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Abstract—Feature selection has been an important issue during
the last decades to determine the most relevant features according
to a given classification problem. Numerous methods emerged
that take into account Support Vector Machines in the selection
process. Such approaches are powerful but often complex and
costly. In this paper, we propose new feature selection methods
based on two criteria designed for the optimization of SVM:
Kernel Target Alignment and Kernel Class Separability. We
demonstrate how these two measures, when fully expressed, can
build efficient and simple methods, easily applicable to multiclass
problems, and iteratively computable with minimal memory
requirements. An extensive experimental study is conducted both
on artificial and real-world data sets to compare the proposed
methods to state of the art feature selection algorithms. The
results demonstrate the relevance of the proposed methods both
in terms of performance and computational cost.

Index Terms—Feature Selection, Variable Selection, Support
Vector Machines, Kernel Target Alignment, Kernel Class Sepa-
rability, Audio classification

I. INTRODUCTION

IN the context of supervised pattern recognition, the gath-
ering of large data sets has become a common process

with the availability of more sensors and the increase of
computational resources. But the accumulation of data is not
necessarily profitable for pattern recognition systems, which
generally face the so-called curse of dimensionality (explained
in [1] by the fact that a high-dimensional space, populated by
a finite set, is nearly empty). Sparseness of the training set
results in the classifier’s overfitting and thus penalizes gen-
eralization. Moreover, large collections of features generally
contain highly correlated descriptors derived from the same
sources, or irrelevant ones, feeding the learning process with
unreliable information.

Feature selection aims at determining the most relevant fea-
tures according to a given problem. The dimension reduction
and the removal of irrelevant features are meant to enhance
generalization performances but also allow some insights on
the problem through the interpretation of the most relevant
features. This also yields an important cost reduction both in
storage need and computational speed.

According to John et al. [2] and Guyon and Elisseeff
[3], feature selection methods divide between filters, built as
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preprocessing steps of the classification and thus independent
of the classifier, and wrappers that use the classifier as a
black box to operate the feature selection. However, even filter
selection is related to the classifier, as the selection criterion is
always based on an assumption on the classification process.

Linear Discriminant aims at determining an optimal hy-
perplane separating both classes’ examples, but the choice
of the optimality criterion implies underlying assumptions.
Support Vector Machines (SVM) lie on the distance between
the separating hyperplane and the closest examples, the so-
called margin. The problem, widely explored [4] [5], is
solved through quadratic programming. The kernel trick fur-
ther introduces non-linearity by substituting a kernel function
k(x,y) = 〈Φ(x),Φ(y)〉 to inner products (where Φ can
be implicit), under some restrictions over the choice of k.
The target space of Φ is generally called the feature space,
and has a much higher dimension (possibly infinite) than the
original input space. This transformation widens the range and
complexity of possible decision surfaces in the input space.

Several existing methods address the problem of taking the
SVM underlying process into account in the feature selection
step, among which the radius-margin bound [6], which shows
very good results in practice. Nevertheless, they often involve
multiple SVM trainings and even other optimization processes
as part of the feature selection process, and are thus computa-
tionally expensive. Moreover, some are not designed to scale
up to very large data sets. We propose here three new feature
selection methods based on the Kernel Target Alignment and
Kernel Class Separability criteria, that are evaluated iteratively
from the sole Gram matrix values, and are thus simple, and
very scalable in terms of memory. These two criteria have
already been proposed to define feature selection algorithms, in
particular by Neumann et al. [7] and Wang [8]. However, using
simplifying assumptions, they only rely on a lower bound to
the defined criteria. By contrast, the proposed methods in this
paper are based on their original expression.

An extensive experimental study is conducted both on arti-
ficial and real-world data to compare the proposed methods to
existing SVM-based feature selection techniques. The results
demonstrate the relevance of the proposed criteria both in
terms of performance and computational cost. We also show,
both in theory and practice, that these methods are directly
adaptable to problems involving more than two classes.

The rest of this paper is organized as follows. An overview
of existing feature selection methods will be presented in
Section II, prior to introducing the recent criteria used here
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and their application to feature selection in Sections III and
IV. Numerical experiments on various data sets are detailed
in Section V, and Section VI deals with computation issues,
both in theory and practice. Some insights and perspectives
are then given in Section VII.

II. RELATED WORKS

A. Filter methods

The Fisher criterion, widely used on gene expression mi-
croarrays in bioinformatics [9], is one of the most classical
filter approaches among feature selection methods. It is very
similar to the Pearson correlation coefficients, which define a
measure of correlation between the features and the labels, but
also has the advantage of being symmetric in terms of classes:

rF (d) =
|µ1,d − µ2,d|2

σ2
1,d + σ2

2,d

, (1)

This criterion can be interpreted as the one-dimensional
projection of the scatter-based Class Separability criterion
rCS(d) = |µ1−µ2|2

|σ2
1+σ

2
2|

. It is generally used to define a measure
of relevance for each feature independently in order to rank
them. This implies that interdependencies and redundancies
between features are not considered.

Other classical filter methods in the literature are the Mutual
Information [10] and the RELIEF algorithm [11], also based
on statistical measures of correlation. More recent contribu-
tions include for example the Laplacian Score [12], based
on the local structure of the data points, through a nearest
neighbor graph. This algorithm lies on the assumption that
close examples are prone to belong to the same class, and can
therefore be used even for unsupervised selection.

B. SVM based feature selection

Whereas the previous filters are classifier-independent,
many recent approaches are wrapper methods designed to take
into account the specificities of the SVM classification process.

The principle of Feature Selection concaVe (FSV) [13] is
closely related to SVM, and consists in jointly optimizing a
separating hyperplane (of normal vector wh) and minimizing
the so-called zero-norm (defined as the number of non-zero
components) of wh. Being non-continuous, the zero-norm is
approached by a concave function ||wh||0 ≈ 1T (1− e−αwh).
The authors further propose [14] to substitute the 2-norm
||wh||2

2 to the zero-norm, thus reaching the exact expression
of an SVM optimization problem.

Using the components of the normal vector for feature rank-
ing has been further investigated. SVM optimization consists
in the determination of an optimal wh, expressed with the
training examples xi, the corresponding class labels yi, and
the Lagrange multipliers αi: wh =

∑
i αiyiΦ(xi).

A common problem lies in the fact that Φ is not ex-
plicit for most kernels. Several propositions bypass this issue
by restricting their scope to linear kernels, among which
the Approximation of the zeRO-norm Minimization (AROM)
[15]. The authors substitute to a zero-norm minimization, the
minimization of the value

∑D
d=1 ln |wd| (where wd are the

components of the vector wh), and prove that both minima
are nearly equal. The problem is solved by iteratively training
an SVM on the component-weighted examples x′ = w ◦ x
(where ◦ is the entry-wise product), while updating the scale
vector components at each iteration with the normal vector:
w ← w ◦wh. The problem can be expressed equivalently by
introducing the scaled kernel kw(x,y) = k(w ◦x,w ◦y) and
updating the scale factors wd (i.e. the components of w).

The Recursive Feature Extraction (RFE), proposed in [16],
is based on the backward elimination of the features. The
squared components of wh are used as a criterion to evaluate
the least relevant features to be iteratively discarded. The
method is efficient and theoretically relevant, but at a much
higher cost than AROM, not justified by its comparative
performance [15].

Weston et al. also proposed [6] [17] a scale factors update
strategy without expressing the vector wh. They use upper
bounds to the leave-one-out estimate of the generalization
error, among which the radius-margin bound T = 1

n
R2

M2 , where
M is the margin and R the radius of the smallest sphere
containing the n training examples in the feature space. By
derivating this bound with respect to the scale factors, they
introduce a minimization problem to perform feature selection
(referred to as R2W2).

Another interpretation of the scale factors is to consider the
linear or RBF Gaussian kernels as combinations of feature-
wise kernels. The field of Multiple Kernel Learning (MKL)
[18] [19], originally restricted to the optimization of a conic
linear combination of kernels, is one of the major trends
in SVM research these last years, and its application for
feature selection is straightforward. Rakotomamonjy et al.
further introduced [20] a simple optimization method to solve
MKL, that they evaluated on feature selection problems. Non-
Monotonic feature selection [21] focuses on the development
of an approximation to the combinatorial optimization problem
to find the best binary combination of feature-wise kernels.
One of the drawbacks of the scale factors is that the complexity
is generally proportional to the number of features. Tan et al.
propose [22] the Feature Generating Machine (FGM) method,
adapted to very high dimensional datasets. Sparsity is incited
in the MKL combination through the introduction of binary
control variables instead of scale factors. The problem solving
is done with a cutting plane algorithm. Varma and Babu
[23] extend the MKL scheme to an even larger scope of
combinations, including positive product of kernels, and also
generalize the regularization on the kernel parameters. The so-
called Generalized Multiple Kernel Learning (GMKL) method
lies on the decomposition of the optimization problem into a
nested two-step optimization loop. This method is inspired
by the works of Chapelle et al. [17], where the inner-loop
involves a standard SVM optimization procedure with constant
combination coefficients. When restricted to positive product
combinations with a L1-norm regularizer, the GMKL approach
is equivalent to R2W2, although not based on the same
optimization criterion.

Another scheme based on SVMs, consists in estimating the
difference on posterior probabilities with and without each
feature, in order to evaluate their ranking [24]. It is one of the
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few methods in the literature adapted to multiclass selection.
Finally, a few contributions take advantage of the

Reproducing Kernel theory, i.e. of the kernel properties,
without directly using Support Vector Machines. These can
be seen as filter methods, since the classifier is not involved
in the process, but they remain closely connected to the SVM
theory. The FSKS algorithm [25] transposes the classical
RELIEF method [11] and selects the features lying in the
Kernel Space after a Kernel PCA projection. The BAHSIC
method [26] consists in a backward elimination based on
the Hilbert Space Information Criterion that estimates the
dependence between features and labels in the Kernel Space.

Following the birth of the SVM theory, several measures
were developed to tune the few parameters of the standard
kernels. The radius-margin bound, introduced herebefore, is
one of them, and was then extended to feature selection. The
Kernel Target Alignment (KTA), introduced by Cristianini
[27], and the Kernel Class Separability (KCS) are simple
measures, solely based on the kernel Gram matrix, that prove
very reliable for kernel tuning. However, very few attempts
were made to use them for feature selection. Neumann et al.
[7] and Wang [8] respectively propose algorithms based on
the KTA and the KCS. However, in both cases, the practical
constraints lead the authors to use only the numerator of the
criteria, which is common between the two, and simpler to
minimize. Moreover, in both cases, the algorithms are only
suited for two-class problems.

Three new methods are proposed here, based on the
full expression of the criteria, and on less complex solving
process. We will show that these methods have comparable
or better results than existing methods, at a generally much
lower cost, and can easily be extended to multiclass problems.
The next section describes the aforementioned criteria and
the proposed feature selection methods.

Notations:
1k,1 denotes a k × k unit matrix filled with 1.
A ◦B entry-wise product of two matrices or vectors.
〈A,B〉F Frobenius inner product of two matrices.
||A||F the corresponding norm.
Σ(A) sum of all entries of matrix (Σ(A) =

∑
i,j aij).

∂θx partial derivative of x with regard to θ (i.e. ∂x∂θ ).
wh denotes the hyperplane normal vectors.
w denotes the scale factors of a scaled kernel kw.

III. KERNEL TARGET ALIGNMENT

A. Definition of the Alignment

We consider here a kernel k and a training set S =
{(xi, yi)}i=1...n with yi ∈ {+1;−1} (y = [y1 . . . yn]T ),
defining a two-class problem. Without loss of generality,
the examples are ordered such that the n1 first belong
to S1 = {(xi, yi), yi = +1} and the n2 last to S2 =
{(xi, yi), yi = −1}, with n = n1 + n2.

The Gram matrix K related to k and S, is defined as
[K]ij = kij = k(xi,xj). Let K∗ = yyT be the ideal
Target matrix. These can be decomposed as class-wise kernel

matrices,

K =
(
K11 K12
K21 K22

)
K∗ =

(
1 −1
−1 1

)
(2)

In [27], Cristianini et al. introduce a new criterion measuring
the similarity between K and K∗, called Kernel Target
Alignment (KTA), based on the Frobenius inner product of
two matrices, defined as

〈A,B〉F =
∑
i

∑
j

aijbij = Σ(A ◦B).

The Alignment A(K,K∗) is the normalized Frobenius inner
product between the Gram matrix and the Target matrix:

A(K,K∗) =
〈K,K∗〉F
||K∗||F ||K||F

=
〈K,K∗〉F
n ||K||F

. (3)

The value 1−A is proved to be an upper bound of the general-
ization error of the Parzen window estimator [27]. Maximizing
the KTA therefore tunes the kernel for the discrimination task
described by the training set S. The word Alignment will
further refer to the Kernel Target Alignment.

In the case of uneven class sets (n1 6= n2), the Target
matrix can be adapted by compensating the proportions of
both classes [31], i.e. K̂∗ = ŷŷT with ŷi ∈ { 1

n1
; −1n2
}, which

can be decomposed in class-homogeneous blocks:

K̂∗ =
1

n1n2

( n2

n1
1 −1
−1 n1

n2
1

)
with ||K̂∗||F =

n

n1n2
(4)

Another way of looking at the Alignment expression
emerges from its numerator (the Frobenius inner product) with
the inner products expression of the kernels:

〈
K, K̂∗

〉
F

=

∣∣∣∣∣
∣∣∣∣∣ 1

n1

∑
x1∈S1

Φ(x1)− 1

n2

∑
x2∈S2

Φ(x2)

∣∣∣∣∣
∣∣∣∣∣
2

(5)

Maximizing the Frobenius inner product is thus equivalent to
maximizing the inter-cluster distance, or between-class scatter,
in the feature space, as applied in [32] for kernel hyper-
parameters tuning. Note that the Frobenius norm, used in the
Alignment denominator, is not geometrically interpretable in
the feature space since it involves squared inner products in
the feature space (||K||2F =

∑
i,j 〈Φ(xi),Φ(xj)〉2). However,

as stated in [27], the alignment measure is both proportional
to the within-class similarity and inversely proportional to the
between-class similarity. Those considerations show the close
relationship between the Alignment measure and the classical
scatter-based Class Separability measure.

B. Method 1: Scaled Alignment Selection (SAS)

We propose here to perform an iterative maximization of the
Alignment A through a simple gradient ascent on the scaling
factors wi of the scaled kernel kw(x,y) = k(w ◦ x,w ◦ y).

The features are ranked after maximization by descending
scale factor order, assuming that the most weighted features
contribute the most to the decision function. This approach,
based on a KPO search strategy, is named Scaled Alignment
Selection (SAS), and is summed up in Algorithm 1.
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Algorithm 1 Method 1: Scaled Alignment Selection (SAS)
θ0 = [1, . . . , 1] , A0 = 0, n = 0
K∗ = yyT

repeat
n← n+ 1
Gram-matrix computation: [Kθ]ij = kθ(xi,xj)
Parameters update: θn ← θn−1 + η ∂θAn−1(Kθ,K

∗)
until convergence: |An −An−1| < ε

Note that in the case of the RBF Gaussian kernel, σ is im-
plicitly fitted through the scale factors. Indeed, if θ = (σ,w),
let σ̃ be an arbitrary value, and θ̃ =

(
σ̃, σ̃σw

)
, then

kθ(x,y) = exp

(
−
∑
d

(
σ̃
σwd

)2
(xd − yd)2

2σ̃2

)
= kθ̃(x,y).

(6)
The Alignment derivation is quite straightforward, since it

is only additive. It can therefore be used for kernel tuning,
based on a gradient ascent [33]. Considering a kernel kθ
characterized by θ = (θ1 . . . θP ), and Kθ its corresponding
Gram matrix, one shows that

∂θp 〈Kθ,K
∗〉F =

〈
∂θpKθ,K

∗〉
F

(7)

∂θp ||Kθ||F =

〈
∂θpKθ,Kθ

〉
F

||Kθ||F
, (8)

where we have defined ∂θpKθ = [∂θpkθ(xi,xj)]ij . The
Alignment can then be derivated with respect to any set of
parameters θ. The derivation only involves the additional
computation of the matrices ∂θpKθ:

∂θpA(Kθ,K
∗) =

〈
∂θpKθ,K

∗〉
||Kθ||||K∗||

−
〈Kθ,K

∗〉
〈
Kθ, ∂θpKθ

〉
||Kθ||3||K∗||

(9)

C. A note on Sparsity

As stated in the introduction, sparsity is a common goal in
feature selection. In the weighted kernel context this means
the zeroing of a large proportion of the weights wi. How-
ever, in the presence of redundant features, sparsity doesn’t
explicitly emerges from the optimization. For this reason,
many strategies were proposed in the literature to force the
rejection of features. For instance, [6] and [16] both perform
iterative exclusion of the least-ranked features in each step of
the optimization loop. As a result, as stated in [15], feature
selection, when coupled with such strategies, can both be
designed for a specified number of selected features S, or
as a way to determine an optimal set, under a certain stop
condition.

The remainder of this paper, and especially the experiments,
will only deal with the first of these two scenarios.

D. Feature-wise derivative matrices

Once the Gram matrix K is computed, the Alignment
derivation involved in the SAS method only requires the
additional computation of the feature-wise derivative matrices

∂wd
Kw (denoted ∂dK here for convenience). We provide here

the development for some common kernels:

• Linear:
kw(x,y) = (w ◦ x) · (w ◦ y) =

∑
d w

2
dκ
d(x,y)

κd(x,y) = xd · yd
∂dkw(x,y) = 2wd κ

d(x,y)

• Gaussian RBF:
kw(x,y) = exp

(
−||w◦(x−y)||2

2σ2

)
= exp

(
−
∑
d w

2
dκ
d(x,y)

)
κd(x,y) = (2σ2)−1(xd − yd)2

∂dkw(x,y) = −2wd κ
d(x,y) kw(x,y)

• Polynomial:
kw(x,y) = χw(x,y)δ

χw(x,y) = 1 + c (w ◦ x) · (w ◦ y) = 1 + c
∑
d w

2
dκ
d(x,y)

κd(x,y) = xd · yd
∂dkw(x,y) = 2 δ cwd κ

d(x,y)χw(x,y)δ−1

These relations show that the ∂dK matrices can be easily
evaluated from the entry-wise product of the Gram matrix and
the feature-wise matrices [κd]ij = κd(xi,xj), especially in
the case of the linear and RBF kernels. The calculation of the
feature-wise matrices at the start of the algorithm thus provides
a great increase in computational cost, if enough memory
is available. Otherwise, the feature-wise matrices must be
computed at each iteration.

The decomposition of the Gram matrix into feature-wise
matrices highlights the strong link of the SAS method with
the GMKL [23] and SimpleMKL [20] algorithms. Indeed, the
latter consist in optimizing a product or a sum of feature-wise
kernels through an optimization loop involving scale factors.
The main difference lies in the choice of the optimization
criterion: SAS is based on the Alignment, while the two others
lies on SVM trainings, i.e. margin maximization.

E. Extension to multiclass problems

The Alignment measure can also be extended to multiclass
problems1, involving a number of C classes. As proposed by
Vert [34], this is done by simply defining the following Target
kernel:

k∗C(xi,xj) =

{
1 if yi = yj
−1/(C − 1) if yi 6= yj

. (10)

This defines a valid kernel, which is not the case with the naive
choice of k∗C(xi,xj) = −1 if yi 6= yj . The corresponding
Gram matrix is substituted to the Target matrix defined in
equation 2. For instance, for C = 3 classes:

K∗3 =

 1 − 1
21 − 1

21
− 1

21 1 − 1
21

− 1
21 − 1

21 1

 . (11)

The rest of the theory, e.g. equations 3, 7 and 9, holds true with
this new Target matrix, the SAS algorithm is thus basically
the same on a multiclass problem. The multiclass notation
will hold in the following section, since the next measure is
directly defined on that case.

1By multiclass we denote problems that involve more than two classes.
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IV. KERNEL CLASS SEPARABILITY

A. Introduction of the Kernel trick

Several measures exist in the literature to evaluate class
separability [35], among which the scatter-matrix-based is the
most common. We have pointed in section III-A the close
relationship between the KTA and the between-class scatter
in the feature space. The expression of the full scatter-matrix
measure in the feature space has been explored [36] [37] [8],
and is usually compared with the KTA. The criterion generally
considered involves the between-class and within-class scatter
matrices Sb and Sw:

Sb =
1

n

∑
c=1...C

ni(mc −m)(mc −m)T (12)

Sw =
∑

c=1...C

∑
x∈Sc

(x−mc)(x−mc)
T , (13)

where mc denotes the center of class c (mc = 1
nc

∑
x∈Sc x),

and m the center of all examples (m = 1
n

∑
x∈S x =

1
n

∑
c ncmc). The scatter-based class separability measure

takes the following expression:

C =
trSb
trSw

. (14)

Note that the determinant can be used instead of the trace but
the latter simplifies computation, and remains more stable in
presence of nearly singular matrices. This measure will also
been found in Fisher Discriminant Analysis (Section IV-D).

The Kernel trick can be introduced [37] in order to estimate
the class separability measure in the feature space. Let the
operator Σ be the sum of a matrix entries (ΣM =

∑
i,jmij),

the terms in the feature space can be expressed as follows,

trSb = ΣW − 1

n
ΣK (15)

trSw = trK − ΣW , (16)

with

W =
1

n


1
n1
K11 0

. . .
0 1

nC
KCC

 , (17)

where the Kij blocks are the class-wise submatrices intro-
duced in section III-A, equation 2. The Kernelized Class
Separability (KCS) measure CK then equals:

CK =
ΣW − 1

nΣK

trK − ΣW
(18)

B. Relation with the Alignment criterion

The Kernel Class Separability (KCS) expression is some-
how close to that of the KTA. Indeed, in the two-class case,
with the matrix K̂∗ defined for uneven class sets (eq. 4),

||K̂∗||F =
n

n1n2
(19)〈

K, K̂∗
〉
F

=
n

n1n2
trSb. (20)

The Alignment then equals

A(K, K̂∗) =
<K, K̂∗ >F

||K̂∗||F ||K||F
=

trSb
||K||F

(21)

The numerator is thus common in both criteria. Nevertheless,
the denominators differ between the two. In the KCS, only the
same-class inner products are considered, weighted by their
class representation in the training set, whereas in the KTA,
all the squared products of the examples are equally summed.
Hence, while the KCS normalization aims at minimizing the
intra-class scatter, the KTA normalization results in minimiz-
ing the global scatter, regardless of the examples’ classes.

C. Method 2: Scaled Class Separability Selection (SCSS)

Similarly to the Alignment-based approach, the KCS crite-
rion can be derivated with respect to the kernel scale factors.
The derivation of trSb and trSw is straightforward from
equations 15 and 16:

∂θ trSb = Σ(∂θW )− 1

n
Σ(∂θK), (22)

∂θ trSw = tr ∂θK − Σ(∂θW ). (23)

However, while being more reliable, because of its inter-
pretation in the feature space, the expression of the KCS
induces numerical instability in the maximization of J(wh).
Indeed, when coupled with a RBF Gaussian kernel, both
scatter measures converge to zero (trSb → 0 and trSw → 0
when wd → 0), leading the KCS measure to converge to its
upper bound (CK → 1). This is prevented here by adding a
regularization term to the denominator:

C̃K =
trSb

trSw + ε

The feature selection algorithm proposed here, based on
the KCS criterion with a KPO search strategy on the scale
factors is called Scaled Class Separability Selection (SCSS).

Wang also proposed [8] a feature selection scheme based on
the KCS. However, in order to bypass the regularization issue,
the author states that the KCS criterion is lower-bounded by
trSb and thus bases all his experiments on this latter criterion,
which is in fact the sole Frobenius criterion (equations 15
and 20) in which the class variances are not expressed. Our
experiments will show that the full KCS criterion, though not
as efficient as the Alignment in practice, is more reliable than
the Frobenius criterion.

D. Method 3: Kernel Fisher Discriminant Selection (KFDS)

The scatter-matrix class separation is also related to the
Kernel Fisher Discriminant Analysis (KFDA). FDA consists
in the evaluation of a vector wh that determines the optimal
discriminative hyperplane between two classes. The kernelized
problem is expressed in [36] as the maximization of the value
J (wh) in the feature space,

J (wh) =
wT
h Sbwh

wT
h Swwh

.

The Reproducing Kernels theory states that the vector wh
necessary lies in the span of all training examples, i.e. wh =∑
i αiΦ(xi). This allows the expression of J (wh) in terms of
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inner products and thus its kernelization, based on the Gram
matrix K. The problem reformulated with the αi becomes

J (α) =
αTMα

αTNα

where M and N are both expressed from K, and
α = [α1 . . . αn]T . The problem is solved analogously to the
linear algorithm (i.e. without kernel products), by finding the
leading eigenvector of N−1M . Please consult [36] for more
details on the Kernel Fisher Discriminant Analysis.

The Kernel Fisher Discriminant Selection (KFDS) approach
we propose here, consists in using the hyperplane normal
vector wh, determined with KFDA, to iteratively update the
scale factors of the kernel. It is similar to AROM, and implies
the same kernel restriction (explicit Φ transform to evaluate
wh), but implies a matrix inversion instead of the SVM
optimization loop to evaluate the vector wh. KFDA is detailed
in the Alg. 2 below.

Algorithm 2 Method 3: Kernel Fisher Discriminant Selection
Scale factors: w1 = [1, . . . , 1]
n← 0
repeat
n← n+ 1
Compute scaled Gram-matrix: [Kwn ]ij = kwn(xi,xj).
Compute M and N from Kwn , and αn = M/N .
New normal vector: wn

h =
∑
i α

n
i xi.

Scale factors update: wn+1 = wn ◦wn
h .

until convergence on scale factors wn

V. NUMERICAL EXPERIMENTS

We compare here the proposed methods to existing kernel-
based feature selection methods (the ones available in the
Spider machine learning toolbox), both on synthetic and real
world data (respectively Sections V-A and V-B). We give
here a brief review of the methods.

Proposed methods:
• 1) Scaled Alignment Selection (SAS): see section III-B.
• 2) Scaled Class Separability Selection (SCSS): see IV-C.
• 3) Kernel Fisher Discriminant Selection (KFDS): see

section IV-D. Only used with a linear kernel.
Reference methods:
• Fisher: Fisher criterion.
• AROM: approximation of the zero-norm minimization

with a L2 norm [15]. Only used with a linear kernel.
• R2W2: gradient descent based on the radius-margin cri-

terion to estimate the scale factors [6].
• RFE: backward sequential selection based on the ranking

of the hyperplane normal vector components [16].

We will comment on graphic curves for their readability. On
all figures, the proposed methods are indicated with dotted
lines, while solid lines are used for existing methods.

The SFS test-method will be commented in Section V-C,
which provides other experiments that intend to compare with
the published results of similar methods. Because we could not
implement these methods, we only reproduced the protocol
of various experiments involving the latter. As explained in
Section V-C, SFS cannot be used with a linear kernel since
the weight factors diverge to infinity. Therefore, results are
only shown with non-linear kernels.

Student tests with α = 5% significance level were also
evaluated in each experiment between all pairs of methods,
to assess the significance of performance gaps. They cannot
all be shown here but will be mentioned in a few experiments.

In order to show reproducible research, we publicly provide
the source code of the methods proposed here, along with
further details on the features of the speech/music dataset
introduced later on, at http://www.mathieuramona.com/wp/data/
fsgram.

A. Toy Experiments

The synthetic data, as well as the experimental protocol,
are drawn from the experiments detailed in [6] and [17]:
those compare the performance on linearly separable and non-
separable problems (respectively trained with a linear and a
Gaussian RBF kernel) through the evaluation on two features
selected among a large set of irrelevant or redundant features.
The linear problem gathers 202 features of which 6 are relevant
but redundant, based on Gaussian distributions, and the rest
are noise. The non-linear problem gathers 52 features of which
only 2 are relevant, but draw a linearly inseparable distribution.
n training examples are randomly drawn (n ranging from

10 to 100). The best two features are selected and an SVM is
trained with those two on the same training set. The average
test error is computed on a test set of 500 samples drawn
from the same distribution at each iteration, over 40 iterations
of training and testing. The results are shown in figure 1. The
results with an SVM training on the whole set of features are
also shown (on solid black lines), to evaluate the gain brought
by the feature selection step.

The linear problem, shown on the upper Fig. 1(a), illustrates
the main drawback of the proposed scaled methods in failing to
find the best solution within strongly redundant features. The
scores converge around a 15% error rate while n increases,
along with the Fisher criterion, because two relevant but redun-
dant features are selected, instead of the two complementary
features. R2W2, AROM and the proposed KFDS succeed on
this problem, with very close results. The second problem
(lower Fig. 1(b)) focuses on the inter-relevance of the two
non-noisy features. With no surprise, the Fisher criterion fails
here, along with the linear-kernel methods (RFE, AROM and
KFDS). R2W2 approach here shows the best behavior. The
KCS approach (SCSS) here shows more efficient than KTA-
based (SAS), but this is no longer observed on real world data.
R2W2, SCSS, SAS and KFDS are all significantly different,
according to the 5%-level Student test.
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Fig. 1. Comparison of performances on a linearly separable problem (a,
upper) involving redundant features and a non-linearly separable problem (b,
lower). Both contain many irrelevant noisy features.

B. Real World Data

The proposed methods were tested on various real world
datasets, representing different sorts of configurations. Iono-
sphere, Spambase, Parkinsons, Sonar, Liver, BCW, Cleveland,
Pima are all from the UCI public repository [38]. Two
gene expression microarray datasets (Lymphoma and Yeast)
are retrieved from Weston [15] [16], characterized by very
few training examples. Lymphoma has a very large feature
collection (several thousands). A dataset from our research in
audio indexing (speech/music discrimination) is also provided
and freely available2. The multiclass digit recognition dataset
USPS is retrieved from LibSVM3.

This section only implies reference methods that could be
reproduced, and compares with our methods. Further experi-
ments, Section V-C, will compare our results with the results
of various publications.

The feature selection is operated on a training subset of
size ntrain from the dataset (which contains n1 and n2
from each class, respectively). An SVM is then trained on
the same subset over a varying range of the S best ranked
among the D features. The penalty factor C is always set to
the estimated optimal value proposed by Joachims4 in the
implementation of SVMlight [39], including inside the R2W2,
RFE and AROM loops (several experiments conducted
internally confirm that this Ĉ value induces the minimization
of the Leave-One-Out error). The error rate is computed by
applying the trained SVM on a test subset of size ntest, also
extracted from the dataset, but distinct from the training set.

2http://www.mathieuramona.com/wp/data/fsgram
3http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/
4Ĉ = 1/R̄2, where R̄ =

∑n
i=1 ||φ(xi) − φ(0)|| is an estimation of the

radius of the smallest sphere containing all examples in the feature space.

Data set C D Size n1, n2 ntrain ntest

Spambase 2 57 2788 / 1813 500 1000
Ionosphere 2 34 225 / 126 250 101
Lymphoma 2 4026 34 / 62 60 36
Speechmusic 2 321 2× 10000 500 500
USPS 10 256 7291 10×100 2007
Yeast 5 79 208 182 26
Parkinsons 2 22 48 / 147 136 59
Used only in Section V-C:
BCW 2 9 444 / 239 340 343
Cleveland 2 13 160 / 137 150 147
Liver 2 6 145 / 200 240 105
Musk 2 166 207 / 269 300 176
Pima 2 8 500 / 268 500 268
Sonar 2 60 111 / 97 145 63

TABLE I
COMPARED CHARACTERISTICS OF THE DATA SETS.

The mean error rate is then evaluated over 30 iterations. We
provide results for both linear and non-linear (RBF) kernels
in most cases. Table I sums up the dataset characteristics.

1) Spambase & Ionosphere: Both sets are from the UCI
repository [38] and are tested with linear and RBF kernels.
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Fig. 2. Compared performances on the Spambase dataset, with a linear
(upper figure) and a Gaussian RBF (lower figure) kernel.

The results on the Spambase set, Figure 2, assess the
linear separability of the problem since RBF kernel brings
no improvement. Irrelevant features do not seem to penalize
classification, since the error rate increases with the selection.
On both kernels, the proposed algorithms (in dotted lines)
clearly prove more efficient than existing ones, providing
up to almost a 3% error decrease with 10 features on a
linear kernel, compared to the 15% error rate with R2W2
(i.e. a relative error reduction of 20%). The KFDS approach,
though based on a linear kernel, shows surprisingly good
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performance when followed by a SVM with RBF kernel. The
RBF kernel experiment also confirms the relevance of keeping
the Alignment normalization with the SAS approach, when
compared to the Scaled Frobenius (SFS).
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Fig. 3. Compared performances on the Ionosphere dataset, with a linear
(upper figure) and a Gaussian RBF (lower figure) kernel.

On the opposite, Ionosphere (Figure 3) is clearly linearly
non-separable. The error rate remains above 12.5% with a
linear kernel while the RBF kernel reduces error to nearly
5% (please note the difference of ordinates scale between
sub-figures). The poor performance of the linear-based
approaches (Fisher, KFDS and AROM) with a RBF Gaussian
kernel, confirms this observation. We thus focus on the
RBF kernel case (lower figure). The results confirm the
observations on Spambase: a slight decrease of performance
with SFS, when compared to SAS ; and no gain over Scaled
Alignment (SAS) when using the scaled Class Separability
(SCSS). Nevertheless, both methods provide comparable
performance with R2W2. The 5% level Student test shows
no significant difference between the two.

2) Lymphoma microarray: DNA microarray data analysis
generally involves very small data sets (built from human
cases) with a large number of gene-based features. The
Lymphoma problem reproduces the experiment described in
[15] (originally proposed for the AROM method evaluation).
This example tests the reliability on very large collections of
features, possibly highly redundant. RFE is not tested here
because of its very high complexity, quadratic with the number
of features. Following the original protocol, this problem is
tested with a linear kernel. Results are shown in Figure 4.

The error decrease with R2W2, KFDS and AROM attests
the presence of many irrelevant features. The selection
strongly improves the performance for some methods, with
very few selected features. Indeed, the information brought
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Fig. 4. Performance on the Lymphoma dataset, with a linear kernel.

by the useful features is easily diluted by the admixture of
non-relevant information from the other features. Moreover,
the bad performance of the Fisher criterion is an evidence of
the strong interdependence of the features. The experiment
shows the limit of the scaled kernel methods proposed
here (SAS and SCSS) in dealing with very large feature
collections. However, the KFDS method, if not as efficient
as AROM, succeeds very well in increasing the performance
(about 1.5% of error decrease), and outperforms R2W2.
Student test shows that all methods are significantly different,
with a 5% significance level.

3) Audio indexing: Speech/Music: The last dataset is
built from our works on audio indexing and describes a
speech/music discrimination problem on broadcast news ex-
tracts. Its 321 features describe different acoustic properties
(temporal, spectral, cepstral and perceptual). Each class con-
tains 10000 samples. Please consult our previous work [40] for
more details, or http://www.mathieuramona.com/wp/data/fsgram
where the dataset is freely available.

The results with a linear kernel, on the upper figure 5, do
not indicate the effect of noisy features at high dimensions,
but the low slope above 100 features, reflects the strong
redundancy between them. Redundant features can be
interpreted as a unique overscaled feature, that, amplified
by the RBF kernel exponentiation, penalizes the classifier
performance. This is clearly visible on the lower figure 5,
where most methods show a neat error rate decrease. These
strong redundancies explain the weak performance of the
Fisher criterion with linear kernel. While the R2W2 method
shows the best performance, the proposed Scaled Alignment
(SAS) provide comparable results. The Student test proves
that the difference is not significant between the two (with
5% significance level), but shows that the difference with the
other methods is significant.

4) Multiclass selection: To demonstrate the effectiveness
of SAS and SCSS on multiclass problems, we have adapted
the previous protocol to two multiclass datasets.

The first one if the widely used US Postal Services digit
recognition which contains 10 classes. Over 30 iterations,
a subset of 100 samples per class is used for selection and
SVM training, and the rest for testing. A pairwise scheme is
used for classification (45 SVMs trained), combined with the
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Fig. 5. Compared performances on the audio indexing Speech/Music dataset,
with a linear (upper figure) and a Gaussian RBF (lower figure) kernel.

Pairwise Coupling algorithm [41], to determine the maximum
likelihood class on the posterior probabilities. Results show
(Table II), that the two algorithms perform better than Fisher
and FSPP methods, although AROM gets the best results.

Fisher FSPP AROM 1)SAS 2)SCSS
200 6.7±1.0 6.6±0.8 6.2±0.8 6.9±1.0 6.6±1.0
150 6.4±1.0 6.9±0.7 6.0±0.8 6.6±1.1 6.7±1.0
100 6.3±1.0 7.1±0.7 5.8±0.8 6.2±1.0 6.6±1.0
50 6.7±1.0 8.0±0.7 5.6±0.8 6.2±1.0 6.5±1.1
30 7.5±1.2 9.1±0.9 5.5±0.8 6.5±1.0 6.9±1.0
10 10.1±1.6 12.4±1.3 6.3±0.7 8.3±1.3 8.9±1.3
5 12.2±1.5 13.8±1.1 8.5±0.7 10.6±1.4 10.8±1.4

TABLE II
MEAN ERROR RATE OVER 30 ITERATIONS ON THE 10-CLASS DATASET

USPS WITH GAUSSIAN RBF KERNEL.

The second dataset is the Brown Yeast Microarray described
in [15], and used for the evaluation of the AROM method. We
have reproduced here the original protocol [15], using an 8-
fold cross validation. Results are compared with FSPP and
the 1-vs-All multiclass variant of AROM. Table III shows that
SAS and SCSS both outperform the reference methods.

FSPP AROM 1)SAS 2)SCSS
79 5.6±3.0 5.6±3.0 5.6±3.0 5.6±3.0
40 8.3±3.7 4.6±2.7 3.6±2.5 3.8±2.3
30 8.4±3.6 4.3±2.7 3.3±2.4 3.6±2.2
20 8.7±3.5 3.8±2.8 3.2±2.2 3.0±2.0
10 10.8±4.2 3.8±2.7 3.6±2.3 2.4±2.2
5 13.1±4.0 3.4±2.3 3.8±2.3 2.9±1.9

TABLE III
MEAN ERROR RATE OVER 30 ITERATIONS ON THE 5-CLASS DATASET

YEAST WITH GAUSSIAN RBF KERNEL.

5) Polynomial kernel on Parkinsons: The last experiment
of this section shows an example of use of the proposed

methods with a polynomial kernel (of order 3), instead of
the RBF Gaussian, applied on the Parkinsons UCI dataset.
Results, shows in Figure 6, demonstrate that the SAS and
SCSS algorithms remain applicable to any type of kernel,
and remain efficient when compared to existing methods. SAS
especially outperforms all other methods of this experiment for
S > 6 (the difference is significant under a 5% Student test).
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Fig. 6. Compared performances on the Parkinsons dataset, using a polyno-
mial kernel (of order d = 3).

C. Comparison with existing Kernel-based methods

Neumann KTA on UCI datasets [7]
As stated earlier, Neumann et al. also proposed a method

involving the Alignment criterion, based on the joint mini-
mization of the Alignment and the zero-norm of the hyper-
plane vector wh. The objective function is decomposed as
a difference of two convex functions, and then minimized
with a specific algorithm (DCA, Difference of Convex func-
tions minimization Algorithm [42]). The minimization is done
through a double-nested loop where each inner step implies
the computation of the Alignment, whereas SAS only relies
on a simple gradient ascent loop. Moreover the denominator
of the Alignment is discarded to get the convex functions de-
composition. The criterion really used in practice is therefore
the Frobenius criterion, defined as follows:

F(K,K∗) = 〈K,K∗〉F . (24)

Previous experiments show the results when substituting
the Frobenius criterion to the full Alignment, through the
test-method SFS (Scaled Frobenius Selection). Figures 2(b),
3(b), and 5 show that the full Alignment method SAS is
more efficient than the Frobenius-based SFS. Moreover, the
absence of normalization has another drawback when using
the linear kernel, because the Frobenius criterion diverges to
infinity when the scales factors wd increase arbitrarily. The
maximization cannot be done. For this reason, the Alignment
is not used with the linear kernel in the experiments of [7].

To further assess this discussion, the latter experiment [7]
(pp. 142–145) is reproduced on the same UCI datasets than
used by the authors. It is conducted both on linear and RBF
Gaussian kernels (we reproduce respectively the `2-`1-SVM
and KTA-based results). The number of selected features is
automatically fixed by the algorithms ; we thus show the
results for the number of features indicated by the authors.
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KTA [7] 1)SAS 2)SCSS 3)KFDS
Set dim err

Linear kernel
Liver 6.0 35.1±1.0 34.0± 2.0 34.0± 2.0 34.0± 2.0
Cleve 9.9 16.5± 0.5 17.2±2.4 17.1±2.5 24.1±2.9
Ionos 25 13.4±0.3 12.9±2.4 13.4±2.6 12.2± 2.3
Pima 6.6 25.1±0.2 24.2± 2.0 24.2± 1.9 24.4±1.8
BCW 8.7 3.2± 0.0 3.5±0.9 3.5±0.9 3.5±0.9
Sonar 50 22.6±0.1 23.3±1.8 23.1±1.6 21.9± 1.9
Musk 125 18.3± 0.3 20.7±2.5 20.0±2.4 21.4±2.6

Gaussian RBF kernel
Liver 2.5 35.4±1.5 36.2±1.0 34.9± 2.6 40.4±2.3
Cleve 3.2 23.6±0.3 22.1± 3.0 23.0±2.8 27.8±3.1
Ionos 6.6 7.7±0.3 7.0± 2.2 7.0± 2.4 8.0±2.8
Pima 1.4 27.0±0.2 27.0±2.6 26.1± 1.2 32.7±3.2
BCW 2.8 4.2± 0.0 4.5±1.1 4.3±1.0 6.1±1.3
Sonar 9.6 27.4±0.6 24.9±3.1 22.2± 3.3 31.6±2.9
Musk 41 15.5±0.2 13.8± 3.0 14.4±3.3 15.9±2.7

TABLE IV
COMPARED ERROR RATES WITH NEUMANN ET AL.

The results (Table IV) show that the proposed methods have
comparable or better results in most cases. The RBF kernel is
particularly well handled by SAS and SCSS, when compared
to the Neumann KTA method. KFDS only relies on a linear
kernel, which explains the mitigate results with RBF kernel
(used in the SVM training and classification to evaluate the
results). However, the latter shows the best performance on 3
datasets with linear kernel. The proposed methods thus offer
a good alternative, for a reduced computational cost.
Wang KCS on the binarized USPS dataset [8]

We reproduce here the experiment developed by Wang [8]
(p. 1544, Sec. 5.2) to assess the reliability of his Kernel Class
Separability (KCS). As mentioned before, the criterion used is
in practice also the Frobenius product of equation 24. Wang
uses the USPS digit recognition dataset, and converts it into
a two-class problem between classes 0. . .4 and 5. . .9. He
simulates a small sample by using a subset of m = 7 samples
of each class, used for the feature selection. The SVM is then
trained with 1,000 samples, and the result is evaluated over
7 iterations on the 2007 samples of the USPS predefined test
dataset.

Results (in error rates), shown in table V, demonstrate that
SAS and SCSS perform better on the whole scale of S values
than the KCS algorithm. The R2W2 results, as provided by
Wang, are also outperformed.

S R2W2 KCS 1)SAS 2)SCSS 3)KFDS
50 10.0 11.5 10.0±2.5 14.7±4.0 12.7±3.5
40 10.0 12.5 11.4±2.2 16.3±3.9 13.3±3.3
20 15.5 17.0 14.3±1.1 21.4±4.7 17.0±2.9
10 25.0 23.0 20.7±2.5 24.4±4.1 24.5±2.1
5 34.0 31.5 26.6±2.9 27.5±3.3 29.5±2.8
3 39.5 36.5 30.4±2.4 29.0±2.6 33.3±3.6
1 41.0 41.5 37.6±4.8 36.9±5.1 40.2±3.4

TABLE V
COMPARED ERROR RATES WITH WANG [8] ON BINARIZED USPS DATASET.

GMKL on UCI datasets [23]
To conclude this section, we also reproduce the experiment

described by Varma and Babu, on various UCI datasets,
to assess the efficiency of their GMKL method (presented
earlier). We also show the results of the BAHSIC method

[26], indicated by the authors. For each set, 70% of the
samples are used for selection and training, the other 30% for
testing. The kernel is RBF Gaussian. The accuracy is originally
indicated for several fixed number of selected features, that are
reproduced here. The results are shown in table VI.

DS BAHSIC GMKL 1)SAS 2)SCSS 3)KFDS
Ionosphere

5 87.1±3.1 90.9±1.9 92.0± 2.3 91.1±2.8 88.7±3.1
10 90.2±3.5 93.7± 2.1 93.6±2.1 93.2±2.1 93.1±2.8
15 92.6±2.0 94.1±2.1 94.6± 2.0 94.5±2.0 93.6±2.2

Parkinsons
3 85.2±3.8 86.3±4.1 88.6± 4.1 84.9±3.8 85.1±7.7
7 88.5±3.6 92.6± 2.9 88.7±3.7 84.2±4.5 85.6±6.0

Sonar
5 61.1±6.2 74.4± 5.1 74.1±4.4 71.6±3.8 65.3±7.7
10 73.1±5.9 80.2± 4.9 75.1±3.1 77.8±3.3 68.4±8.9
15 74.7±4.5 80.7± 5.5 77.4±4.5 79.5±3.8 73.9±7.9

TABLE VI
COMPARED ACCURACIES WITH GMKL [23] AND BAHSIC [26].

Here, GMKL mostly outperforms the proposed methods, ex-
cept on the Ionosphere dataset. This case is shown because, as
explained earlier, the feature-wise decomposition of the Gram
matrix highlights a close connection between our methods and
MKL theory. However, GMKL relies on SVM solvers and
a more robust objective function. The drawback is its high
complexity, when compared to our methods. The following
Section VI will show that the R2W2 method, very close to
GMKL, is indeed more costly than SAS and SCSS.

D. Ranking of proposed methods

Table VII sums up the percentage among the results where
each proposed method is ranked first, second or third. The
upper part of the Table concerns the results of Section V-B,
and clearly shows that SAS is comparable in ranks with R2W2,
even though is reaches a little less often the first rank.

The lower part concerns the results of Section V-C. It shows
that SAS is first rank in more than 1 over 3 cases. SCSS is
already well ranked, being ranked second at least in more
than 60% cases. Finally, KFDS is less efficient than the two
previous methods.

Method 1st 2nd rest
Section V-B Real World Data
1)SAS 23.8% 23.8% 52.4%
2)SCSS 6.0% 16.7% 77.4%
3)KFDS 14.3% 11.7% 74.0%
R2W2 27.4% 15.5% 57.1%
Section V-C Comparison with existing
1)SAS 37.9% 34.5% 27.6%
2)SCSS 17.2% 44.8% 37.9%
3)KFDS 6.9% 0.0% 93.1%

TABLE VII
PERCENTAGE OF 1ST AND 2ND RANKS OF PROPOSED METHOD.

VI. COMPUTATIONAL ISSUES

A. Iterative computation

One of the main advantages of the SAS and SCSS methods
is their scalability in terms of memory usage. From equations
3, 9, 15, 16, 22 and 23, it can be noticed that only sums
involving k(xi,xj), ∂k(xi,xj), k(xi,xj)

2 or ∂k(xi,xj)
2 are
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needed while computing KTA or KCS. The Gram matrices
needn’t be expressed all at once, since only the Frobenius sums
of their terms are of interest. Each term can be computed itera-
tively, squared for the ||K|| norm, and immediately discarded
after summing. Moreover, the terms of the Target matrices
K∗, when multiplied with the terms of K, are equivalent to
identity or sign changes, and therefore imply no computation
(apart from sign changes).And since the Gram matrices are
symmetric, only half the non-diagonal terms need be computed
and can be doubled in the sums. This results in a half decrease
of complexity.

The memory usage is thus almost arbitrarily low, since only
a single kernel product need be kept in memory at the same
time. The dimension (i.e. the number of feature) is of no
importance here since the kernel products are only scalars,
independent from the examples’ vectors components (we
consider that the memory volume of the dataset is negligible,
since it is only linear with respect to n, while Gram matrices
are quadratic). This is not the case for example for method
R2W2, which implies the full expression of the Gram matrix
to evaluate the radius R (through quadratic programming).

B. Complexity

The computation of the Gram matrix terms is quadratic
with respect to the number of examples N and theoretically
sublinear with respect to dimension D (because only a part of
the kernel products computation involves all the components).
Since each feature implies a partial derivative matrix, besides
the main Gram matrix, the complexity for SAS and SCSS
is about O(IDN2), where I is the number of iterations
before convergence. KFDS basically implies a Gram matrix
computation and a matrix inversion at each iteration, hence a
O(IDN3)) complexity.

The scaled kernel based approaches have been thoroughly
compared to the R2W2 method, that also rely on scale factors.
We have stated that the R2W2 method requires a double
optimization loop. Each iteration of the outer loop involves

1) SVM training to evaluate the αi factors
2) Evaluation of the full Gram matrix K
3) Quadratic programming optimization to evaluate R
4) Computation of the normal vector norm ||wh||2
5) Computation of feature-wise derivative matrices ∂dK

SAS and SCSS only involve steps 2 and 5, plus the necessary
additions to compute Frobenius products. They do not need
SVM or any quadratic programming solving, which can be
costly. In particular, the optimization in step 3 is very costly,
and involves the full expression of the Gram matrix in memory,
which is not the case for SAS and SCSS. Similarly, most
MKL-based methods involve both the Gram matrix compu-
tation and SVM solvings. Computational time provided in
Section V will confirm that the proposed methods perform
faster than R2W2.

C. Computational time comparison

Computational times are compared here between our meth-
ods and AROM, R2W2 and RFE. Since SAS and SCSS share

most of their process, they are implemented in a common
function and therefore have identical speed. SAS and KFDS
are entirely written in Matlab, whereas the other all involve
the same implementation of SVM in C (Thorsten Joachims’
SVMlight [39]). Computations were done on the single core
of an iMac with 2.66 GHz Intel Core 2 Duo and 4 Go RAM.
All iterative algorithms are fixed to 10 iterations. Table VIII
shows the evolution of the CPU-time when the number of
examples N increases (at fixed dimension D = 30), while in
Table IX the number of features D increases (with N = 30).
All durations are normalized by the minimal duration.

N AROM R2W2 RFE 1)SAS 3)KFDS
5 6 14 65 42 2
10 7 17 55 29 1
20 8 20 63 34 1
50 14 32 68 41 2
200 23 292 127 67 3
500 38 2710 353 270 23
1000 88 17764 1021 1153 169

TABLE VIII
COMPARED CPU-TIME OVER N (NORMALIZED BY THE LOWEST TIME).

D AROM R2W2 RFE 1)SAS 3)KFDS
5 78 83 28 110 1
20 83 100 98 150 3
50 88 138 265 208 4
200 105 260 1503 455 25
500 133 498 5715 880 248
1000 153 890 19388 1600 1801
2000 210 1748 80083 3143 14037

TABLE IX
COMPARED CPU-TIME OVER D (NORMALIZED BY THE LOWEST TIME).

Table VIII clearly shows that R2W2 has a much higher
complexity that SAS and KFDS when dealing with a large
number of examples N . Both SAS and R2W2 are quadratic
with N , but sub-linear with the number of features D (Table
IX), because once the kernel products are computed, they are
independent of the dimension. R2W2 is faster that SAS, when
D increases, with a small number of examples N . RFE is
quadratic with N but remains acceptable in Table VIII, when
compared to other methods. However, its faces a combinatorial
explosion when D increases (Table IX).

We now focus on the comparison between KFDS and
AROM because their design is similar. KFDS is much faster
when D and N remain low, but the cost increases very quickly
with high dimensions D. However, AROM is the method with
the less Matlab code (only scale factor updates) and relies
mostly on the optimized implementation of SVMlight, which
might explain the better stability in terms of cost.

VII. CONCLUSION

We have provided here reliable alternatives for state-of-
the-art feature selection methods adapted to Support Vector
Machines. The Kernel Target Alignment and Kernel Class
Separability had not yet been fully explored in the field of
feature selection, or only under simplified forms. The methods
proposed here, based on a scaled kernel optimization, prove
very efficient and comparable in performance to recent SVM-
based methods, while being less complex. Comparative studies
with former works on these criteria show that the proposed
methods perform better. Moreover, the simplicity of the criteria
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allows for an efficient iterative computation that can scale
up to arbitrarily large training sets. Despite its theoretical
reliability, KCS is less efficient than KTA, mostly because
the regularization attempt to prevent trivial convergence is not
sufficient. The Kernel Fisher Discriminant Selection shows
comparable results with AROM, at a reduced computational
cost, for reasonable amounts of data. However, its use is
still limited to the linear kernel, but it sometimes provides
surprisingly good results when followed by a non-linear SVM
classification. The extension of this method to more complex
kernels will be explored in the future. In addition, theory and
experiments also show that the SAS and SCSS methods are
directly applicable to multiclass problems.

An interesting perspective arises from the strong
relationship between the Support Vector Machines and
the Fisher Discriminant Analysis. Either in the input space
or in the feature space, both methods consist in finding an
optimal hyperplane separating the classes’ examples. The
difference lies in the choice of the optimality criterion. In
[43], Shashua proves that the hyperplane of a Support Vector
Machine is equivalent to the one found by Fisher Linear
Discriminant on the set of its Support Vectors. He then
claims that SVMs can be seen as a way to sparsify FLD, thus
improving its generalization. Future works will explore the
track of restricting the training set of the KCS-based methods
to the support vectors identified through an SVM training,
in order to reduce complexity and also discard useless or
irrelevant information.
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