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Performance of ESPRIT for Estimating Mixtures of
Complex Exponentials Modulated by Polynomials
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Abstract—High-resolution (HR) methods are known to provide
accurate frequency estimates for discrete spectra. The polynomial
amplitude complex exponentials (PACE) model, also called quasi-
polynomial model in the literature, was presented as the most gen-
eral model tractable by HR methods. A subspace-based estimation
scheme was recently proposed, derived from the classical ESPRIT
algorithm. In this paper, we focus on the performance of this es-
timator. We first present some asymptotic expansions of the esti-
mated parameters, obtained at the first order under the assump-
tion of a high signal-to-noise ratio (SNR). Then the performance
of the generalized ESPRIT algorithm for estimating the parame-
ters of this model is analyzed in terms of bias and variance, and
compared to the Cramér-Rao bounds (CRB). This performance
is studied in an asymptotic context, and it is proved that the ef-
ficiency of undamped single poles estimators is close to the opti-
mality. Moreover, our results show that the best performance is
obtained for a proper dimensioning of the data. To illustrate the
practical capabilities of the generalized ESPRIT algorithm, we fi-
nally propose an application to ARMA filter synthesis, in the con-
text of system conversion from continuous time to discrete time.

Index Terms—ESPRIT, high resolution (HR), multiple eigen-
values, performance analysis, perturbation theory, polynomial
modulation.

I. INTRODUCTION

HIGH RESOLUTION (HR) methods, such as the
well-known ESPRIT algorithm [1], are very classical

techniques for estimating mixtures of complex exponentials in
white noise. However, the underlying exponential sinusoidal
model (ESM), although the most studied in the literature, is
not the most general model tractable by HR methods. Indeed
the ESM only accounts for systems with single poles, whereas
one can find examples of systems involving multiple poles,
which generate mixtures of complex exponentials modulated
by polynomials, as shown in [2]. For instance, critically damped
harmonic oscillators involve a double pole [3]. Laguerre func-
tions are a special case of signals with multiple poles (the
exponentials are modulated by Laguerre polynomials), often
used in the estimation of time delays [4], [5], and in biomedical
engineering, for modeling fluorescence decay [6]. Signals with
multiple poles also appear in quantum physics, as solutions
of the Schrödinger equation for hydrogen-like atoms [7], in
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laser physics, as transverse laser modes [8], and in finance, for
modeling the evolution of interest rates [9].

In order to estimate the parameters of this more general poly-
nomial amplitude complex exponentials (PACE) model, also re-
ferred to as the quasi-polynomial model [10] in the literature, we
proposed in [2] a generalization of the ESPRIT algorithm for
estimating multiple poles. The polynomial amplitude parame-
ters can then be recovered by means of a least squares (LS)
method. The performance of an estimator is generally described
in terms of bias and variance, the latter being generally com-
pared to the Cramér-Rao bound (CRB), in terms of statistical
efficiency [11]. An analysis of the CRB for the frequencies and
damping factors of complex quasi-polynomials in white noise
was proposed in [10]. In [12], we derive analytic expressions of
the CRB for the frequencies, damping factors, amplitudes, and
phases of quasi-polynomials in colored noise, and these expres-
sions are simplified in an asymptotic context. In particular, it is
shown that the CRB for the parameters associated to a multiple
pole present an exponential increase with the order of the pole,
which suggests that the practical estimation of the PACE model
is only possible if the exponentials are modulated by polyno-
mials of low order.

Unfortunately, in the case of HR methods, the bias and vari-
ance cannot be calculated analytically, because the extraction of
polynomial roots, or matrix eigenvalues, induces a complex re-
lationship between the statistics of the signal and those of the
estimators. In the case of the ESM, however, asymptotic results
were obtained with the perturbation theory. These results rely
either on the hypothesis of a high window length ( , in
the case where all the poles are on the unit circle), or on the hy-
pothesis of a high signal-to-noise ratio (SNR) .
For instance, it was established in [13] and [14] that the Prony
[15] and Pisarenko [16] methods are very inefficient: their vari-
ances are much greater than the CRB. Conversely, the min-
imum norm method [17], MUSIC [18], ESPRIT [1], and Matrix
Pencil [19] have an asymptotic efficiency close to 1, as shown in
[20]–[24]. More precisely, it was proved in [22] and [23] in the
case of undamped sinusoids that MUSIC and ESPRIT perform
similarly, with a slight advantage for ESPRIT. This was con-
firmed in [24] in the more general case of the ESM: ESPRIT
and Matrix Pencil are less sensitive to noise than MUSIC.

In the case of the PACE model, it was shown in [2] that
the presence of noise scatters the multiple poles into several
single poles, forming the vertices of a regular polygon as a
first-order approximation. However, the original multiple pole
can be recovered by computing the arithmetic mean of the scat-
tered poles. In this paper, we analyze the performance of this
approach in presence of colored noise and under the high SNR
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hypothesis, in terms of first-order perturbations. These develop-
ments are utilized to show that the estimators proposed in [2]
for the PACE model are unbiased, and their variances are calcu-
lated and compared to the CRB. Additionally, by considering a
high observation length and a white noise, it is shown that the
efficiency of the estimators is close to 1. In particular, we gener-
alize a result presented in [19], which provides the ideal dimen-
sioning of the data matrix in order to improve the efficiency of
single poles estimators. However, our simulation results confirm
that the practical estimation of the parameters is only possible
for poles of low order. To illustrate the capabilities of our es-
timation method, we finally propose an application to ARMA
filter synthesis, in the context of system conversion from con-
tinuous time to discrete time.

The paper is organized as follows. Section II describes the
PACE model and the estimation method introduced in [2]. Then
the influence of an additive perturbation onto the estimated fre-
quencies, damping factors, amplitudes and phases is studied
in Section III. Section IV analyzes the performance of the es-
timators: their first-order bias and variances are calculated in
Section IV-A, then their asymptotic expansions are derived in
Section IV-B (in the case of undamped single poles). These de-
velopments are illustrated in Section V-A, where the variances
of the estimators are compared to the CRB, and the general-
ized ESPRIT algorithm is applied to ARMA filter synthesis in
Section V-B. The main conclusions of this paper are summa-
rized in Section VI. Finally, the mathematical developments for
the perturbation analysis are provided in the Appendix.

II. GENERAL FRAMEWORK

In Sections II-A and II-B, we summarize the basics of the
PACE model, also called quasi-polynomial model, and the gen-
eralized ESPRIT algorithm, which were presented in [2].

A. Polynomial Amplitude Complex Exponentials

Definition 1: Let . For all , define
the partial order , the frequency ,
the damping (or amplifying) factor , and the complex
pole . Suppose that the complex poles are dis-
tinct from one another. Then a discrete signal satisfies the
PACE model of order if and only if it can be
written in the form

(1)

where , is a complex polynomial of
order .

The polynomial can be decomposed onto the polyno-
mial basis of falling factorials:

Definition 2 (Falling Factorial): For all , the falling
factorial of order is the polynomial1

if
if

if .

In this basis, (1) can be rewritten in the form

(2)

where , , is a
complex amplitude. Define the real amplitude ,
and the phase2 .

The PACE model can be characterized by means of matrix
analysis. Indeed, the samples of the discrete signal can be
arranged into a Hankel data matrix with rows and
columns

...
...

...

(3)
In particular, the range space of can be characterized by the

generalized Pascal and Pascal-Vandermonde matrices.
Definition 3 (Generalized Pascal Matrices): Let and

. The generalized Pascal matrix denoted is an
matrix whose coefficients are

for all and .
Example 4: If and

Definition 5 (Pascal-Vandermonde Matrices): The
Pascal-Vandermonde matrix is the matrix formed by concate-
nating the generalized Pascal matrices

Based on the above definitions, the following proposition,
which is proved in [2], shows a factorization of the Hankel data
matrix:3

Proposition 1 (Factorization of the Data Matrix): An
Hankel matrix of the form (3) where is the signal defined
in (2) can be factorized in the form

(4)

1Note that this definition does not match the classical definition of the falling
factorial [25], [26], from which the multiplicative factor 1=m! is missing.

2In the whole paper, the notation ln(:) denotes the determination of the com-
plex logarithm which corresponds to an angle lying in ]� �; �[.

3In linear systems realization theory, state space representations also lead to
low-rank factorizations of Hankel matrices [27].
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where and are the and Pascal-Vandermonde
matrices, and is an block-diagonal matrix

whose block is an upper anti-trian-
gular Hankel matrix (in the particular case ,

).

B. Estimation of the Model Parameters

Proposition 1 shows that the matrix has rank , and that
its range space, called signal subspace, is also spanned by the
Pascal-Vandermonde matrix .

1) Rotational Invariance Property: The ESPRIT method re-
lies on a particular property of Vandermonde matrices known
as rotational invariance [1], which reflects the invariance of the
signal subspace to time shifts. Theorem 2, shown in [2], gener-
alizes this property to Pascal-Vandermonde matrices.

Theorem 2 (Rotational Invariance Property of Pascal-Van-
dermonde Matrices): Let be the matrix extracted from
by deleting the last row. Similarly, let be the matrix extracted
from by deleting the first row. Then and span the
same subspace, and

(5)

where is the block-diagonal matrix

(6)

whose block is the Jordan block whose diag-
onal coefficients are equal to .

The interesting fact in theorem 2 is that (5) involves a Jordan
matrix4 , which characterizes the poles and their multi-
plicity . As shown below, the generalized ESPRIT algorithm
consists in computing as a byproduct of the Jordan canonical
decomposition of a so-called spectral matrix.

2) The Generalized ESPRIT Method: In practice, the
Pascal-Vandermonde matrix is unknown. Nevertheless,
it was shown in [2] that in presence of white noise an
orthonormal matrix spanning the signal subspace can be
estimated by computing the left dominant -dimensional sin-
gular subspace of the noisy data matrix, or by using subspace
tracking methods [29]–[31]. Since and span the same
subspace, there is an invertible matrix such that

(7)

Substituting (7) into (5) shows that satisfies an equation sim-
ilar to (5): where , herein called the spectral ma-
trix, is defined by its Jordan canonical decomposition

(8)

It can be noticed that , the spectral matrix , which
depends on the observation window , is
similar to the unique Jordan matrix . Finally, the generalized
ESPRIT algorithm consists in the following:

4See [28, pp. 121–142] for a definition of Jordan canonical decomposition.

• estimating a basis of the signal subspace, via singular
value decomposition for instance,5

• computing the spectral matrix6 .
• computing the eigenvalues of from which the estimated

poles and their multiplicities can be extracted.
Note that in a noisy context, the estimated spectral matrix

does not have multiple eigenvalues in practice, and the general-
ized ESPRIT algorithm cannot be applied as it is. This problem
will be discussed in Section A.3) of the Appendix.

3) Estimation of the Complex Amplitudes: The complex
amplitudes are estimated by means of the LS method. Let

be the Pascal-Vandermonde matrix defined from
the estimated poles, and the -dimensional vector con-
taining the successive samples of the observed signal. Then
the LS-estimate of the vector (with

) containing the complex ampli-
tudes is

(9)

III. PERTURBATION ANALYSIS

The objective here is to measure the performance of the esti-
mators presented above in terms of bias and dispersion. Unfor-
tunately, it is not possible to establish analytic formulae in the
general case, because of the eigen or singular value decomposi-
tions. However, asymptotic results could be obtained by using
the perturbation theory in the case of the sinusoidal model [23]
and in the case of the ESM model [24], under the hypothesis
of a high SNR. We propose to apply the perturbation theory in
the more general framework of the PACE model, in order to
finally derive the first and second moments of the estimators.
First, we analyze the perturbation induced onto the frequencies
and damping factors, from which we derive the perturbation in-
duced onto the amplitudes and phases. The detailed mathemat-
ical developments can be found in the Appendix.

Suppose that the PACE signal is corrupted by a pertur-
bation (where ), so that the observed signal is

. In other terms, the Hankel data matrix
is corrupted by an additive perturbation , where is the

Hankel matrix containing the samples of , so that
the observed matrix is

(10)

Then suppose that the generalized ESPRIT algorithm is ap-
plied to the perturbed matrix instead of the exact matrix

. In Section A in the Appendix, it is shown that the perturbed
subspace weighting matrix (Section A.1), spectral matrix

(Section A.2), poles , frequencies and damping
factors (Section A.3) are functions of in the neigh-
borhood of , leading to the first-order expansions in propo-
sition 3.

5In linear systems realization theory, Ho’s algorithm is a well-known method
for identifying a state space representation [27]. The use of the singular value
decomposition in this context was early proposed in [32].

6In the whole paper, the symbol y denotes the Moore-Penrose pseudo-inverse.
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Proposition 3 (Perturbation of the Frequencies and
Damping Factors): Let7 and

. Then the functions
and are and admit the first-order expansions:

(11)

The first-order perturbations and are of the form

(12)

where the vectors and
(whose coefficients, defined in (45) in the Appendix, depend

on the model parameters) have dimension .
Knowing the influence of a perturbation of the data onto the

estimated poles, it is then possible to analyze the perturbation
induced onto the amplitudes and phases, obtained from these
poles by the least squares method. More precisely, it is shown
in Section B.2 in the Appendix that the complex amplitudes

, real amplitudes and phases are
functions of in the neighborhood of , leading to the
first-order expansions in proposition 4.

Proposition 4 (Perturbation of the Amplitudes and
Phases): Let and

. If , then the functions
and are in the neighborhood of

, and admit the first-order expansion

(13)

The first-order perturbations and are of the form

(14)

where the vectors (whose coefficients, defined in Section
B in the Appendix, depend on the model parameters) have di-
mension .

IV. PERFORMANCE OF THE ESTIMATORS

Here we aim at exploiting the results of the perturbation anal-
ysis in Section III to derive the first and second moments of the
generalized ESPRIT estimators [2] in the case of a high SNR.
The most remarkable property shown below is that the asymp-
totic efficiency of the estimators of all parameters associated to
single undamped poles is minimum if and only if the number
of rows and the number of columns of the data matrix sat-
isfy either or . In practice, this result allows to
properly dimension the data matrix when the length of the ob-
servation window is fixed.

From now on, we suppose that is a circular complex
stationary process of variance 1. Then the stationary process

7It is supposed here that all frequencies lie between �1/2 and 1/2.

can be viewed as a complex noise of variance
. Using vector notations, we can write ,

where the vectors , and contain the successive sam-
ples of the corresponding signals in the observation window

. The covariance matrix
of the circular complex random vector is an Toeplitz
matrix, whose diagonal coefficients are equal to 1. In the partic-
ular case of white noise, is equal to the identity.

Section IV-A presents the first-order performance analysis,
which is then simplified in Section IV-B in an asymptotic con-
text. The proofs of the results presented in this Section can be
found in the Appendix.

A. First-Order Performance

The following proposition gives the variances of the esti-
mated poles , damping (or amplifying) factors and frequen-
cies , obtained by applying the generalized ESPRIT algorithm
[2] to the perturbed signal .

Proposition 5: The estimator of the pole is
unbiased at the first order, and its variance is of the form

(15)

where the vector is defined in (45). In the same way, the
estimators and of the damping factor
and of the frequency are unbiased at the first order. Moreover,
their respective variances are of the form

(16)

(17)

The variances of and are derived from their first-order
expansions, presented in Proposition 3 in Section III. A remark-
able similitude can be noticed between their expressions and the
CRB, whose formulas were derived in (10) and (11) in [12].8

However, (16) and (17) are not self-explanatory, because they
involve many auxiliary variables, via the vectors . It will be
shown in Section IV-B that under some additional hypotheses,
they can be simplified.

These variances satisfy the following properties9:
• if the noise is white ( ), the variances of and

depend on the frequencies only by their differences10;
• if is a single pole, the variances of and do not

depend on any phase, and they are inversely proportional
to , but they do not depend on any other amplitude.11

Proposition 6 below gives the variances of the estimated com-
plex amplitudes , real amplitudes and phases , ob-
tained by means of the least squares (LS) method [2].

8The expressions of the CRB of the PACE model were also presented in
Proposition III.2.1 in [38, p. 37].

9These properties can be proved by a thorough analysis of the particular struc-
ture of the vector uuu , defined in (45).

10This property is also satisfied by the CRB [12].
11In the case of the CRB, this property also applies to multiple poles [12].



496 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 2, FEBRUARY 2008

Proposition 6: The estimator of the vector of com-
plex amplitudes is unbiased at first order, and its covariance
matrix is of the form

(18)

where the matrix is defined in (53). In the same way,
the estimators and of the
real-valued amplitude and the phase are unbiased at
first order. Moreover, their respective variances are of the form

(19)

(20)

where the vectors , introduced in proposition 4, are the
columns of the matrix .

As for proposition 5, the variances of , and are ob-
tained from their first-order expansions, presented in Proposi-
tion 4 in Section III.

B. Asymptotic Performance

Let us suppose that the noise is white and that
all poles are on the unit circle ( , ).
We present below some asymptotic expansions of the estimator
variances with respect to , and .

Corollary 7: If is a single pole, the variances of the esti-
mators and admit the expansions

(21)

(22)

Both of them are minimal for or for
(if equals 2 modulo 3), and these

minima admit the asymptotic expansions

The proof of corollary 7 relies on the first-order expansion of
the vector involved in (16) and (17), which admits a simple
closed form. Attention must be paid to the fact that expressions
(21) and (22) are only valid for a single pole. If is a multiple
pole, these variances cannot be formulated in such a simple way
and are function of the complex amplitudes associated to for
all indices (the optimal values of and are
also function of these amplitudes in this case). These variances

Fig. 1. Efficiency of the estimators. (a) Efficiency of the estimation of the fre-
quencies and damping factors; (b) efficiency of the estimation of the real-valued
amplitudes and phases.

can be compared to the asymptotic CRB derived in (14) and (16)
in [12].12

Under the above hypotheses, the asymptotic efficiency
of the estimators of all damping factors and all frequencies
associated to the single poles is the same one, independent
from the model parameters, and equal to if

or .

In this way, the results obtained in [19] about the Matrix Pencil
method (in the particular case of a single complex sinusoid) are
recovered. Fig. 1(a) represents the ratio between the CRB and
the variance of the estimators in a logarithmic scale, as a func-
tion of the ratio . Thus, it can be verified that the
maximum is reached at and as
expected. Besides, the performance collapses when becomes
too high or too small.

The following corollary is the analogue of corollary 7 for the
real-valued amplitudes and phases.

Corollary 8: If is a single pole, the variances of the esti-
mators and admit the expansions

(23)

(24)

12The expressions of the asymptotic CRB of the PACE model were also pre-
sented in Proposition III.2.2 in [38, p. 38].
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Both of them are minimal for or for
(if equals 2 modulo 3), and these

minima admit the asymptotic expansions

The proof of corollary 8 relies on the first-order expansions
of the vectors involved in (19) and (20), which admit a
simple closed form. Again, attention must be paid to the fact that
expressions (23) and (24) are only valid for a single pole. These
variances can be compared to the asymptotic CRB derived in
(17) and (18) in [12].13

Under the above hypotheses, the asymptotic efficiency
of the estimators of all the real-valued amplitudes and
phases associated to single poles is the same one, in-
dependent from the model parameters, and equal to

if or .

This efficiency is even better than that of the estimators and
. It can also be noticed that the optimum is obtained for the

same values of and as in the previous case. Fig. 1(b) repre-
sents the ratio between the CRB and the variance of the estima-
tors in a logarithmic scale, as a function of the ratio .
Again, the maximum is reached at and

, and the performance collapses when becomes too
high or too small. The similitude between the curves represented
in Fig. 1(a) and (b) is noticeable. This could be explained by the
fact that the estimation of the amplitudes and the phases directly
relies on the estimation of the frequencies and the damping fac-
tors.

V. SIMULATION RESULTS

A. Dependence of the Variances With Respect to the PACE
Parameters

This section illustrates the variations of the estimators
variances with respect to the parameters of the PACE model.
Note that propositions 5, 6 and corollaries 7, 8 show a rather
simple dependency on the amplitudes and the variance .
Therefore, we focus here on the dependency on the frequency
gap between two components (Section V-A-1), the damping
factor (Section V-A-2), the spectral flatness of the noise
(Section V-A-3), and the order of a pole (Section V-A-4). For
these simulations, the same synthetic signals as those intro-
duced in [12] are used. In the figures, the solid lines represent
the theoretical variance of the frequency estimators or that of
the damping factor estimators, which are equivalent according
to (17). In the same way, the dashed lines represent the theo-
retical relative variance of the amplitude estimators, which is
equal to that of the phase estimators, according to (20).

1) Variation of the Variances With Respect to Frequency
Gaps: We consider a signal of length , composed

13The expressions of the asymptotic CRB of the PACE model were also pre-
sented in Proposition III.2.2. in [38, p. 38].

Fig. 2. Variation of the variances with respect to the frequency gap. (a) Vari-
ance for the frequencies (dB). (b) Relative variance for the amplitudes (dB). (c)
Efficiency (-dB).

of two undamped components of same order
, in white noise ( and ).

These components have zero phases, and same amplitudes,
such that . Fig. 2(a) and (b)
shows the variations of the variances of the estimators obtained
with , with respect to the frequency gap

( was set to 0). The diamonds rep-
resent the empirical variance, obtained by averaging 100 runs
of the ESPRIT algorithm. They match the theoretical variance,
which confirms the validity of our perturbation analysis for
this SNR. The variation rate of the variances is similar to that
of the CRB [12]: it is broken at , which
corresponds to the resolution limit of Fourier analysis. At this
limit point, the relative variance of the amplitude estimate is
still lower than 60 dB, which shows the good resolution of
the ESPRIT algorithm. The efficiencies of both estimators are
represented in Fig. 2(c). It can be noticed that they remain close
to 1, even when the frequency gap tends to zero.

2) Variation of the Variances With Respect to the Damping
Factor: We consider a signal of length , composed of
one component of order , in white noise (

and ). This component has zero frequency and phase,
and an amplitude such that . Fig. 3(a) and (b)
shows the variations of the variances of the estimators obtained
with , with respect to the damping factor .
The diamonds represent the empirical variance, obtained by av-
eraging 500 runs of the ESPRIT algorithm. They no longer ex-
actly match the theoretical variance for negative values of delta,
which shows the validity limit of our perturbation analysis with
respect to the high SNR hypothesis. Again, these variations are
very similar to those of the CRB illustrated in [12]. The efficien-
cies of both estimators are represented in Fig. 3(c). They remain
close to 1 whatever the value of the damping factor is.

3) Variation of the Variances With Respect to the Spectral
Flatness of the Noise: We consider a signal of length
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Fig. 3. Variation of the variances with respect to the damping factor. (a) Vari-
ance for the damping factor (dB). (b) Relative variance for the amplitude (dB).
(c) Efficiency (-dB).

, composed of one undamped component of order
, in colored noise. This component has a zero phase, a

normalized frequency equal to 0.05, and an amplitude such that
. The noise is obtained by filtering a white

noise by the filter of transfer function
(where ), such that .
The Spectral Flatness (SF) measure of the noise is defined as

By tuning the parameter , it is possible to make the spectral
flatness map the range ]0,1] (the case corresponds to
white noise). Fig. 4 illustrates the variations of the variances
of the estimators obtained with , with re-
spect to the spectral flatness of the noise. As expected, Fig. 4(c)
shows that the efficiency degrades when the spectral flatness
decreases (note that the ESPRIT algorithm explicitly relies on
the white noise assumption). In other respects, Fig. 4(a) and (b)
shows that the variances admit a maximum when .
At this point, the theoretical and the empirical variances (ob-
tained by averaging 1000 runs) no longer match in Fig. 4(b),
which shows the validity limit of our perturbation analysis for
this SNR. In the range , the variances decrease
when the spectral flatness increases, as expected. In the range

, we observe the inverse phenomenon. Indeed,
as mentioned in [12], the power spectral density of the noise
becomes a sharp peak when SF becomes low, and converges to
a spectral line when . Therefore, the problem of es-
timating the single undamped component in colored noise be-
comes close to the problem of estimating two undamped com-
ponents without noise. However, contrary to what is observed
in [12] in the case of the CRB, we note that the variances are
stationary in the interval . This is because the

Fig. 4. Variation of the variances with respect to the spectral flatness of the
noise. (a) Variance for the frequency (dB). (b) Relative variance for the ampli-
tude (dB). (c) Efficiency (-dB).

ESPRIT algorithm is applied with an “erroneous” model order
( instead of 2).14

4) Variation of the Variances With Respect to the Pole Order:
We consider a signal of length , composed of one un-
damped component of order , in
white noise ( and ). This component has zero
phases, and amplitudes such that , and

, . The corresponding pole is .
Fig. 5(a) and (b) shows the variations of the variances of the es-
timators obtained with , with respect to the
pole order . They confirm the results obtained for the CRB
[12]: estimating multiple poles is all the more difficult as their
order is high. Actually this estimation is no longer possible in
this case if . Besides, the empirical variance (obtained
by averaging 100 runs) and the theoretical variance no longer
exactly match for , which shows the validity limit of our
perturbation analysis for this SNR (we observed that they match
again if the SNR becomes greater than 80 dB). In other respects,
Fig. 5(c) shows that the efficiency rapidly degrades when in-
creases. We may infer that the arithmetic mean of the scattered
eigenvalues is not a sufficiently reliable estimator for a pole of
high multiplicity. Some ideas to improve this estimator are sug-
gested in [34].

B. Application to ARMA Filter Synthesis

As shown in Section V-A-4, estimating multiple poles is a
difficult task. In order to illustrate the practical capabilities of the
generalized ESPRIT algorithm in presence of multiple poles, we
propose below an application to ARMA filter synthesis, in the
context of system conversion from continuous time to discrete
time.

14The impact of an erroneous modeling order on the estimated parameters
was studied in [33].
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Fig. 5. Variation of the variances with respect to the pole order. (a) Variance for
the frequency (dB). (b) Relative variance for the amplitude (dB). (c) Efficiency
(-dB).

1) Principle: We consider continuous time systems defined
by an ordinary differential equation (ODE) with real-valued co-
efficients (below denotes the continuous time, in seconds)

whose transfer function can be written in the form

where and denotes the frequency, in Hertz. More-
over, we suppose that and satisfy the conditions of
the Nyquist-Shannon sampling theorem: such that the
Fourier transforms and are zero outside the range

, and we consider the discrete signals
and for all (where ),

obtained by sampling and at the frequency . Then
it is well known that can be obtained from by applying
the discrete filter of frequency response

where is the normalized frequency. It can
be noticed that the time delay can be chosen such that

. In this case, if the denomi-
nator is never zero, the 1-periodic function is
continuous and piecewise continuously differentiable, which
proves that , thus the discrete filter is stable.
The impulse response can then be obtained by numeri-
cally computing the inverse discrete time Fourier transform of

. However, this impulse response is generally

infinite, and we aim at approximating it by an AutoRegressive
Moving Average (ARMA) filter .

It is well known that the general rational transfer function of
a stable ARMA filter can be decomposed in the form

(25)

where for all is a pole of multiplicity
(here we assume ). This transfer function corresponds to
the impulse response

for all , and

for all .
Thus both the causal and anticausal parts of satisfy a

PACE model.15 Following this remark, we can find an ARMA
filter which approximates the discrete filter by applying the
generalized ESPRIT algorithm to the impulse response on
two appropriately chosen finite intervals.

2) Example: The ARMA filter synthesis method could be
successfully used for designing differentiator or integrator fil-
ters. Here it is applied to the continuous time system

(26)

with parameters and16 . The impulse and
the frequency response of the corresponding discrete filter are
represented in Fig. 6.

Equation (26) shows that the continuous time filter contains
a triple pole at . When synthesizing the corresponding
ARMA filter, we thus expect to find a triple pole at

. Fig. 7 represents the estimated poles of the causal part of
in the complex plane, obtained by applying the ESPRIT algo-

rithm with , , and17 .
As expected, we observe a triple pole in the neighborhood of

(which is scattered into three single eigenvalues
forming the vertices of an equilateral triangle). We also observe
a double pole in the neighborhood of 0, which corresponds to
the polynomial part of the transfer function in (25). Finally, we
obtained an ARMA filter with 26 poles and 27 zeros. The ap-
proximation error for the impulse response was

15Note that the causal part generally contains a multiple pole z = 0, whereas
the anticausal part never contains a pole at z = 1.

16The fractional part of the delay t was chosen in order to make the frequency
response H(e ) continuous, and the integer part of t was chosen as the
smallest integer such that the anticausal part of the estimated filter g has no pole
at z = 1.

17The order r was selected by means of Information Theoretic Criteria [35].
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Fig. 6. Impulse and frequency response of the discrete filter.

and the approximation error for the frequency response was

VI. CONCLUSION

In this paper, the performance of the generalized ESPRIT
algorithm for estimating the parameters of the PACE model,
also called quasi-polynomial model, was investigated in the con-
text of high SNRs. This paper was based on the analysis of the
first-order perturbations induced by an additive noise. In partic-
ular, it was shown that the perturbation of the estimated poles
is not sensitive to the particular choice of the orthonormal sub-
space weighting matrix. In other respects, the presence of noise
scatters multiple poles into several single eigenvalues, forming
the vertices of a regular polygon. However, it was proved that
the estimation of multiple poles can be improved by calculating
the arithmetic mean of the scattered eigenvalues.

Then it was shown that the estimators of all the parameters
obtained in this way are unbiased, and their variances were cal-
culated and compared to the CRB. By supposing that the noise
is white, that all poles are on the unit circle, and that the SNR,
and , it was shown that the efficiency of single poles es-
timators is close to 1. More precisely, the asymptotic efficiency
of the estimators of all damping factors and frequencies is the
same one, independent from the model parameters, and equal to

if or . In other respects, the asymp-
totic efficiency of the estimators of all the real-valued ampli-
tudes and phases is the same one, independent from the model
parameters, and equal to if or .

However, our simulation results showed that the variances of
the estimators associated to a multiple pole present an exponen-
tial increase with the order of the pole. Thus the practical es-
timation of the PACE model parameters is only possible if the
exponentials are modulated by polynomials of low order. Nev-
ertheless, some recent advances in linear algebra computations,
such as the techniques proposed in [34], offer interesting out-
looks for improving the estimation of multiple poles.

Fig. 7. Poles of the causal part of the ARMA filter.

APPENDIX

The following developments lead to propositions 3 and 4 pre-
sented in Section III. The exhaustive proofs of these results are
presented in a supporting document [39].

A. Perturbation of the Frequencies and Damping Factors

We successively derive the following first-order expansions:
• , where the expression of

is a linear function of (proposition 9);
• , where the expression of

is a linear function of (proposition 10);
• , where the expression of

is a linear function of (proposition 12);

• where the expressions of

and are functions of (corollary 3).
Finally, successive substitutions lead to the expressions of
and as functions of the additive perturbation .

1) Perturbation of the Signal Subspace: Here we analyze the
influence of a perturbation of the data onto the signal subspace.
For all , let be the projector onto the -dimensional
dominant subspace of the positive semidefinite matrix

. If is orthonormal, . Then the
perturbation theory shows that the function is in
a neighborhood of . In the literature, the asymptotic per-
formance analysis of some subspace-based algorithms was per-
formed by investigating the perturbation of this projector at the
first order [36]. However, we are interested here in the perturba-
tion of the subspace weighting matrix , which is analyzed in
the following proposition.

Proposition 9 (Perturbation of the Signal Subspace): There
exists an infinity18 of functions defined in a
neighborhood of and with values in the group of com-
plex orthonormal matrices , which span the -dimensional
dominant subspace of (i.e. such that and

18All these functions are obtained by right-multiplying any of them by a C
function, with values in the group of complex orthonormal matrices , and
reaching the value III at " = 0.
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). Each function admits a
first-order expansion

(27)

The first-order perturbation can be decomposed as

(28)

where the matrix is antihermitian and the
matrix is orthogonal to

(29)

The proof of proposition 9 relies on the implicit definition of
as the unique minimum point of a cost function . Equa-

tions (27) to (29) are thus derived by zeroing the first derivative
of .

Proof of proposition 9: It can be verified that the function

satisfies all the properties mentioned in proposition 9. It is
also clear that any function of the form , where

is a function, whose values belong to the
group of orthonormal matrices , and which reaches the
value at , also satisfies these properties. Lastly, if

is an other function satisfying all these properties,
then . Therefore,

, where is a
function, whose values belong to the group of orthonormal ma-
trices since and are two orthonormal bases
of the same subspace, and which reach the value
at . Then note that according to [37], any orthonormal
matrix spanning the principal subspace of the matrix

minimizes the function

Consequently, the gradient is zero at . How-
ever, it can be verified19 that

Let be the first-order expansion
of the function . Then

(30)

where

(31)

19To computerrrJ (UUU), the following derivation rule has to be applied: ifMMM
is a constant n� r matrix,rrrtrace(<(UUU MMM)) =MMM . As a consequence, ifCCC
is a constant n� n hermitian matrix,rrrtrace(UUU CUCUCU) = 2CUCUCU .

and

(32)

However, the first-order expansion of the orthonormality condi-
tion shows that

, which means that the matrix is anti-
hermitian. Thus . Since

, (30) to (32) yield

Finally, by noting that , (27) to
(29) can be derived.

2) Perturbation of the Spectral Matrix: The following propo-
sition complements the result of proposition 9 by showing how
the spectral matrix is perturbed.

Proposition 10 (Perturbation of the Spectral Matrix): Sup-
pose that the matrix is full-rank. Then in the neighborhood
of , is also full-rank. Moreover, the function

(33)

is , and admits the first-order expansion

(34)

The first-order perturbation can be written in the form

(35)

where the matrix is defined as

(36)

Equations (34) to (36) are obtained by substituting (27) to
(29) into the first-order expansion of (33) which defines .

In the following step, the estimated poles are defined as the
eigenvalues of the perturbed spectral matrix . In order to
compute their first-order expansion, we first need to introduce
the matrix , which is similar to ; thus
the estimated poles can also be viewed as the eigenvalues of

. Note, however, that is generally no longer a Jordan
matrix when . The following corollary provides the first-
order expansion of this matrix. Let us define the vectors and

of same dimension as the conjugate transpose of the first
and last row of the matrix , respectively, and consider the

positive definite matrix .
Corollary 11: Let . The function

is in a neighborhood of , and admits the expan-
sion

(37)

where the first-order perturbation can be
written in the following form (where ):

(38)
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Moreover, the matrix has rank 2

(39)

where the Pascal-Vandermonde matrix and the
block-diagonal matrix were introduced in Proposition 1, the
-dimensional vectors and are defined as

and the -dimensional vectors and are defined as

Corollary 11 is derived from proposition 10 by means of the
basis change (7).

3) Perturbation of the Poles: Finally, we focus in this section
on the perturbation of the poles. Theoretically, they are obtained
by computing the Jordan form of the spectral matrix . In prac-
tice, contrary to , the perturbed spectral matrix does not have
multiple eigenvalues: multiple poles are scattered into several
single eigenvalues.

More precisely, it was shown in [2] that if :
• the first-order perturbation of the pole is homoge-

neous and isotropic, so that the perturbed eigenvalues
form the vertices of a regular polynomial of order

in the complex plan;
• the perturbation of the scattered eigenvalues is of order

, which suggests that multiple poles are more sen-
sitive to perturbations than single poles.

In fact it is possible to overcome this problem by no longer
considering the eigenvalues as distinct estimators
of the same pole , but rather by forming a single estimator
of this pole by averaging the . The following proposi-
tion shows that the arithmetic mean of the scattered eigen-
values admits a series expansion.

Proposition 12 (Perturbation of the Poles): Let
. Then the func-

tion is and admits the first-order expansion

(40)

where is the complex number

(41)

Here, is the sub-block of dimension extracted
from the matrix , which is associated to .20 The complex
number can also be written in the form

(42)

20This corresponds to the rows and columns of indices M to
M � 1.

The -dimensional vectors and are defined21 as

(43)

where and are the -dimensional vectors whose coeffi-
cients are equal to those of and inside the sub-block,22

and zero outside this sub-block.
Equation (42) is derived by substituting (39) into (41). It can

be noticed that the antihermitian matrix , introduced in propo-
sition 9, is no longer involved in proposition 12. We can con-
clude that the performance of the generalized ESPRIT algorithm
is not sensitive to the particular choice of the orthonormal basis

(at the first order).
Since the matrix is Hankel and contains the samples of

the PACE signal, the right member of (42) contains linear com-
binations of for . Therefore,
(42) can also be written as a scalar product

(44)

where for all , the coefficient of index
in is23

(45)
Equation (45) involves two convolution products, which are due
to the Hankel matrix/vector products in (42).

Finally, proposition 3 in Section III shows how the perturba-
tion of the poles affects the frequencies and damping factors.

B. Perturbation of the Amplitudes and Phases

We successively derive the following first-order expansions:
• , where the expression of

is a linear function of the ’s (lemma 13);
• , where the expression of is

a linear function of (proposition 14);

• where the expressions of

and are functions of (corollary 4).
1) Perturbation of the Pascal-Vandermonde Matrix:
Lemma 13 (Perturbation of the Pascal-Vandermonde Ma-

trix): Let be the Pascal-Vandermonde matrix
associated to the estimated poles defined
in proposition 12. Then the function is in the
neighborhood of , and admits the first-order expansion

(46)

21It can be verified that if M = 1, the vectors fff and fff do not depend
on any complex amplitude.

22This corresponds to the coefficients of indices M to
M � 1.

23Here the function 1 is one if its argument is true and zero otherwise.
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where the matrix can be written in the form

(47)

where is the Pascal-Vandermonde matrix ob-

tained by concatenating the generalized Pascal matrices
of dimension , and

(48)

is a matrix whose diagonal blocks

(49)

have dimension .
Lemma 13 is proved by substituting the first-order expansion

of the poles (40) into the expression of the Pascal-Vandermonde
matrix, and by extracting the terms of order 1.

2) Perturbation of the Amplitudes and Phases: The pertur-
bation of the complex-valued amplitudes can be derived from
lemma 13. Let

be the -dimensional vector containing the samples of the
PACE signal. For all , the -dimensional observed vector
is .

Proposition 14 (Perturbation of the Complex-Valued Ampli-
tudes): The perturbed LS estimate defined in (9) can be written
in the form

(50)

Then the function is in the neighborhood of
, and admits the first-order expansion

(51)

The -dimensional vector satisfies

(52)

where the matrix

... (53)

involves the matrices , of rank 1

(54)
Equations (51) –(54) are obtained by substituting (46) to (49)

into the first-order expansion of (50).
Finally, proposition 4 in Section III shows how the pertur-

bation of the complex-valued amplitudes influences the real-
valued amplitudes and phases. The vector is the column of

associated to the pole at index , i.e., the column of index
. The derivation of (14) from (52) is straight-

forward.
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