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Abstract—Gaussian process (GP) models are very popular for
machine learning and regression and they are widely used to
account for spatial or temporal relationships between multi-
variate random variables. In this paper, we propose a general
formulation of underdetermined source separation as a problem
involving GP regression. The advantage of the proposed unified
view is firstly to describe the different underdetermined source
separation problems as particular cases of a more general
framework. Secondly, it provides a flexible means to include
a variety of prior information concerning the sources such as
smoothness, local stationarity or periodicity through the use
of adequate covariance functions. Thirdly, given the model, it
provides an optimal solution in the minimum mean squared
error (MMSE) sense to the source separation problem. In order
to make the GP models tractable for very large signals, we
introduce framing as a GP approximation and we show that
computations for regularly sampled and locally stationary GPs
can be done very efficiently in the frequency domain. These
findings establish a deep connection between GP and Nonnegative
Tensor Factorizations with the Itakura-Saito distance and lead
to effective methods to learn GP hyperparameters for very large
and regularly sampled signals.

Index Terms—Gaussian Processes, NMF, NTF, Source Separa-
tion, Probability Theory, Regression, Kriging, Cokriging

I. INTRODUCTION

Gaussian processes [28], [35], [36], [44] are commonly used
to model functions whose mean and covariances are known.
Given some learning points, they enable us to estimate the
values taken by the function at any other points of interest.
Their main advantages are to provide a simple and effective
probabilistic framework for regression and classification as
well as an effective means to optimize a model’s parameters
through maximization of the marginal likelihood of the obser-
vations. For these reasons, they are widely used in many areas
to model dependencies between multivariate random variables
and their use can be traced back at least to works by Wiener in
1941 [43]. They have also been known in geostatistics under
the name of kriging for almost 40 years [29]. A great surge of
interest for Gaussian Process (GP) models occurred when they
were expressed as a general purpose framework for regression
as well as for classification (see [35] for a review). Their
relation to other methods commonly used in machine learning
such as multi-layer perceptrons, spline interpolation or support
vector machines are now well understood.
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Source separation is another very intense field of research
(see [10] for a review) where the objective is to recover several
unknown signals called sources that were mixed together
in observable mixtures. Source separation problems arise in
many fields such as sound processing, telecommunications and
image processing. They differ mainly in the relative number
of mixtures per source signal and in the nature of the mixing
process. The latter is generally modeled as convolutive, i.e.
as a linear filtering of the sources into the mixtures. When
the mixing filters reduce to a single amplification gain, the
mixing is called instantaneous. When there are more mix-
tures than sources, the problem is called overdetermined and
algorithms may rely on beamforming techniques to perform
source separation. When there are fewer mixtures than sources,
the problem is said to be underdetermined and is notably
known to be very difficult. Indeed, in this case there are
less observable signals than necessary to solve the underlying
mixing equations. Many models were hence studied to address
this problem and they all either restrict the set of possible
source signals or assign prior probabilities to them in a
Bayesian setting. Among the most popular approaches, we
can mention Independent Component Analysis [6] that focuses
both on probabilistic independence between the source signals
and on high order statistics. We can also cite Non-negative
Matrix Factorization (NMF) source separation that models the
sources as locally stationary with constant normalized power
spectra and time-varying energy [16], [27].

In this study, we revisit underdetermined source separation
(USS) as a problem involving GP regression. To our knowl-
edge, no unified treatment of the different underdetermined
linear source separation problems in terms of classical GP
is available to date and we thus propose here an attempt at
providing such a formulation whose advantages are numerous.
Firstly, it provides a unified framework for handling the differ-
ent USS problems as particular cases, including convolutive or
instantaneous mixing as well as single or multiple mixtures.
Secondly, when prior information such as smoothness, local
stationarity or periodicity is available, it can be taken into ac-
count through appropriate covariance functions, thus providing
a significant expressive power to the model. Thirdly, it yields
an optimal way in the minimum mean squared error (MMSE)
sense to proceed to the separation of the sources given the
model.

In spite of all their interesting features, GP models come
at a high O

(
n3
)

computational cost where n is the number
of training points. For many applications such as audio signal
processing where n ≈ 107 is common, this cost is prohibitive.
Hence, the GP framework has to come along with effective
methods to simplify the computations in order to be of
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practical use. Over the years, many approximation methods
have been proposed [31], [34], [37], [38], [40] to address this
issue and we show that the common practice of framing in
audio signal processing can precisely be understood in terms
of GP modeling as a particular choice for GP approximation.
In particular, we give its connections with recently published
Partially Independent Conditional (PIC) approximation [37]
and Compact Support (CS) covariance functions [31], [40]. For
the special case of locally stationary and regularly sampled sig-
nals, we furthermore show that computations can be performed
extremely efficiently in the frequency domain and we establish
a novel connection between GP models and the emerging
techniques of Nonnegative Tensor Factorizations (NTF) [9]
using the Itakura-Saito divergence.

The article is organized as follows. First, we present GP and
particularly Gaussian Process Regression (GPR) in section II.
Then, we set out the various linear underdetermined source
separation problems in terms of GPR in section III. In order
to make the GP models tractable for very large signals, we
introduce framing as a GP approximation and we show that
computations for regularly sampled and locally stationary GPs
can be done very efficiently in the frequency domain in section
IV. Finally, we illustrate the performance of the methods on
synthetic and real data in section V and draw some conclusions
in section VI.

II. GAUSSIAN PROCESSES

A. Introduction
A Gaussian process [28], [35], [36], [44] is a possibly

infinite set of scalar random variables {f (x)}x∈X indexed by
an input space X , typically X = RD, and taking values on R,
such that for any finite set of inputs X = {x1 · · ·xn} ∈ Xn,
f , [f (x1) · · · f (xn)]

> is distributed with respect to a multi-
variate Gaussian distribution1. A GP is thus completely deter-
mined by a mean function m (x) = E [f (x)] and a covariance
function k (x, x′) = E [(f (x)−m (x)) (f (x′)−m (x′))].

More fundamentally, a GP may be understood as a process
whose mean m (x) and covariance k (x, x′) between any two
inputs are known. Given only this prior information, assigning
a multivariate Gaussian distribution to f given any finite set X
of inputs from X is a sensible choice, since it is the probability
distribution that maximizes entropy when only the first two
moments are known [23].

It has been shown that the class of valid covariance func-
tions coincides with the class of positive definite functions
[1]. Let X be a finite set of elements from X that is possibly
randomly drawn as in [19], the covariance matrix Kf,XX is
defined as [Kf,XX ]i,j = k (xi, xj) and the probability of f

given X is then given by2:

p (f | X) =

1

(2π)
n
2 |Kf,XX |

1
2

exp

(
−1

2
(f −m)

>
K−1f,XX (f −m)

)
(1)

1The symbol , denotes a definition.
2Positive semi-definite covariance matrices are possible. In the case of

singular Kf,XX , a characterization involving the characteristic function
instead of (1) is required.

where m , [m (x1) · · ·m (xn)]
>
. This is usually written:

f ∼ GP (m (x) , k (x, x′))

Most studies in underdetermined source separation focus on
the single sensor scenario X = R. Still, there is no difficulty
involved in considering the general case X = RD and we
will see examples of GPs defined on a multidimensional input
space in sections III-C and IV. This framework thus easily
allows modeling multivariate functions defined on arbitrary in-
put spaces and many studies have used Gaussian processes for
regression (f (x) ∈ R) as well as for classification (f (x) ∈ N).
Their main advantages are to provide a probabilistic interpre-
tation and a way to compute the variances of the estimates.
From now on, we will focus on GPR, since our objective is to
highlight the connections between GP and source separation,
which is usually stated in terms of processes taking values
in R. For the sake of notational simplicity, we will assume a
priori centered signals, i.e. ∀x ∈ X ,m (x) = 0, as it is very
common for audio signals. Still, there is no particular issue
raised when considering arbitrary mean functions.

B. Gaussian processes regression
Suppose we observe y (x) = f (x)+ε (x), with f (x) being

the signal of interest and ε (x) being some additive signal —
usually called noise — that is independent from f (x), for a fi-
nite set X of input points from X : X = {x1 · · ·xn} ∈ Xn. We
want to estimate the values taken by f on a finite and possibly
different set X∗ = {x∗1 · · ·x∗n∗} ∈ Xn

∗
of input points from

X . Let us furthermore assume that f ∼ GP (0, kf (x, x′)) and
ε ∼ GP (0, kε (x, x′)) where the covariance functions kf and
kε are known. As f and ε are supposed independent, we have:

f + ε ∼ GP (0, kf (x, x′) + kε (x, x′)) (2)

Let Kf,XX∗ be the covariance matrix defined by
[Kf,XX∗ ]ij = kf

(
xi, x

∗
j

)
. We define Kf,X∗X , Kf,X∗X∗ ,

Kε,XX in the same way. Let f , [f (x1) · · · f (xn)]
>, f∗ ,

[f (x∗1) · · · f (x∗n)]
> and similarly for y. We have:[

y
f∗

]
∼ N

(
0,

[
Kf,XX +Kε,XX Kf,XX∗

Kf,X∗X Kf,X∗X∗

])
Classical probability results then assert that the conditional

distribution of f∗ given y is (see [35]):

f∗ | y ∼ N
(
f∗, covf∗

)
(3)

with3:
f∗ = Kf,X∗X [Kf,XX +Kε,XX ]

−1
y (4)

and

covf∗ = Kf,X∗X∗ −Kf,X∗X [Kf,XX +Kε,XX ]
−1
Kf,XX∗

(5)
These expressions show that the maximum likelihood es-

timate f̂∗ of f∗ | y is found by setting f̂∗ = f∗, which
is also the Minimum Mean Squared Error (MMSE) estimate
in the Gaussian case. This result will be fundamental when
performing source separation using Gaussian processes. We
can furthermore compute the covariance of the estimates.

3In the case of singular covariance matrix Kf,XX +Kε,XX , numerical
methods such as Moore-Penrose pseudo-inversion may be used.
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Figure 1. Typical realizations of GP with SE and periodic covariance
functions with different values of the hyperparameters. On the left column,
D = 1 and the processes are only parameterized by 3 scalars. On the right,
D = 2 and the processes are parameterized by 6 scalars.

C. Covariance functions

Many studies (see [1] for a review) concern valid covariance
functions. They belong to the general family of kernels and
must be definite positive. Some properties of interest have been
demonstrated:
• Sums and products of valid covariance functions are valid

covariance functions.
• When it is stationary, i.e. when it can be expressed as a

function of τ = x− x′, then the covariance function can
be parameterized by its Fourier transform.

Two examples of covariance functions for X = RD are:
• The Squared Exponential (SE) covariance

function defined by: kSE (x, x′|σ,M) =

σ2 exp

(
− (x−x′)

>
M(x−x′)
2

)
with σ2 > 0 and

M positive semidefinite. When D = 1, we have
kSE (x, x′|σ, λ) = σ2 exp

(
− (x−x′)2

2λ2

)
. λ is called a

characteristic length scale in the sense that |x− x′| � λ
is required for two points x and x′ of the process to be
independent.

• The less common periodic covariance function
of period T given by: kperiodic (x, x′|T, λ) =

σ2 exp

(
− 2 sin2 π(x−x′)

T

λ2

)
.

As can be seen, covariance functions are generally parameter-
ized by a set of scalar values such as their Fourier transform
when they are stationary, their characteristic length scales, their
period, etc. These scalars are often called hyperparameters
and are usually gathered in a hyperparameter set Θ. Typical
realizations of GPs with SE and periodic covariance functions
are given for D = 1 and D = 2 in Figure 1.

D. Optimization of the hyperparameters

In a Bayesian context, we may need to find the hy-
perparameters that maximize the marginal likelihood of the
observations. In other words, we may need to find Θ∗ such that
p (y | X,Θ∗) is maximum. Indeed, even if we may well guess
the covariance functions that are adequate to the problem at
hand, such as stationary covariance functions parameterized by
their Fourier transform or SE covariance functions, it is likely
that the hyperparameters that best explain the observations are
not exactly known.

To this purpose, we can compute the closed-form ex-
pression of the marginal log-likelihood of the observations,
log p (y | X,Θ) as (see [35]):

log p (y | X,Θ) = −n
2

log 2π

− 1

2
y> [Kf,XX +Kε,XX ]

−1
y − 1

2
log |Kf,XX +Kε,XX |

(6)

where each covariance matrix depends on Θ. Using the
opposite of (6) as a cost function, we can proceed to the opti-
mization of the hyperparameters using classical optimization
algorithms, in a principled probabilistic framework. Note that
depending on the covariance function and the hyperparameter
considered, the corresponding optimization problem may or
may not be convex.

III. GAUSSIAN PROCESSES FOR SOURCE SEPARATION

A. Single mixture with instantaneous mixing

The presentation of GPR given in section II-B is actually
slightly more general than what is usual in the literature.
Indeed, it is often assumed that the covariance function kε
of the additive signal ε is given by kε (x, x′) = σ2δxx′

where δxx′ = 1 if and only if x = x′ and zero otherwise.
This assumption corresponds to additive independent and
identically distributed (i.i.d.) white Gaussian noise of variance
σ2.

In our presentation, the additive signal ε (x) is a GP itself
and is potentially very complex. In any case, its covariance
function is given by kε and the only assumption made is its
independence with the signal of interest f (x). A particular
example of a model where kε non trivially depends on x and
x′ was for example studied in [20].

The results obtained can very well be generalized to the
situation where y is the sum of M independent latent Gaussian
processes:

∀x ∈ X , y (x) =

M∑
m=1

fm (x)

with
fm ∼ GP (0, km (x, x′))

In this case, if our objective is to extract the signal cor-
responding to the source m0, we only need to replace kf
with km0 and kε with

∑
m6=m0

km in section II-B. Note
that inversion of Kf,XX + Kε,XX is needed only once for
the extraction of all sources. Similarly, we can also jointly
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optimize the hyperparameters of all covariance functions using
exactly the same framework as in section II-D. We now
consider the case of convolutive mixtures of independent GPs.

B. Single mixture with convolutive mixing

An important fact, which has already been noticed in the
literature [2], [4], is that the convolution of a GP, as a linear
combination of Gaussian random variables, remains a GP.
Indeed, let us consider some GP f0,m ∼ GP (0, k0,m (x, x′))
and let us define

fm (x) =

ˆ
X
am (x− z) f0,m (z) dz , (am ∗ f0,m) (x)

where am : X → R is a stable mixing filter from f0,m to
fm. If the mean function of f0,m is identically 0, the mean
function of fm is easily seen to also be identically 0. The
covariance function of fm can be computed as km (x, x′) =
E [fm (x) fm (x′)], that is:

km (x, x′) =

ˆ
X

ˆ
X
am (x− z) am (x′ − z′) k0,m (z, z′) dzdz′

which is the convolution of k0,m by am × am , (x, x′) ∈
X 2 7→ am (x) am (x′):

km (x, x′) = ((am × am) ∗ k0,m) (x, x′) (7)

Moreover, if several convolved GPs
{fm = (am ∗ f0,m)}m=1···M are summed up in a mixture,
it can readily be shown that the fm are independent if the
f0,m are independent. We thus get back to the instantaneous
mixing model using modified covariance functions (7).

C. Multiple output GP

We have for now only considered GPs whose outputs lie in
R. A sizable body of literature focuses on possible extensions
of this framework to cases where the processes of interest are
multiple-valued, i.e. whose outputs lie in RC for C ∈ N∗.
In geostatistics for example, important applications comprise
the modeling of co-occurrences of minerals or pollutants in a
spatial field. First attempts in this direction [24] include the so-
called linear model of coregionalization, that considers each
output as a linear combination of some latent processes. The
name of cokriging has often been used for such systems in
the field of geostatistics. If the latent processes are assumed
to be GPs, the outputs are also GPs.

In the machine learning community, multiple-output GPs
have been introduced [5] and popularized under the name
of dependent GPs. Several extensions of such models have
been proposed subsequently [2]–[4], [30] and we focus here
on the model presented in [2] which is very close to the usual
convolutive mixing model commonly used in multi-channel
source separation, e.g. in [32].

Let {yc (x)}c=1···C be the C output signals called
the mixtures. The convolutive GP model consists
in assuming that each observable signal yc is the
sum of convolved versions of M latent GPs of
interest {f0,m ∼ GP (0, k0m (x, x′))}m=1···M that we
will call sources, plus one specific additional term

εc ∼ GP (0, kεc (x, x′)) that is often referred to as additive
noise. We thus have:

yc (x) =

M∑
m=1

(acm ∗ f0,m) (x) + εc (x) (8)

Instead of making a fundamental distinction between
c and x, the GP framework allows us to consider that
{yc (x)}(c,x)∈{1···C}×X is a single signal {y (x′)}x′∈{1···C}×X
indexed on an extended input space {1 · · ·C} × X . If we
assume that the different underlying sources {f0,m}m=1···M
are independent, which is frequent in source separation and
that the different {εc}c=1···C are also independent, we can
express the covariance function k ((c, x) , (c′, x′)) of y for two
extended input points (c, x) and (c′, x′) as:

kcc′ (x, x
′) =

(
M∑
m=1

kcc′,m + δcc′kεc

)
(x, x′) (9)

where kcc′,m (x, x′) , ((acm × ac′m) ∗ k0,m) (x, x′) (10)

For any given c, the different
{
fcm , acm ∗ f0,m

}
m=1···M

are independent and are GPs with mean functions 0 and
covariance functions kcc,m (x, x′). fcm will be called the
contribution of source m to mixture c. We can readily perform
source separation on yc to recover the different {fcm}m=1···M
using the standard formalism presented in section II-B. Let
f̂cm0 be the estimate of fcm0 , we have:

f̂cm0 = Kcc,m0

[
M∑
m=1

Kcc,m +Kcc,ε

]−1
yc (11)

where Kcc,ε is the covariance matrix of the additive signal
εc and where the covariance matrix Kcc,m is defined as
[Kcc,m]x,x′ = kcc,m (x, x′).

It is important to note here that even if the sources are the
{f0,m}m=1···M , many systems consider the signals of interest
to actually be the different {fcm}c,m. For example, in the
case of audio source separation, a stereophonic mixture can
be composed of several monophonic sources such as voice,
piano and drums. It is often considered sufficient to be able to
separate the different instruments within the stereo mixtures
and thus to obtain one stereo signal for each source, rather
than trying to recover the original monophonic signals.

Still, for some m, given the estimates
{
f̂cm

}
c=1···C

of all
the different {fcm}c=1···C , we can for example estimate f0,m
using standard beamforming techniques.

D. Parameter optimization

Even in complex situations such as those presented in
sections III-B or III-C, we can still use classical optimization
methods to maximize the marginal log-likelihood (6) of the
observations. Following [2], we will now give a simple way
to include multiple output GPs in this framework.

Given a set X of n input points and the corresponding C

column vectors {yc}c=1···C , we can build y ,
[
y>1 , . . . ,y

>
C

]>
as the Cn column vector containing all stacked outputs and use
the expression (9) to build its covariance matrix K. We can ten
proceed to parameters estimation through maximization of the
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marginal log-likelihood log p (y | X,Θ) of the observations.
Once more, depending on the covariance functions considered,
this problem may or may not be convex.

E. Conclusion

In this section, we have derived a way to perform un-
derdetermined source separation using GP models when the
mixtures are the convolved sums of several independent GPs.
Given some covariance functions and mixing filters, we saw
that stating the problem in terms of GPs provides a principled
way to estimate the source signals that minimize the mean
squared error. In the GP framework, optimization of the
hyperparameters is done through maximization of the marginal
log-likelihood of the mixtures given the model.

To our knowledge, very few references are available to date
on the topic. For example, [33] performs source separation
using GPs in the determined case, but the covariance functions
are therein applied on the outputs of the source signals
rather than on the coordinates themselves (i.e. time or spatial
position). A successful application of GPs to a subject close
to source separation can also be found in [39] for echo
cancellation.

IV. GP APPROXIMATIONS FOR LARGE SIGNALS

A. The need for approximations

The main issue with GP models is the need to invert the
n×n covariance matrix of the learning points for inference (4)
and for each evaluation of the observation likelihood in (6).
In many areas of interest, we cannot afford to handle such a
big matrix, since it is not computationally tractable. In audio
signal processing for example, values such as n ≈ 107 are
common and GP models cannot be used without a significant
reduction of the computational cost of the method.

In order to address this issue, many authors have proposed
sparse approximation techniques [31], [34], [37], [38], [40]
over the years that all aim at making GP inference possible
for large datasets. As highlighted in [34], many methods
rely on the choice of a small set of input points called
the inducing inputs to approximate the posterior distribution
at test points X∗. Among those methods, we can mention
the Fully Independent Conditional (FIC) approximation [34],
[38], that considers all the test points and the learning points
independent given the inducing inputs. This leads to a very
important reduction of the computational burden, but heavily
relies on the density of the inducing points [37] to yield good
estimates. Another approximation called Partially Independent
Conditional (PIC) [37] no longer makes the assumption that
both the training and test cases are independent given the
inducing points, but rather that each of them not only depends
on the possibly remote inducing points, but also on a limited
number of other learning points nearby. This technique has
the advantage of producing better estimates than FIC, while
maintaining an easy inversion of the n× n covariance matrix
that is now block-diagonal. Its main disadvantage is to lead to
discontinuities of the estimates between the blocks, which may
be problematic for some applications such as audio processing.

Another very attractive direction of research in the last few
years has been the consideration of covariance functions with
Compact Support (CS) [31], [40], i.e covariance functions
k (x, x′) such that ‖x− x′‖ > l ⇒ k (x, x′) = 0 for some
given scale l. The idea underlying these techniques is to
consider that if they are sufficiently far from each other, two
points will be independent. If such covariance functions are
used, the covariance matrix is sparse and inference through
Cholesky decompositions is done much faster [40]. The main
issue with this approach is to design covariance functions that
correspond to some prior knowledge about the sources and
that have CS at the same time.

In sections IV-B and IV-C, we introduce a general method
for fast inference in GP models based on framing and that is
a direct generalization of the common practice in audio signal
processing.

Another important computational simplification is intro-
duced in sections IV-D and IV-E when the signals are regularly
sampled. In that case, we show that when the covariance func-
tions are assumed stationary and separable, exact inference can
be done extremely efficiently in the frequency domain.

When both approaches are combined into so called locally-
scaled and framewise-independent stationary covariance func-
tions, we show in section IV-F that inference and learning
of hyperparameters become equivalent to recent and powerful
Nonnegative Tensor Factorization (NTF) techniques [9].

B. Frames

In audio signal processing, it is common to split the signals
into overlapping frames and to process the frames separately.
Formally, the frames {yi (x′)}i∈N are defined as small portions
of the original signal. The advantage of the technique is that
the frames are small and can be easily processed. The original
signals can then be recovered through a deterministic overlap-
add procedure: each frame is multiplied by a weighting
function g : X ′ → R+ to ensure smooth transitions between
the frames and is added to the reconstructed signal. g is often
a HANN or a triangular window.

This idea can very well be generalized in any dimension
D. Instead of considering the original signal y, we can split
it into overlapping frames of smaller dimension. To this
end, we consider a frame input set X ′ ⊂ X , a summable
weighting function g : X ′ → R+ and a set of frame positions
{ti ∈ X}i∈N such that:

∀x ∈ X , Ix , {i ∈ N : x− ti ∈ X ′} 6= ∅ (12)

Ix is thus the set of frame numbers to which the input
point x is mapped. Condition (12) ensures that each point of
the signal is represented in at least one frame. Finally, given
some signal {y (x)}x∈X , we can make the assumption that
there is a set of frames {yi (x)}i∈N,x∈X ′ , also noted G {y} in
the following, such that:

∀x ∈ X , y (x) =
1∑

i∈Ix g (x− ti)
∑
i∈Ix

g (x− ti) yi (x− ti)

(13)
When considering a finite set X of n input points,

we only need to consider the frames I ,
⋃
{Ix}x∈X
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that contain at least one input point from X . Let X ′i =
{x′ ∈ X ′ | ∃x ∈ X : x′ = x− ti} be the finite set of points
from X ′ to which the elements of X in the scope of frame
i are mapped and let4 Li = # (X ′i). Given some signal
{y (x)}x∈X , it is always possible to build a set of frames
obeying (13). This can be achieved by choosing X ′i and yi (x)
such that:

∀ (i, x′) ∈ I ×X ′, (ti + x′ ∈ X)⇒

{
x′ ∈ X ′i
yi (x′) = y (ti + x′)

(14)
When they make use of framing, usual methods focus on

the frames G {y} as the signals of interest rather than on y.
Indeed, a good model for G {y} is de facto a good model for y
since it can be computed deterministically from G {y}. In such
methods based on framing, the set (14) of frames is usually
taken as being the observation. From our point of view, the
frames are simply another process which is indexed on N×X ′
and from which we can deterministically recover y which is
indexed on X .

C. Frame-wise independence assumption

Given a signal {y (x)}x∈X and a corresponding set of
frames {yi}i∈N, a classical assumption consists in writing that
the different yi are independent. As y can be deterministically
computed from {yi}i∈N, this is written:

log p (y | X,Θ) =
∑
i∈I

log p (yi | X ′i,Θ) (15)

If G {y} is modeled as a GP, the frame-wise independence
assumption is equivalent to modeling the covariance function
k ((i, x) , (i′, x′)) of G {y} as:

k ((i, x) , (i′, x′)) = δii′ki (x, x′) (16)

with ki being the covariance function of the GP {yi (x)}x∈X ′ .
Let X be a finite set of input points from X , y a process
indexed on X and I ,

⋃
{Ix}x∈X be the corresponding frame

indexes for a framing G. Let nI be the number of frames. If
we model G {y} as a GP, we readily see that it is equivalent
to a multiple output GP as seen in section III-C with nI
outputs whose input set is X ′. We can thus stack its outputs
and observe that the corresponding covariance matrix is block-
diagonal due to the frame-wise independence assumption. Its
inverse is thus easily computed.

The main computational trick involved by framing is hence
to split the signal into overlapping frames, with a synthesis
scheme that allows perfect reconstruction. Then, the frames are
supposed to be independent and the corresponding covariance
matrix becomes block diagonal. The advantage of this method
is that when the frames are overlapping, each point estimate
is a smoothing of several estimates computed in the differ-
ent frames that contain this point, thus avoiding systematic
discontinuities. In Figure 2, we illustrate this advantage of
framing over PIC to produce smooth estimates in a very simple
regression problem.

4For a countable set X , #(X) denotes the number of elements in X .
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Figure 2. A simple regression example with a full GP model (up), PIC
(middle) and framing (bottom) . The dotted and red lines are respectively the
true and estimated signal. The grey area represents three standard deviations
of the estimates around the mean and the circles stand for observed points.

The connections between frame-wise independent corre-
lation functions and other existing models such as PIC or
CS covariance functions [31], [40] are numerous. Firstly, we
see that framing without overlap between the frames is very
similar to PIC except for the fact that it does not take inducing
points outside the frames into account. In framing, such remote
inducing points are handled through the use of overlapping
frames of different scales. Secondly, when considering (13),
which gives the expression of the signal given its constitutive
frames, we can straightforwardly compute the covariance
function of the signal y itself given the covariance functions
of the different frames. This computation is actually very
similar to that led in [31] where the basis function used in the
computation becomes the weighting function g we considered
here. The basis function proposed in [31] is precisely the
HANN window which is a very popular choice for g in audio
processing.

Of course, as in practice the frames are built using expres-
sion (14), there is a duplication of the samples that belong
to overlapping frames and the independance assumption be-
tween the frames may seem unjustified. Nevertheless, the idea
underlying framing is that even if the occurrence of one point
from X in some frame gets duplicated in another, and even
if the corresponding observed values are connected or equal,
they are supposed to be produced by two different underlying
processes that do not share the same covariance function.

Still, there are interesting conceptual issues raised by fram-
ing that should be more thoroughly studied in the future. In
particular, contrary to PIC, framing as it was exposed here
suffers from overconfidence. This can be seen by computing
the variance of the estimates for y given by (13) and then
noticing that the more a point will get duplicated in different
frames because of overlap, the smaller the a posteriori variance
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of this point will become. This is due to the independence
assumption between the frames. If this assumption was strictly
legitimate, this diminution of the variance would be justified.
However, as the overlap between the frames gets large, in-
dependence cannot be a valid assumption anymore and the
variances get underestimated. This is illustrated in Figure 2
where the overlap was large.

Even if overlapping the different frames is common practice
in audio signal processing, its consequences on statistical
models has been largely neglected. In [26], LE ROUX et
al. devise practical ways of consistently handling the depen-
dencies between the frames as a postprocessing step. Still,
to our knowledge, practical statistical models that fully take
the overlap between the frames into account while remaining
computationally tractable are yet to be proposed.

D. Stationarity assumption for regularly sampled signals

In this section, we assume that the signals are defined on
X = RD for D > 1 and that x ∈ X can be written x =
(x1, · · · , xD). We will moreover assume that all the covariance
functions k that we consider are separable, i.e. there are D
covariance functions k(d) such that:

∀ (x, x′) ∈ X 2, k (x, x′) =

D∏
d=1

k(d) (xd, x
′
d) . (17)

It is readily shown that this assumption implies that all
the covariance matrices K considered can be expressed as
a Kronecker product5 of D covariance matrices K(d) of lower
dimensions:

K = K(1) ⊗K(2) · · · ⊗K(D) ,
D⊗
d=1

K(d). (18)

From now on, we suppose that the points are regularly
sampled. This is equivalent to assuming that any signal y,
fm or k considered is the vectorization6 of a corresponding
underlying D-dimensional tensor y, fm or k. Indeed, we will
show in section IV-D1 that computations can be very concisely
written using these tensors, which are actually natural to
consider. For example, when D = 2, it makes sense to directly
think of regularly sampled signals as matrices instead of their
vectorized counterpart.

1) GPs for the separation of stationary mixtures: As seen in
section II-C, a stationary covariance function k (x, x′) between
two input points can be expressed as a function of their
difference τ = x− x′. It is noted k (x− x′). If all covariance
functions considered are stationary, the computations become
particularly simple.

Indeed, let us assume that a mixture {y (x)}x∈X is the
sum of several GPs {fm (x)}m=1...M,x∈X whose covariance
functions km (x− x′) are all stationary, and let us furthermore
suppose that we are interested in separating the different
sources for all points in X, thus having X∗ = X . The
covariance matrix Ky of y is given by : Ky =

∑M
m=1Km

where Km is the covariance matrix of source m.

5See [9] for a concise introduction to tensor algebra.
6Vectorization is done recursively. For example, with D = 2 where tensors

are matrices, it is done one row after the other.

Considering (18), Km is given by: Km =
⊗D

d=1K
(d)
m

where
[
K

(d)
m

]
i,j

= k
(d)
m (xi,d − xj,d). K(d)

m can approximately

be considered as circulant7. It is readily shown that any
circulant matrix M can be expressed as M = W ∗FΛWF

where WF is the discrete Fourier transform matrix8 and where
Λ is diagonal. Thus, for all m and d, there is a diago-
nal positive semidefinite matrix diagS(d)

m such that K(d)
m ≈

W ∗F diagS(d)
m WF where the vector S(d)

m is the discrete Fourier
transform of τ 7→ k

(d)
m (τ). We can thus write Ky as:

Ky =

M∑
m=1

D⊗
d=1

W ∗F diagS(d)
m WF . (19)

Using classical results from tensor algebra, (19) can be
written:

Ky =

(
D⊗
d=1

W ∗F

)(
M∑
m=1

D⊗
d=1

diagS(d)
m

)(
D⊗
d=1

WF

)
. (20)

We can use this property to extract a given source m0, and
write9 (4) as:

f∗m0
=

(
D⊗
d=1

W ∗F

)( ⊗D
d=1 diagS(d)

m0∑M
m=1

⊗D
d=1 diagS(d)

m

)(
D⊗
d=1

WF

)
y.

(21)
Introducing the D-dimensional tensor10

Sm = S(1)
m ◦ S(2)

m · · ·S(D)
m ,©D

d=1S
(d)
m (22)

as the model for source m and FD
{
y
}

as the D-dimensional
Fourier transform of y, we can simply write (21) in tensor
form as:

FD
{
f∗
m0

}
=

(
Sm0∑M
m=1 Sm

)
· FD

{
y
}

(23)

which is similar to the classical Wiener filter for stationary
processes. The differences between this expression and the
classical one is firstly that it is valid for any dimension D of
the input space and secondly that it is not restricted to the case
of only two stationary sources. The sources themselves can
be recovered through an inverse D-dimensional Fourier trans-
form. The nonnegative tensor Sm can be understood as the
D-dimensional Fourier transform of the stationary covariance
function km. Note that the complexity of this exact GP infer-
ence method relying on stationarity of the covariance functions
and on regular sampling is O (n log n), and it is dominated by
the computation of Fourier transforms, for which there exist
very efficient and specialized algorithms. If FD

{
y
}

is known
beforehand, the complexity of (23) decreases to O (n) which
is remarkable for an exact GP inference technique.

7If the signal is regularly sampled, this approximation holds when the
number nd of points along dimension d tends to infinity or when k(d) (τ) is
periodic of periodnd

p
with p ∈ N∗.

8W ∗F denotes the complex conjugate of WF .
9 A
B

and A.B are respectively the element-wise division and multiplication
of A and B.

10◦ denotes the outer product.
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2) Marginal likelihood for stationary sources: When all
the covariance functions considered are stationary and pa-
rameterized by some hyperparameter set Θ that consists of
their respective D-dimensional Fourier transforms, i.e. Θ =
{S1 · · ·SM}, it can readily be shown that the marginal log-
likelihood log p (y | X,Θ) of the observations given regularly
spaced input points and the hyperparameters simplifies from
(6) to:

log p (y | X, {S1 · · ·SM}) =

−1

2

∑
i1,···iD


∣∣∣[FD {y}]i1,···iD ∣∣∣2∑M

m=1 [Sm]i1,···iD

+ log

M∑
m=1

[Sm]i1,···iD

+Cte

(24)

Considering (24), we see that it is equivalent up to an
additive constant independent of Θ to half the opposite IS
divergence11 between12

∣∣FD {y}∣∣.2 and
∑M
m=1 Sm:

log p (y | X) = −1

2
DIS

(∣∣FD {y}∣∣.2 | M∑
m=1

Sm

)
+Cte (25)

The evaluation of the likelihood can be done in O (n log n)
operations when the signals are regularly sampled and the co-
variance functions are stationary. If the squared D-dimensional
Fourier transform

∣∣FD {y}∣∣.2 of the signal is known before-
hand — it is typically computed only once — the computa-
tional complexity is reduced to O (n).

E. Locally stationary covariance functions

Let {y (x)}x∈X be a particular signal, observed on a finite
input set X ∈ Xn and let

{
yi ∈ RX′i

}
i∈I

be a set of nI
corresponding frames. As in section IV-C, we can assume that
the frames are independent and we can further suppose that
the covariance function kim of source m within frame i is
stationary. This means that we model each source as being
composed of several locally stationary frames, each of which
has its own covariance function. The resulting signal is not
supposed stationary with this assumption, only its restrictions
to small regions of the input space X are assumed stationary.

Let us denote Y the (D + 1)-dimensional tensor whose last
dimension goes over the frames and whose first D dimensions
for a fixed frame contain the D-dimensional Fourier transform
of the signal tensor for this frame as in section IV-D. As this
tensor is called the Short Term Fourier Transform (STFT) of
the signal when D = 1, it will be called the STFT tensor of
the mixture. We define the STFT tensor Fm of the sources
and the STFT tensor Sm of the covariance function of source
m in the same way. We can use the results from the previous
section for each frame and for source m0: the MMSE estimate
F
∗
m0

of Fm0
is given by:

F
∗
m0

=
Sm0∑M
m=1 Sm

·Y. (26)

11DIS

(
x|y
)
,
∑
i1···iD

[
[x]i1···iD
[y]
i1···iD

− log
[x]i1···iD
[y]
i1···iD

− 1

]
.

12For a matrix M ,
[
M .2

]
ij

,M2
ij

The sources can then be recovered by first applying an
inverse D-dimensional Fourier transform to the estimate (26)
for each frame, and then using the reconstruction scheme (13)
to obtain the estimated sources in the original input space X .

Let Θ = {S1, · · ·SM} be the models for the sources. The
marginal likelihood log p (y | X,Θ) of the observations can
similarly be shown to be:

log p (y | X,Θ) = −1

2
DIS

(
|Y|.2 |

M∑
m=1

Sm

)
+ Cte (27)

where the constant is independent of Θ. This very simple
expression can be computed in O (n) when |Y|.2 is known
and permits to efficiently proceed to hyperparameters learning
as demonstrated in section IV-F.

F. Putting structures over the covariances

Given some regularly sampled signal tensor y and its
corresponding STFT tensor Y as defined in section IV-E,
we have seen that source separation can be very efficiently
performed provided some (D + 1)-dimensional model Sm is
known for every source. As highlighted by CEMGIL et al.
in [7] or [8] for the case of audio processing (D = 1), the
important issue raised by this probabilistic framework becomes
devising realistic but effective models for the nonnegative
sources parameters Sm.

In audio signal processing (D=1), the result (26) is known
as adaptive or generalized Wiener filtering and many methods
for source separation such as [8], [32] use this technique in a
principled way to recover the sources in the frequency domain.
Those studies state their probabilistic model in the frequency
domain where the time-frequency bins are supposed to be
distributed with respect to independent Gaussian distributions.
In our approach, the model is expressed directly in the original
input space. The two points of view are actually equivalent:
a stationary GP has an independently distributed Gaussian
representation in the frequency domain. Sm can hence be seen
either as the STFT tensor of a covariance function or as a
tensor containing the variances of the independent components
of Y.

Focusing on the second interpretation of Sm, recent studies
[8], [12], [13] proposed to model these tensors as Gamma
Markov Random Fields (GMRF). This is a sensible choice
indeed, because such models guarantee the nonnegativity of
all the elements of Sm while implementing the knowledge
that for a given source, the spectrum is much likely to exhibit
some continuity over time, or over the frequencies, or over
both. As GMRF do not provide a closed-form expression for
the marginal log-likelihood of the observations, the learning of
hyperparameters has to be done using approximate methods.
To this end, DIKMEN et al. [12] propose to use contrastive
divergence [22] and report good results. To our knowledge,
no generalization of GMRF has yet been published for input
spaces of dimension greater than 2, but GP modeling may
greatly benefit from such an extension.

Another point of view is to introduce some deterministic
structure into the covariance functions of the GPs. A simple
assumption to this end is to consider that for a given source
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m, the covariance functions of the different independent
frames are stationary and locally scaled, i.e identical up to
an amplification gain depending on the frame. The model for
source m and frame i can then be written:

Sim = Him S0,m (28)

where S0,m = ©D
d=1S

(d)
0,m is the D-dimensional Fourier

transform of some template covariance function k0,m for
source m that is independent of the frame index i. We get:

Sm =
(
©D
d=1S

(d)
0,m

)
◦Hm (29)

where Hm = (H1m · · ·HnIm) denotes the amplification gains
of the covariance function for source m on the different
frames. Considering (29) we readily see that it is equivalent
to a classical Nonnegative Tensor Factorization (NTF) model
called Canonical Polyadic (CP) decomposition13. The different
parameters become Θ =

{{
Hm, S

(1)
0,m · · ·S

(D)
0,m

}
m=1···M

}
and can be estimated by standard CP algorithms using the
IS-divergence function. See [9] for a review of these models
and algorithms.

G. Optimization

We have shown how GP learning can be connected to
recent NTF techniques by factorizing the covariance structure
of the GP model into a CP decomposition. More generally
and depending on the application, the covariances can be
factorized in many other ways to account for some prior
knowledge we may have concerning the structure of the
sources. For example, if the covariances are considered to
be the outer product of some shared dictionaries, the tensor
decompositions to be used become particular cases of Block
Components Decompositions as introduced in [25]. Many very
informative models can be designed this way, that decompose
the covariance structure of the sources onto sophisticated
dictionaries. In music processing (D = 1) for example, [41]
decomposes the covariances into templates of harmonic bases.
Other models of this type have also been used to model and
extract singing voice signals from polyphonic mixtures with
very promising results [14].

In any case, when an appropriate model has been chosen for
{Sm}m=1···M , we have seen in section IV-E that hyperparam-
eters learning can be done by minimizing the IS-divergence
between

∑
m Sm and |Y|.2 through tensor factorizations.

Efficient algorithms for IS-NTF can be found in the litterature,
for example in [9].

V. EVALUATION

In this section, we demonstrate the performance of the
proposed approach based on GP models for the separation
of real-valued mixtures. In section V-A, we first show that GP
can easily be used for the separation of synthetic 2D random
fields, or textures (D = 2). Then, we show in section V-B
how GP can be used for the separation of drums signals in
real polyphonic stereo recordings.

13CP is also called PARAFAC or CANDECOMP [9].

A. Synthetic additive textures

In this section, we set D = 2, which means that we aim at
separating additive functions fm (x1, x2) defined on the plane
and summed in an observable mixture signal y (x1, x2). For
this toy example, we will consider the case of one mixture
(K = 1) that is the sum of M = 2 stationary sources14.
Following the notations that were introduced in section IV-D,
we will thus suppose that the mixture tensor y is the sum of
two sources tensors f

1
and f

2
. The corresponding vectors y,

f1 and f2 will denote the vectorization of these tensors one
row after the other. X denotes the corresponding coordinates.

In this experimental setup, the dimensions of the sources and
mixtures tensors are 500× 500 each, leading to n = 250000.
In the following, we will assume that the covariance function
of each source along each dimension is stationary. For the
experiment, the covariance functions were arbitrarily set to:

k(d)m (xd, x
′
d) = exp

−2 sin2 π(xd−x′d)
Tm,d

l2m,d
− (xd − x′d)2

2λ2m,d


(30)

where {Tm,d, lm,d, λm,d}m,d are scalar parameters.
This model implements a particular prior knowledge where

the sources are known to exhibit some kind of complex
structure. More specifically, source m is known to be pseudo-
periodic of period (Tm,1, Tm,2) and (lm,1, lm,2) controls
the smoothness within one period. A further lengthscale
(λm,1, λm,2) controls global covariance between two input
points. In the particular example shown in Figure 3, the
parameters were:

m λm,1 λm,2 Tm,1 Tm,2 lm,1 lm,2

1 100 100 50 20 0.5 0.7
2 40 4 25 +∞ 0.7 N/A

1) Data synthesis: Generating a realization of a GP with
some known covariance matrix K is generally addressed
through Cholesky or Singular Value Decompositions (SVD)
of the covariance matrix [35]. As we have n = 250000,
we cannot naively implement this idea here. A simple way
to circumvent this problem is to write K as in (18) and
then to perform a Cholesky decomposition of each K(d)

to get K(d) = L(d)L(d)>. The Cholesky decomposition
of K =

⊗D
d=1 L

(d)L(d)> is finally obtained by K =(⊗D
d=1 L

(d)
)(⊗D

d=1 L
(d)
)>

and a realization of this GP can
be very easily generated. Indeed, let R be a vector of length
n whose entries are i.i.d. Gaussian random variables of unit
variance. K is the covariance matrix of

(⊗D
d=1 L

(d)
)
R.15

2) Source separation: In this very simple experimental
setup, we consider that the 12 hyperparameters for the sources
covariance functions (30) are known beforehand.

14This usecase is common in geostatistics: the observed signal is often
modeled as the sum of the signal of interest whith a contaminating white
Gaussian noise [11]. Estimating the value of the target signal through Kriging
is hence a special case of source separation with GP priors.

15We can further speed up this computation by using the fact that for c =
vec (C) and matrices A and B of appropriate size, (A⊗B) c = ACB>.
This avoids considering such a big matrix as

(⊗D
d=1 L

(d)
)

.
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We can perform separation through the exact method pre-
sented in section IV-D1. To this purpose, we can build the
spectral covariance tensor Sm of each source as the outer
product of the Fourier transforms of (30) along each dimension
and then perform separation in the frequency domain as
in (23). The sources are recovered through an inverse 2-
dimensional Fourier transform. It is worth noticing here that
the computations are performed extremely rapidly since they
only involve element-wise multiplications of 500×500 images,
instead of the inversion of the 250000 × 250000 covariance
matrix required by the basic GP setup. Overall computations
for this example — synthesis and source separation — are
achieved in less than 3 seconds on a standard laptop computer.

Results for one example are shown in Figure 3. The average
Signal to Error ratio obtained on 50 experiments was of 8dB,
which is very encouraging.

B. Separation of drums signal in polyphonic music

In this section, we apply the general framework we have
presented in sections III and IV to the separation of drums
signals in polyphonic music. The regularly sampled signals
we consider are thus defined on the input space X = Z of
dimension D = 1.

Separation of the drums track from polyphonic music is a
challenging task that has already been addressed in several
studies such as [18], [21]. Whereas HÉLEN and VIRTANEN
[21] perform a Nonnegative Matrix Factorization (NMF) of
the mixture and then group the different components obtained
through a classification procedure, GILLET and RICHARD [18]
decompose the mixture signal with spectral templates learned
from a drums database.

In section V-B1, we introduce a GP model for this task and
in section V-B2, we compare its performance with the state of
the art [18].

1) GP model: The observed mixtures y (x) are supposed
to be the sum of two independent GPs sd (x) and sr (x)
corresponding respectively to the drums and the musical
residual tracks. We assume that some framing G {y} with
nI frames of same length as defined in section IV-B is
available for the mixtures and we aim at estimating the
framings G {sd} and G {sr} of the different sources such that
G {y} = G {sd}+ G {sr}.

We suppose that each of the signals sd and sr are themselves
the sum of several independent processes called components.
In our example, the Rd different components of sd are the
five most common sources we find in a drums signal, e.g.
kick drum, snare drum, hihat, bells and clap sounds. The Rr
different components of the musical residual are all the other
elements composing the polyphonic mixture. This assumption
can be written sd =

∑Rd
m=1 fm and sr =

∑Rd+Rr
m=Rd+1 fm.

In the model we are considering, we will assume that all
the components fm are GP whose covariance functions km
are locally scaled, frame-wise independent and stationary as
defined in section IV-F. For some frame i, they can thus be
expressed as:

kim = Him k0,m (31)

where k0,m denotes the template stationary covariance func-
tion for component m and Hm = (H1m · · ·HnIm) are
the nonnegative activation gains of this component within
the frames. Introducing the Fourier transform S0,m of k0,m
and using the method presented in section IV-F, the MMSE
estimate F̂ d of the STFT F d of the drums signal is given by:

F̂ d =

∑Rd
m=1 S0,m ◦Hm∑Rd+Rr
m=1 S0,m ◦Hm

·Y (32)

where Y is the STFT of the mixtures. The model S ,
∑
m Sm

becomes S =
∑Rd+Rr
m=1 S0,m ◦Hm. Since D = 1, this can be

written in matrix form as S = WH where S0,m is the mth

column of W and Hm is the mth row of H . As we have shown
in section IV-F, the optimization of the hyperparameters Θ =
{W,H} through likelihood maximization is thus equivalent to
the minimization of the IS distance between the power STFT
|Y|.2 and the product WH , yielding a NMF model as in [9],
[17], [27], [32].

Some other kind of knowledge has now to be put into the
model so that it can be useful in practice, since we have not
yet made any distinction between the covariance functions
of the drums components and those of the musical residual
signal. A very simple and computationally cheap solution
to this problem is to appropriately initialize some of the
hyperparameters. In this experiment, we will focus on the
meaning of the activation gains Hm of the components as
introduced in (31). Him can be understood as a magnitude
parameter for component m into frame i. A good way to
initialize all these parameters {Hm}m=1···Rd for the drums
signal is simply to use an onset detector such as [15]. Indeed,
if an onset detector feature has a high magnitude in some frame
i, then some drums component must be active in it. The onset
detector of [15] was hence used in Rd different frequency
bands of the mixture STFT, yielding Rd signals. These signals
were used to initialize the activation gains {Hm}m=1···Rd and
all the other hyperparameters of the model were randomly
initialized. A NMF was then applied using this initialization
and separation was performed using (32).

2) Results: The proposed GP separation method was tested
on ten 30-second excerpts sampled at 44.1kHz from the
Quaero16 source separation corpus. The excerpts featured
many different kinds of music signals, including pop, elec-
tropop, rock, reggae and bossa. For each of these excerpts,
the ground truth drums and musical residual signals are
known for evaluation but the separation systems can only
observe their mixtures. On average, the relative amplitude
20 log10

∑
x|sr(x)|∑
x|sd(x)|

of the musical residual signal was set to
+6dB compared to the drums signal.

We applied the method proposed by GILLET and RICHARD
in [18] on the same mixtures and the quality of the results were
quantified through the BSSEVAL toolbox [42]. The separation
quality was evaluated both on the drums signals and on the
musical residual signal.

The metrics obtained through BSSEVAL include the Source
to Distortion Ratio (SDR), the Source to Artifact Ratio (SAR)

16http://www.quaero.org
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Figure 3. GP for the separation of two stationary random fields (D = 2) using a Gaussian Process model. On the left are the original sources. On the center
is the mixture and on the right are the estimated sources.

Figure 4. Evaluation of the separation quality for the extraction of the drums
track (top) and the musical residual signal (bottom). Higher is better.

and the Source to Interference Ratio (SIR) that are all ex-
pressed in dB. Whereas the SDR is a global measure of
separation quality, the SAR and SIR respectively measure the
amount of separation/reconstruction artifacts and the amount
of energy from the other sources. Results are given in Figure 4.

From Figure 4, we can see that the GP model presented in
section V-B1 very well manages to separate the drums and
musical residual signals on many different kinds of music
and both signals are well recovered. A further feature of this
technique is that it is extremely fast: on average, 30 seconds
are needed to handle a 30-second long excerpt whereas 300

seconds are needed by [18]. Sound excerpts and a full im-
plementation in Python of this separation technique are freely
available on our website17.

VI. CONCLUSION

In this study, we have stated the linear underdetermined,
instantaneous, convolutive and multiple-output source sepa-
ration problems in terms of Gaussian processes regression
and have shown that it leads to simple formulas to optimally
proceed to signals separation w.r.t. the MMSE. The advantages
of setting out the source separation problem in terms of GP
are numerous.

First, there is neither notational burden nor any conceptual
issue raised when using input spaces X different from R or
Z, thus enabling a vast range of source separation problems
to be handled within the same framework. Multi-dimensional
signal separation may include audio, image or video sensor
arrays as well as geostatistics.

Secondly, GP source separation can perfectly be used for the
separation of non locally-stationary signals. Of course, some
important simplifications of the computations as presented in
sections IV-D and IV-E are lost when using non-stationary
covariance functions. Still, the frame-wise independence as-
sumption presented in section IV-C may nonetheless be used
in order to make the estimations computationally tractable.

Thirdly, it provides a coherent probabilistic way to take
many sorts of relevant prior information into account. Indeed,
prior information is encapsulated in the choice of the covari-
ance functions and the framework proposed here thus clearly
distinguishes between the optimal separation methods and the
particular models considered.

17http://www.telecom-paristech.fr/~liutkus/GPSS/
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Finally, we have seen that under appropriate assumptions,
optimization of the hyperparameters of a GP model is equiv-
alent to a classical NTF using the Itakura-Saito divergence on
the spectrogram tensor of the mixtures, thus enabling efficient
estimation of the hyperparameters.

Setting the source separation problem in such a unified
framework allows it to be considered from a larger perspec-
tive where its objective is to separate additive independent
functions on arbitrary input spaces that are mathematically
characterized by their first and second moments only.
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