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ABSTRACT

This paper presents a feature learning approach for speaker identi-

fication that is based on nonnegative matrix factorisation. Recent

studies have shown that with such models, the dictionary atoms can

represent well the speaker identity. The approaches proposed so far

focused only on speaker variability and not on session variability.

However, this later point is a crucial aspect in the success of the

I-vector approach that is now the state-of-the-art in speaker identifi-

cation.

This paper proposes a method that relies on group nonnegative

matrix factorisation and that is inspired by the I-vector training pro-

cedure. By doing so the proposed approach intends to capture both

the speaker variability and the session variability. Results on a small

corpus prove that the proposed approach can be competitive with

I-vectors.

Index Terms— Nonnegative matrix factorisation, spectrogram

factorisation, feature learning, speaker variability, speaker identifi-

cation

1. INTRODUCTION

The main target of speaker identification is to assert whether or not

the speaker of a test segment is known and and if he/she is known,

to find his/her identity. Applications of speaker identification are

numerous, among which are speaker dependent automatic speech

recognition and subject identification based on biometric informa-

tion. The sentence pronounced by the subject can be unknown and

the recordings can be of variable quality. The speaker identification

then becomes a highly challenging problem.

Since their emergence almost five years ago, the I-vectors [1]

have become the state-of-the-art approach for speaker identifica-

tion [2]. A typical speaker identification system is composed of

I-vector extraction, normalisation [3, 4] and classification with prob-

abilistic linear discriminant analysis (PLDA) [5]. Research on the

tandem I-vector/PLDA has focused a lot of attention during the past

years and speaker identification systems have reached a high level of

performance on databases such as those from the National Institute

of Standards and Technology (NIST) [2, 6].

On the other hand, recent studies have shown that approaches

such as nonnegative matrix factorisation (NMF) [7] can be success-

fully applied to spectrogram factorisation [8, 9, 10] or to multimodal

co-factorisation [11] to retrieve speaker identity. These results tend

to indicate that the activations of NMF dictionary atoms can repre-

sent well the speaker identity [10]. Besides, exploiting group spar-

sity on the activations has then proven to improve further the per-

formance of NMF-based approaches [9]. NMF therefore offers a
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credible alternative to I-vectors that takes advantage of the intrinsic

sparsity of speech [9, 12]. However, to our best knowledge, none

of the approaches proposed until now take the recording sessions

variability into account. Yet this is a crucial point in the success of

I-vectors.

This paper proposes an approach to speaker identification that

relies on group-NMF and that is inspired by the I-vector training

procedure. Given data measured with several subjects, the key idea

in group-NMF is to track inter-subject and intra-subject variations by

constraining a set of common bases across subjects in the decompo-

sition dictionaries. This has originally been applied to the analysis of

electroencephalograms [13]. The approach presented here extends

this idea and proposes to capture inter-speaker and inter-session vari-

abilities by constraining a set of speaker-dependent bases across ses-

sions and a set of session-dependent bases across speakers. This

approach is inspired by the joint factor analysis [14] and I-vectors

as it takes both speaker variability and session variability into ac-

count. In this sense, it differs from previous approaches based on

NMF [8, 9, 12] that take only speaker variability into account. Be-

sides, in these previous works similarity constraints were imposed

on activations while in the approach proposed here the constraints

are on the dictionaries.

The paper is organised as follows. The problem, the notations

and the general NMF approach for speaker identification are intro-

duced, in Section 2. The proposed approach is described in Sec-

tion 3. Experiment results are presented in Section 4. Finally, con-

clusions and directions for future work are exposed in Section 5.

2. PROBLEM STATEMENT

2.1. Notations

Consider the (nonnegative) time-frequency representation of an au-

dio signal V ∈ R
F×N
+ (this could be for example a mel-frequency

spectrogram), where F is the number of frequency components and

N the number of frames. V is composed of data collected during S

recording sessions with speech segments originating from C speak-

ers. In each session several speakers can be present and a partic-

ular speaker can be present in several sessions. Let C denote the

set of speakers and S the set of sessions. The number of elements

in an ensemble is denoted Card(.), such that Card(C) = C and

Card(S) = S. Let Cs denote the subset of speakers that appear

in the session s (Cs ⊂ C) and Sc the subset of sessions in which

the speaker c is active (Sc ⊂ S). In the remainder of this paper,

superscripts c and s will denote the current speaker and session, re-

spectively.
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2.2. NMF with Kullback-Leibler divergence

The goal of NMF [7] is to find a factorisation for V of the form:

V ≈WH (1)

where W ∈ R
F×K
+ , H ∈ R

K×N
+ and K is the number of compo-

nents in the decomposition. Given a separable divergence D, NMF

model estimation can be formulated as the following optimisation

problem:

min
WH

D(V|WH) s.t. W ≥ 0, H ≥ 0.

When considering audio signals, D is often chosen to be

the Kullback-Leibler divergence (denoted DKL here) [15] or the

Itakura-Saito divergence [16]. In most cases NMF problem is solved

using a two-block coordinate descent approach. Each of the factors

W and H is optimised alternatively. The subproblem in one fac-

tor can then be considered as a nonnegative least square problem

(NNLS) [17]. One of the approaches to solve these NNLS problems

leads to the multiplicative update rules for the matrices W and H,

which can be expressed as follows for the DKL [18, 19]:

H← H⊙
WT

[

(WH)−1 ⊙ V
]

WT 1
(2)

W←W⊙

[

(WH)−1 ⊙ V
]

HT

1HT
; (3)

where ⊙ is the element-wise product (Hadamard product) and divi-

sion and power are element-wise. 1 is a matrix of dimension F ×N

with all its coefficient equal to 1.

2.3. NMF for feature learning in speaker identification

In this paper, NMF is used for feature learning in a speaker identifi-

cation framework. First, the factorisation is learnt on a training set

and activations are used as input features to train a general classifier.

The dictionaries W obtained on the training set are then used to ex-

tract features (activations) on a test set. These features are used as

input to the general classifier to perform speaker identification.

3. GROUP NMF WITH SPEAKER AND SESSION

SIMILARITY

In the approach presented above, the feature learning step is totally

unsupervised and does not account for speaker variability or ses-

sion variability. The approach introduced here intends to take these

variabilities into account. It derives from group-NMF [13] and is

inspired by exemplar-based approaches [8, 9]. The idea of a decom-

position across speaker was originally used by Saeidi et al. [10] but

session variability was not considered.

3.1. NMF on speaker utterances for speaker identification

In order to better model speaker identity, we now consider the por-

tion of V recorded in a session s in which only the speaker c is active.

This is denoted by V(cs), its length is N (cs) and it can be decom-

posed according to (1):

V
(cs) ≈W

(cs)
H

(cs) ∀ (c, s) ∈ C × Sc

under nonnegative constraints.

We define a global cost function which is the sum of all local

divergences:

Jglobal =

C
∑

c=1

∑

s∈Sc

DKL(V
(cs)|W(cs)

H
(cs)). (4)

Each V(cs) can be decomposed independently with standard

multiplicative rules (2, 3). The bases learnt on the training set are

then concatenated to form a global basis. The latter basis is then

used to produce features on test sets.

3.2. Class and session similarity constraints

In order to take the session and speaker variabilities into account we

propose to further decompose the dictionaries W similarly as what

was proposed by Lee et al. [13]. The matrix W(cs) can indeed be

arbitrarily decomposed as follows:

W
(cs) = [ W

(cs)
SPK

←KSPK→

| W
(cs)
SES

←KSES→

| W
(cs)
RES

←KRES→

]

with KSPK + KSES + KRES = K and where KSPK, KSES and

KRES are the number of components in the speaker-dependent

bases, the session-dependent bases and the residual bases, respec-

tively.

The first target is to capture speaker variability. This is related to

finding vectors for the speaker bases (W
(cs)
SPK) for each speaker c that

are as close as possible across all the sessions in which the speaker

is present, leading to the constraint:

JSPK =
1

2

C
∑

c=1

∑

s∈Sc

∑

s1∈Sc
s1 6=s

‖W
(cs)
SPK −W

(cs1)
SPK ‖

2
< α1 (5)

with‖.‖2 the Euclidean distance and α1 is the similarity constraint

on speaker-dependent bases.

The second target is to capture session variability. This can be

accounted for by finding vectors for the sessions bases (W
(cs)
SES) for

each session s that are as close as possible across all the speakers

that speak in the session, leading to the constraint:

JSES =
1

2

S
∑

s=1

∑

c∈Cs

∑

c1∈Cs
c1 6=c

‖W
(cs)
SES −W

(c1s)
SES ‖

2
< α2 (6)

where α2 is the similarity constraint on session-dependent bases.

The vectors composing the residual bases W
(cs)
RES are left un-

constrained to represent characteristics that depend neither on the

speaker nor on the session.

Minimizing the global divergence (4) subject to constraints (5)

and (6) is equivalent to the following problem:

min
W,H

Jglobal + λ1JSPK + λ2JSES s.t. W ≥ 0, H ≥ 0 (7)

which in turn leads to the multiplicative update rules for the dic-

tionaries W
(cs)
SPK and W

(cs)
SES that are given in equations (8) and (9),

respectively. We obtained these update rules using the well know

heuristic which consists in expressing the gradient of the cost func-

tion (7) as the difference between a positive contribution and a neg-

ative contribution. The multiplicative update then has the form of
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W
(cs)
SPK ←W

(cs)
SPK ⊙

[

(W(cs)H(cs))−1 ⊙ V(cs)
]

H
(cs)
SPK

T
+ λ1

2

∑

s1∈Sc
s1 6=s

W
(cs1)
SPK

1H
(cs)
SPK

T
+ λ1

2
(Card(Sc)− 1)W

(cs)
SPK

(8)

W
(cs)
SES ←W

(cs)
SES ⊙

[

(W(cs)H(cs))−1 ⊙ V(cs)
]

H
(cs)
SES

T
+ λ2

2

∑

c1∈Cs
c1 6=c

W
(c1s)
SES

1H
(cs)
SES

T
+ λ2

2
(Card(Cs)− 1)W

(cs)
SES

(9)

Duration < 1min 1min – 5min > 5min

Number of speakers 25 26 44

Table 1. Speakers repartition according to the amount of available

training data.

a quotient of the negative contribution by the positive contribution.

The update rules for W
(cs)
RES are similar to the standard rules:

W
(cs)
RES ←W

(cs)
RES ⊙

[(W(cs)H(cs))−1⊙V(cs)]H(cs)
RES

T

1H
(cs)
RES

T .

Note that the update rules for the activations (H(cs)) are left un-

changed.

4. EXPERIMENTS

4.1. Experimental setup and corpus

The approach presented here is tested on a subset of the ESTER

corpus [20], a radio broadcast corpus. Only speakers with at least 10

seconds of training data are selected from ESTER to compose the

subset corpus. Speaker utterances are split in 10 seconds segments in

order to obtain enough segments to train the back-end classifier. The

amount of training data is limited to 6 minutes per speaker. When

there is more than 6 minutes of speech for a speaker, 10 seconds

segments are selected randomly to compose a 6 minutes subset. The

resulting corpus is composed of 6 hours and 11 minutes of training

data and 3 hours 40 minutes of test data both distributed among 95

speakers. The training data is extracted from the original ESTER

training set and the test data is extracted from the original ESTER

development set. This way, there is no overlapping session between

the training set and the test set. The amount of training data per

speaker ranges from 10 seconds to 6 minutes (Table 1). This small

dataset is used for preliminary experiments and future work should

include experiments with larger datasets such as NIST datasets.

A baseline I-vector-based system is trained with the LIUM

speaker diarisation toolkit [21]. The acoustic features are computed

with YAAFE [22]. They are 20 mel frequency cepstral coefficients

(MFCC) [23], including the energy coefficient. They are computed

on 32 ms frames with 16 ms overlap. The MFCC are augmented

with their first and second derivatives to form a 60-dimensional

feature vector. A universal background model (UBM) with 256

Gaussian components per acoustic features is trained on the full

training set and the dimension of the total variability space is set to

100. The parameter values are in the range of the values commonly

found in the literature for datasets of similar size. Eigen factor radial

normalisation (EFR) is applied on I-vectors before classification [4].

NMF-based systems are trained on GPGPU with an in-house

software1 based on the Theano toolbox [24]. The acoustic features

are 64 mel-spectrum coefficients computed on 32 ms frames with

16 ms overlap. To cope with the well-known non-uniqueness of

the NMF solution, NMF and group-NMF are initialised randomly

6 times and trained independently for 1000 iterations. In each case,

the factorisation with the lowest cost function value at the end of the

training is selected to extract features. After preliminary tests, the

number of components for the NMF is set to K = 100. The num-

ber of component for each bases of the group-NMF is set to K = 8
(KSPK = 4, KSES = 2,KRES = 2) such that the size of the

concatenated basis remains reasonably low. There are 236 unique

couples (speaker, session) so the dimension of the feature vectors

extracted with the group-NMF is 1888. The weights λ1 and λ2 are

scaled such that for λ1 = 1 the contributions from (4) and (5) to (7)

are equivalent, respectively for λ2 = 1 the contributions from (4)

and (6) to (7) are equivalent. The features extracted with NMF are

scaled to unit variance before classification.

Normalised I-vectors and feature vectors extracted with NMF

are classified with a multinomial logistic regression. The logistic

regression is preferred to PLDA as the latter is known to perform

quite poorly when the number of samples becomes small compared

to the feature dimensionality, which is the case here. In order to

mitigate the effect of the imbalance between speakers in the test

set, the classification performance is measured with weighted F1-

score [25] where the F1-score is computed for each class separately

and weighted by the number of utterances in the class. Both lo-

gistic regression and F1-scoring are performed with the scikit-learn

toolkit [26]. Variations in identification performance are validated

using the McNemar test [27] with significance levels .01 and .001.

4.2. Discussion

The first important test is to control that the constraints imposed on

the speaker bases and the session bases do not degrade the stability of

the NMF algorithm. Indeed, convergence can quickly become prob-

lematic when imposing constraints on NMF. The KL-divergence still

varies uniformly even with constraints on the cost function (7) (Fig-

ure 1 (a)). Yet the constraints are effective at reducing the distance

between the speaker bases (Figure 1 (b)) and between the sessions

bases (Figure 1 (c)).

In a second experiment, the systems described above and the

I-vector baseline are compared on the subset of ESTER (Table 2).

The group NMF has been tested for different values of the weight

applied to the constraints and two different configurations have been

selected. The first configuration is fully unconstrained (λ1 = 0 and

λ2 = 0) and both constraints are active in the second configuration

1Source code is available at https://github.com/rserizel/
groupNMF
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Fig. 1. Convergence of the different criteria depending on the weights λ1 and λ2

Group-NMF

Features I-vector NMF λ11 = 0 λ1 = 0.33
λ2 = 0 λ2 = 0.06

F1-score 76.1% 70.7% 77.8% 80.2%

Table 2. Weighted F1-scores obtained for a classification with multi-

nomial logistic regression.

(λ1 = 0.33 and λ2 = 0.06). The first remark is that all systems

perform reasonably well even if standard NMF is clearly behind the

other approaches (p < .001). The unconstrained group-NMF and

the I-vector approach perform similarly (the difference is not statis-

tically significant). Imposing constraints on both the speaker bases

and the session bases improves significantly the performance com-

pared to the I-vector approach and the unconstrained group-NMF

(p < .01 in both cases).

5. CONCLUSIONS

This paper introduced a new feature learning approach for speaker

identification that is based on NMF. Recent works on exemplar based

speaker identification have shown that dictionary atoms in an NMF

system can represent well speaker identity. Capitalising on this state-

ment, the authors proposed an approach based on group-NMF that is

inspired by the state-of-the-art I-vector approach and tries to cap-

ture both speaker variability and session variability. The central

idea is to impose similarity constraints on speaker-dependent bases

and session-dependent bases in the decomposition dictionaries. The

proposed approach has proven to be competitive with I-vectors on

a small corpus and future works should include extensive tests on

larger corpora and on a wider range of configurations.
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