to3 a

(m)
k =

∣∣∣α(m)
k

∣∣∣, and φ
(m)
k = ℑ

(
log
(
α

(m)
k

))
.

III. CRAMÉR-RAO BOUNDS FOR THE PACE MODEL

The Cramér-Rao theorem, which gives a lower bound
for the variance of unbiased estimators, was summarized in
section II-A. It is applied here to the PACE model defined in
section II-B.

A. General Cramér-Rao bounds

First, let us calculate the expected value and the covariance
matrix of the observed vector as a function of the model
parameters. Let θk be the vector containing the 2(Mk + 1)
real-valued parameters associated to the pole zk of order Mk:

θk ,

[
a
(0)
k , φ

(0)
k , . . . , a

(Mk−1)
k , φ

(Mk−1)
k , δk, fk

]T
. (6)

The vector θk belongs to the open subset Θk =(
R

∗
+ × R

)Mk × (R × R) of R
2(Mk+1). Let θ be the 2r +2K-

dimensional vector containing the set of the model parameters:

θ ,

[
θ

T
0 , . . . , θ

T
K−1

]T
.

In other respects, consider an additive colored noise, whose
covariance matrix is R(ϑ) = σ2

Γ, where Γ is an N × N
positive definite Toeplitz matrix, whose diagonal coefficients
are equal to 1 (Γ = IN in the case of a white noise).
Throughout the paper, we will suppose that Γ is known, and
that the variance σ2 is the only unknown parameter related
to the additive noise. Therefore the vector containing all the

model parameters is ϑ =
[
σ,θT

]T
. It belongs to the open

subset Θ = R
∗
+ × Θ0 × . . . × ΘK−1 of R

1+2r+2K . Let x

be the vector which contains the N samples of the observed
signal. Then x ∼ N (s(ϑ),R(ϑ)). The dependency of s and
R with respect to the model parameters is explicitly defined
below.

3In the whole paper, the notation log(.) denotes the determination of the
complex logarithm which corresponds to an angle lying in the range ]−π, π[.
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For all z ∈ C, define the vector v(z) =
[
1, z, . . . , zN−1

]T
.

Equations (4) and (5) show that the vector s(ϑ) =
[s(0) . . . s(N − 1)]T can be decomposed as

s(ϑ) =
K−1∑

k=0

Mk−1∑

m=0

s
(m)
k (θk) (7)

where the component s
(m)
k (θk) can be written in the form

s
(m)
k (θk) = α

(m)
k

1

m!

dmv

dzm
(zk). (8)

The application of proposition II.3 to the PACE model leads
to an expression of the Fisher information matrix which can
be analytically inverted (the developments are presented in
the appendix, section A), from which the bounds given in
proposition III.1 below are derived. Before that, it is necessary
to introduce some notations.

For all pairs of poles (zk, z′k), where k, k′ ∈ {0 . . . K − 1},
define the matrix Z(k,k′) of dimension (Mk +1)× (Mk′ +1),
whose coefficients are indexed by the indices m ∈ {0 . . . Mk}
and m′ ∈ {0 . . . Mk′}:

Z(k,k′)(m,m′) =
1

m!

1

m′!

dmv(zk)

dzm
k

H

Γ
−1 dm′

v(zk′)

dzm′

k′

. (9)

Finally, consider the matrix Z of dimension (r + K) ×
(r + K), defined by concatenating the blocks Z(k,k′) for
all k, k′ ∈ {0 . . . K − 1}. Its inverse Z

−1 can then be de-
composed into K × K blocks denoted Z

−1
(k′,k) for all

k′, k ∈ {0 . . . K − 1}, of dimension (Mk′ + 1) × (Mk + 1).
The coefficients of the block Z

−1
(k′,k), indexed by the in-

dices m′ ∈ {0 . . . Mk′} and m ∈ {0 . . . Mk}, are denoted
Z−1

(k′,k)(m
′,m).

Proposition III.1 (Cramér-Rao bounds for the PACE model).
The Cramér-Rao bound (CRB) for the standard deviation of

the noise is CRB {σ} = σ2

4N
. For all k ∈ {0 . . . K − 1}, the

CRB for the damping factors and the frequencies are

CRB {δk} =
σ2e−2δk

2
(
Mka

(Mk−1)
k

)2 Z−1
(k,k)(Mk,Mk) (10)

CRB {fk} =
1

4π2
CRB {δk} (11)

Moreover, the CRB for the amplitudes are

CRB
{

a
(0)
k

}
=

σ2

2
Z−1

(k,k)(0, 0)

and for all m ∈ {1 . . . Mk − 1},

CRB
{

a
(m)
k

}
= σ2

2

(
m

Mk

a
(m−1)
k

a
(Mk−1)

k

)2

Z−1
(k,k)(Mk,Mk)

+σ2

2 Z−1
(k,k)(m,m) − σ2 ℜ

(
m

Mk

α
(m−1)
k

α
(Mk−1)

k

Z−1
(k,k)(Mk,m)

)
.

Finally, for all m ∈ {0 . . . Mk − 1}, the CRB for the phases

φ
(m)
k are defined only if a

(m)
k 6= 0:

CRB
{

φ
(m)
k

}
=

1

a
(m)
k

2 CRB
{

a
(m)
k

}
. (12)

These formulae call for several comments:

• the bounds for δk and fk do not depend on any phase,

• they are inversely proportional to
(
a
(Mk−1)
k

)2

, where

a
(Mk−1)
k is the amplitude of highest index associated

to the pole zk, but they do not depend on any other
amplitude,

• if the noise is white (Γ = IN ), they depend on the
frequencies only by their differences (they are unchanged
by a translation of the whole set of frequencies4).

Corollary III.2. The Cramér-Rao bounds for the frequencies

and damping factors presented in proposition III.1 can be

rewritten in the following form:

CRB {δk} =
σ2e−2δk

2
(
Mka

(Mk−1)
k

)2

Fk(z0, . . . , zK−1)∏
k′ 6=k

|zk′ − zk|2(Mk′+1)

CRB {fk} =
1

4π2
CRB {δk}

(13)
where Fk(z0, . . . , zK−1) is a continuous function, with finite

and positive values.

The proof of corollary III.2 is presented in the appendix
(section A). This corollary shows the divergence of the
Cramér-Rao bounds when two poles become arbitrarily close.
Indeed, for any k ∈ {0 . . . K − 1}, if we let zk′ = zk + ε
for some k′ ∈ {0 . . . K − 1}, then CRB {δk} ∼ C

|ε|2(M
k′+1)

when ε → 0 (and C does not depend on ε). In an asymptotic
context, the expressions of the Cramér-Rao bounds given in
proposition III.1 can be simplified, as shown in the following
section.

B. Asymptotic Cramér-Rao bounds

In this section, simplified expressions of the Cramér-Rao
bounds are proposed in the particular case where

• white noise (Γ = IN ) is considered;
• all poles are supposed to be on the unit circle

(∀k ∈ {0 . . . K − 1}, δk → 0);
• infinite observation length is assumed5.

Proposition III.3 (Asymptotic Cramér-Rao bounds). In the

particular case of white noise and all poles on the unit circle,

the signal-to-noise ratio of the component s
(m)
k (t) defined in

equation (5) is SNR
(m)
k = 1

σ2
1
N

N−1∑
t=0

|s
(m)
k (t)|2 and admits

the asymptotic expansion SNR
(m)
k ∼

(
a
(m)
k Nm

)2

(2m + 1)m!2 σ2
.

4More precisely, it can be shown that the diagonal coefficients of the matrix
Z

−1 are unchanged by a translation of the whole set of frequencies.
5More precisely, it is supposed that N >> min

k 6=k′

1
|fk−f ′

k
|
, which means

that all spectral components are well separated.
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For all k ∈ {0 . . . K − 1},

CRB {δk}∼
σ2

N2Mk+1a
(Mk−1)
k

2

(2Mk + 1)!2

2M2
k (2Mk + 1)Mk!2

(14)

∼
1

N3SNR
(Mk−1)
k

(2Mk + 1)!2

2(4M2
k − 1)Mk!4

(15)

CRB {fk}∼
1

4π2
CRB {δk} (16)

and for all m ∈ {0 . . . Mk − 1},

CRB{a
(m)
k }∼

σ2

N2m+1

(Mk + 1 + m)!2

2(2m + 1)m!2(Mk − m)!2
(17)

CRB{φ
(m)
k }∼

1

a
(m)
k

2 CRB
{

a
(m)
k

}
(18)

∼
1

NSNR
(m)
k

(Mk + 1 + m)!2

2(2m+1)2(m!)4(Mk-m)!2
.(19)

Proposition III.3 is proved in the appendix, in section B. It
is important to note that:

• the bounds for δk and fk are inversely proportional to
the product of N3 and the signal-to-noise ratio of the
component s

(Mk−1)
k (this is a well-known result in the

case of the ESM model),
• these bounds rapidly increase with the order of the pole

zk. More precisely, it can be verified6 that

(2Mk + 1)!2

(4M2
k − 1)Mk!4

∼
1

πe2

24Mk

Mk

. (20)

Thus the estimation of a pole is all the more difficult as
its order is high.

Note that in the case of single poles, the formulae given
in proposition III.3 are identical to those provided in proposi-
tion II.5 (which was established in the framework of the ESM
model).

IV. SIMULATION RESULTS

This section illustrates the variations of the Cramér-Rao
bounds with respect to the parameters of the PACE model.
Since the dependency on the amplitudes and the variance σ2 is
rather straightforward, as shown in propositions III.1 and III.3,
we focus below on the dependency on the frequency gap
between two components (section IV-A), the damping factor
(section IV-B), the spectral flatness (section IV-C), and the
order of a pole (section IV-D). In the figures below, only the
CRB for the frequencies or the CRB for the damping factors is
represented, since both are equivalent according to (11). In the
same way, the relative CRB for each amplitude (i.e. the CRB
normalized by the squared amplitude), also illustrated below,
is equal to the CRB for the corresponding phase, according to
equation (12).

6The proof of this result involves Stirling’s approximation.

A. Variation of the Cramér-Rao bounds with respect to the

frequency gap

It was shown above that in the case of white noise, the
Cramér-Rao bound for a particular frequency depends on the
whole set of frequencies only by their differences. Here we
consider a signal of length N = 200, composed of two
undamped components (K = 2) of same order M0 = M1 = 1,
in white noise (Γ = IN and σ2 = 1). These components have
zero phases, and same amplitudes, such that SNR(0)

0 = SNR(0)
1

= 50 dB.
Figure 1 shows the variations of the Cramér-Rao bounds

with respect to the frequency gap ∆f = |f1−f0| ∈ ]0, 0.5]. It
can be noticed that the variation rate of the bounds is broken
at ∆f = 1

N
= 5 10

−3, which corresponds to the resolution
limit of Fourier analysis. If ∆f >> 1

N
, there is no resolution

problem, and the bounds do not depend on the frequency gap.
If ∆f << 1

N
, the bounds are asymptotically proportional to

1
∆f4 , as suggested by equation (13). Besides, if ∆f < 10

−3,
CRB{fk} ≥ ∆f2, which means that both frequencies cannot
be resolved (the bound is of the order of the value to be

estimated), and CRB
{

a
(0)
k

}
≥ a

(0)
k

2
, which means that both

amplitudes cannot be estimated correctly.

10
−3

10
−2

10
−1

−140

−120

−100

−80

−60
(a) Cramér−Rao bound for the frequencies (dB)

Frequency gap

10
−3

10
−2

10
−1

−100

−50

0

50
(b) Relative Cramér−Rao bound for the amplitudes (dB)

Frequency gap

Fig. 1. Variation of the Cramér-Rao bounds with respect to the frequency
gap

B. Variation of the Cramér-Rao bounds with respect to the

damping factor

We consider a signal of length N = 100, composed of one
component (K = 1) of order M0 = 1, in white noise (Γ = IN

and σ2 = 1). This component has zero frequency and phase,
and an amplitude such that SNR(0)

0 = 50 dB.
Figure 2 shows the variations of the Cramér-Rao bounds

with respect to the damping factor δ0. It can be noticed in
figure 2-a that the lowest bound for δ0 is obtained when
the component is undamped, and that this bound increases
with the magnitude of δ0. Regarding the estimation of the
amplitudes and phases, this symmetry is broken: figure 2-b
shows that the lowest values of the bound are obtained when
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δ0 ≤ 0. This may be explained by the fact that the amplitude
parameter corresponds to the amplitude at the beginning of
the signal component. Therefore, when the noise level and the
SNR of this component are constant, the amplitude parameter
decreases when δ0 increases. Consequently, the relative CRB
of this parameter increases when δ0 increases.

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−110

−100

−90

−80

−70
(a) Cramér−Rao bound for the damping factor (dB)

Damping factor

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−80

−60

−40

−20
(b) Relative Cramér−Rao bound for the amplitude (dB)

Damping factor

Fig. 2. Variation of the Cramér-Rao bounds with respect to the damping
factor

C. Variation of the Cramér-Rao bounds with respect to the

spectral flatness of the noise

We consider a signal of length N = 100, composed of
one undamped component (K = 1) of order M0 = 1, in
colored noise. This component has a zero phase, a normalized
frequency equal to 0.05, and an amplitude such that SNR(0)

0

= 50 dB. The noise is obtained by filtering a white noise
by the filter of transfer function Ha(z) = 1

1−a z−1 (where
0 ≤ a < 1), such that Γ = Toeplitz(1, a, a2, . . . aN−1). The
Spectral Flatness (SF) measure of the noise is defined as

SF(a) =
exp

(∫ 1

0
log
(
|Ha(ei2πf )|2

)
df
)

∫ 1

0
|Ha(ei2πf )|2df

.

By tuning the parameter a, it is possible to make the spectral
flatness map the range ]0, 1] (the case SF= 1 corresponds to
white noise).

Figure 3 shows the variations of the Cramér-Rao bounds
with respect to the spectral flatness. It can be noticed in
figures 3-a and 3-b that the Cramér-Rao bound admits a
maximum when SF ≃ 0.5. When SF becomes very low, the
decrease of the Cramér-Rao bound may be explained by the
fact that the power spectral density of the noise becomes a
sharp peak centered at the null frequency, and the noise level
is lower around the sinusoidal component.

D. Variation of the Cramér-Rao bounds with respect to the

pole order

We consider a signal of length N = 20, composed of one
undamped component (K = 1) of order M0 ∈ {1 . . . 10}, in

10
−4

10
−3

10
−2

10
−1

10
0

−150

−140

−130

−120

−110
(a) Cramér−Rao bound for the frequency (dB)

Spectral flatness

10
−4

10
−3

10
−2

10
−1

10
0

−90

−80

−70

−60
(b) Relative Cramér−Rao bound for the amplitude (dB)

Spectral flatness

Fig. 3. Variation of the Cramér-Rao bounds with respect to the spectral
flatness of the noise

white noise (Γ = IN and σ2 = 1). This component has zero
phases, and amplitudes such that SNR(M0−1)

0 = 50 dB, and
∀m < M0−1, SNR(m)

0 = 0. The corresponding pole is z0 = 1.
Figure 4 shows the variations of the Cramér-Rao bounds

with respect to the pole order M0. It can be noticed that
these bounds increase exponentially with M0, which means
that the estimation of the model parameters is all the more
difficult as the model order is high. More precisely, equa-
tions (16) and (20) show that the bounds are asymptotically
proportional to 16M0

M0
. Besides, if M0 ≥ 10, the frequency

cannot be estimated correctly, since figure 4-a shows that
CRB{f0} ≃ 1. The problem is even more critical for
the amplitudes, since it can be noticed in figure 4-b that

CRB{a
(M0−1)
0 } ≥

(
a
(M0−1)
0

)2

as soon as M0 ≥ 7. As
a conclusion, the practical estimation of the PACE model
parameters is only possible for low order poles. This can be
explained by the fact that the matrix Z defined in equation (9)
is very badly conditioned for large orders Mk and high values
of N .

1 2 3 4 5 6 7 8 9 10
−100

−80

−60

−40

−20

0
(a) Cramér−Rao bound for the frequency (dB)

Pole order

1 2 3 4 5 6 7 8 9 10
−100

−50

0

50
(b) Relative Cramér−Rao bound for the amplitude (dB)

Pole order

Fig. 4. Variation of the Cramér-Rao bounds with respect to the pole order
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V. CONCLUSIONS

In this paper, the Cramér-Rao bounds for the quasipoly-
nomial PACE model have been analytically calculated in the
general case, and their expressions have been simplified under
the hypothesis of infinite observation length (in the case of
white noise and all poles on the unit circle). It was shown that
the bounds for the frequencies and damping factors do not
depend on any phase, and that they are inversely proportional
to the squared amplitude of highest index associated to the
corresponding pole. However they do not depend on any
other amplitude. Besides, if the noise is white, they depend
on the frequencies only by their differences (i.e. they are
unchanged by a translation of the whole set of frequencies).
In an asymptotic context, it was shown that they are inversely
proportional to the product of the cubed length of the signal
and the signal-to-noise ratio of the component of highest index
associated to the corresponding pole. Our simulation results
also showed that the Cramér-Rao bounds for the parameters
associated to a multiple pole present an exponential increase
with the order of the pole. More precisely, it appears that the
practical estimation of the PACE amplitude parameters is only
possible if the exponentials are modulated by polynomials of
order lower than 5.

This work on the Cramér-Rao bounds is applied in [29],
[30], in order to analyze the performance of the generalized
ESPRIT algorithm introduced in [20] to estimate the PACE
model. In the same paper, we present an application of this
algorithm to the problem of ARMA filter synthesis, in the
context of system conversion from continuous time to discrete
time.

APPENDIX

A. General bounds for the PACE model

Proof of proposition III.1.: First, let us compute the
Fisher information matrix related to the PACE model. We start
from the expression given in proposition II.3, which involves
the partial derivatives of the covariance matrix R and of the
expected value s with respect to the model parameters.

First, remember that the vector containing the whole set of

parameters is ϑ =
[
σ,θT

]T
, where θ =

[
θ

T
0 , . . . , θ

T
K−1

]T

and θk was defined in equation (6):

θk =
[
a
(0)
k , φ

(0)
k , . . . , a

(Mk−1)
k , φ

(Mk−1)
k , δk, fk

]T
.

The partial derivatives of the covariance matrix R(ϑ) =
σ2

Γ with respect to all the model parameters are zero,
except ∂R

∂σ
= 2σΓ. Moreover, the partial derivative of

the expected value s(ϑ) with respect to σ is zero. Thus
the matrix F (ϑ) defined in equation (1), of dimension
(1 + 2r + 2K) × (1 + 2r + 2K), can be written in the form

F (ϑ) =

[
4N
σ2 01×(2r+2K)

0(2r+2K)×1 F
′(θ)

]
,

where F
′(θ) is a (2r + 2K) × (2r + 2K) matrix. Thus we

get F (ϑ)−1 =

[
σ2

4N
0

0 F
′(θ)−1

]
from which we extract

CRB{σ} = σ2

4N
. In order to obtain the bounds for the other

parameters, it is necessary to calculate and inverse the matrix
F

′(θ). First, equation (1) shows that

F ′
(i,j)(θ) =

2

σ2
Re

(
∂s

∂θi

H

Γ
−1 ∂s

∂θj

)
.

Following equation (6), the matrix F
′(θ) can be decom-

posed into K × K sub-blocks F
′
(k,k′) (θk,θk′) of dimension

2(Mk + 1) × 2(Mk′ + 1):

F
′
(k,k′) (θk,θk′) =

2

σ2
Re

(
∂s

∂θk

H

Γ
−1 ∂s

θk′

)
, (21)

where the Jacobian matrix ∂s

∂θk
has dimension N×2(Mk +1):

∂s

∂θk

=

[
∂s

∂a
(0)
k

,
∂s

∂φ
(0)
k

. . .
∂s

∂a
(Mk−1)
k

,
∂s

∂φ
(Mk−1)
k

,
∂s

∂δk

,
∂s

∂fk

]
.

Besides, the partial derivatives of the vector s defined in
equations (7) and (8) with respect to the model parameters
are

∂s

∂a
(m)
k

= ei φ
(m)
k

1

m!

dmv(zk)

dzm
k

∂s

∂φ
(m)
k

= i α
(m)
k

1

m!

dmv(zk)

dzm
k

∂s

∂δk

= zk

Mk∑
m=1

mα
(m−1)
k

1

m!

dmv(zk)

dzm
k

∂s

∂fk

= i 2πzk

Mk∑
m=1

mα
(m−1)
k

1

m!

dmv(zk)

dzm
k

(22)

where v(z) =
[
1, z, . . . , zN−1

]T
.

Substituting equation (22) into equation (21) shows that
each block F

′
(k,k′) (θk,θk′) can be factorized in the form

F
′
(k,k′) (θk,θk′) =

2

σ2
Ak F

′′
(k,k′) (θk,θk′) Ak′ (23)

where

• ∀k, Ak is the 2(Mk + 1) × 2(Mk + 1) diagonal matrix
Ak = diag(1, a

(0)
k , 1, a

(1)
k , . . . , 1, a

(Mk−1)
k , 1, 2π);

• F
′′
(k,k′) (θk,θk′) is a 2(Mk + 1) × 2(Mk′ + 1) matrix.

The next step consists in factorizing the matrix
F

′′
(k,k′) (θk,θk′). For any complex matrix M of dimension

d × d′, define the real-valued matrix R2(M), of dimension
(2d)×(2d′), which is formed of d×d sub-blocks R2(M)(i,j)
of dimension 2 × 2, defined as

R2(M)(i,j) =

[
ℜ
(
M(i,j)

)
−ℑ

(
M(i,j)

)

ℑ
(
M(i,j)

)
ℜ
(
M(i,j)

)
]

.

Then after some derivations, it can be verified that each
block F

′′
(k,k′) (θk,θk′) can be factorized in the form

F
′′
(k,k′) (θk,θk′) = R2

(
Φ

H
k J

H
k Z(k,k′) Jk′Φk′

)
(24)

where

• ∀k, k′, the matrix Z(k,k′) is defined in equation (9);
• ∀k, Φk is the (Mk + 1) × (Mk + 1) diagonal matrix

Φk = diag
(
ei φ

(0)
k , ei φ

(1)
k , . . . , ei φ

(Mk−1)

k , zk

)
;
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• ∀k, Jk is the (Mk + 1) × (Mk + 1) matrix

Jk =
IMk

0

α
(0)
k
...

(Mk − 1)α
(Mk−2)
k

0(1×Mk) Mk α
(Mk−1)
k

.

Then define A = diag(A0, . . . ,AK−1), Φ =
diag(Φ0, . . . ,ΦK−1), and J = diag(J0, . . . ,JK−1). Sub-
stituting equation (24) into equation (23) shows that the full
matrix F

′(θ) can be factorized in the form

F
′(θ) =

2

σ2
AR2

(
Φ

H
J

H
Z J Φ

)
A.

Besides, it can be verified that the operator R2 commutes with
the matrix inversion operator: ∀M ∈ C

d×d, (R2(M))
−1

=
R2(M

−1). Consequently, the inverse of the matrix F
′(θ) is

F
′(θ)−1 =

σ2

2
A

−1R2

(
Φ

−1
J

−1
Z

−1
J

−H
Φ

−H
)

A
−1.

It can be decomposed into K × K sub-blocks of dimension
2(Mk′ +1)×2(Mk +1), denoted F

′−1
(k′,k) (θk′ ,θk), which are

equal to

σ2

2
A

−1
k′ R2

(
Φ

−1
k′ J

−1
k′ Z

−1
(k′,k)J

−H
k Φ

−H
k

)
A

−1
k , (25)

where the (Mk + 1) × (Mk + 1) matrix J
−1
k satisfies

J
−1
k =

IMk

0

−
α

(0)
k

Mkα
(Mk−1)

k

...

−
(Mk−1) α

(Mk−2)

k

Mkα
(Mk−1)

k

0(1×Mk)
1

Mkα
(Mk−1)

k

.

Finally, by developing the right member of equation (25),
we obtain the diagonal coefficients of the sub-blocks
F

′−1
(k,k) (θk,θk) of the inverse Fisher information matrix,

which yield the expressions of the Cramér-Rao bounds for
the model parameters presented in proposition III.1.

Proof of corollary III.2: The coefficients of the inverse
matrix Z

−1 can be expressed in terms of determinants. Indeed,
Z−1

(k,k)(Mk,Mk) = det(Z
(Mk)
k )/det(Z), where Z

(Mk)
k is the

matrix extracted from Z by deleting the row and the column
of same indices (k,Mk).

By applying some judicious operators7 to the left and the
right side of Z, it can be shown that det(Z) can be factorized
in the form

det(Z) =
∏

k2>k1

|zk2
− zk1

|2(Mk1
+1)(Mk2

+1)

×D
(
Γ, {zk′ , Mk′ + 1}k′∈{0...K−1}

) (26)

where D is a function of the variables z0, . . . , zK−1, with
positive values. In the same way, det(Z

(Mk)
k ) can be factorized

in the form
∏

k2>k1

|zk2
− zk1

|2(Mk1
+1{k1 6=k})(Mk2

+1{k2 6=k})

×D(Γ, {zk′ , Mk′ + 1{k′ 6=k}}k′∈{0...K−1}).

Thus Z−1
(k,k)(Mk,Mk) =

Fk(z0, . . . , zK−1)∏
k′ 6=k

|zk′ − zk|2(Mk′+1)
, where

Fk(z0, . . . , zK−1) =
D(Γ, {zk′ , Mk′ + 1{k′ 6=k}}k′∈{0...K−1})

D(Γ, {zk′ , Mk′ + 1}k′∈{0...K−1})

is a continuous function, with finite and positive values.

B. Asymptotic bounds

Proof of proposition III.3: Suppose that Γ =
IN and that all poles are on the unit circle. In
this case, we show below that it is possible to cal-
culate the asymptotic expansions of the coefficients of
Z

−1 with respect to N . Indeed, ∀k, k′ ∈ {0 . . . K − 1},
∀(m,m′) ∈ {0 . . . Mk} × {0 . . . Mk′},

• if k 6= k′, Z(k,k′)(m,m′) = O(Nm+m′

),
• if k = k′, Z(k,k)(m,m′) is equal to

1

m!(1 + m + m′)m′!
zm−m′

k Nm+m′+1 + O(Nm+m′

).

Define the diagonal matrix D such that
∀k, k′ ∈ {0 . . . K − 1}, ∀(m,m′) ∈ {0 . . . Mk}×{0 . . . Mk′},

• if k 6= k′, D(k,k′)(m,m′) = 0,
• if k = k′, D(k,k)(m,m′) = 0 if m 6= m′, and

D(k,k)(m,m) = zm
k N−m− 1

2 if not.

Define Z̃ = D
∗
ZD. Then Z̃ = Z + O( 1

N
), where

∀k, k′ ∈ {0 . . . K − 1}, ∀(m,m′) ∈ {0 . . . Mk}×{0 . . . Mk′},

• if k 6= k′, Z(k,k′)(m,m′) = 0,
• if k = k′, Z(k,k)(m,m′) = 1

m!(1+m+m′)m′! .

It can be proved that the inverse of Z satisfies8

• if k 6= k′, Z
−1

(k′,k)(m
′,m) = 0,

• if k = k′, Z
−1

(k,k)(m
′,m) is equal to

(Mk + 1 + m′)!

(Mk − m′)!

(−1)m′+m

m′!(1 + m′ + m)m!

(Mk + 1 + m)!

(Mk − m)!
.

In particular, Z
−1 = D

−1
Z̃

−1
D

∗−1, where Z̃
−1

=

Z
−1

+ O( 1
N

). It can be deduced that ∀k, k′ ∈ {0 . . . K − 1},
∀(m,m′) ∈ {0 . . . Mk} × {0 . . . Mk′},

• if k 6= k′, Z−1
(k′,k)(m

′,m) = O
(
N−(m′+m+2)

)
,

• if k = k′, Z−1
(k,k)(m

′,m) is asymptotic to

7Equation (9) implies a factorization of the matrix Z of the form Z =

V
N H

Γ
−1

V
N

, where the columns of the N × (r + K) matrix V
N

are
the vectors 1

m!
dm

v(zk)
dzm

k

for 0 ≤ k < K and 0 ≤ m ≤ Mk . It can be

noticed that the matrix V
N

has a Pascal-Vandermonde structure [20]. Then
the proof of equation (26) consists in applying to the right and the left sides of

Z = V
N H

Γ
−1

V
N

the same operations as those which would be applied
to the columns of the square Pascal-Vandermonde matrix V

N

(1:r+K,1:r+K)
in order to calculate its determinant.

8The proof of this result is tricky, and beyond the scope of this paper. It
relies on number theory and combinatorics.
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(Mk+1+m′)!
(Mk−m′)!

(−1)m′+m

m′!(1+m′+m)m!
(Mk+1+m)!
(Mk−m)!

zm′−m
k

Nm′+m+1
.

Finally, the formulae in proposition III.3 are obtained by
substituting the expressions of the coefficients of the matrix
Z

−1 in the equations given in proposition III.1.
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