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High-Resolution Spectral Analysis of Mixtures of
Complex Exponentials Modulated by Polynomials

Roland Badeau, Member, IEEE, Bertrand David, and Gaël Richard, Member, IEEE

Abstract—High-resolution methods such as the ESPRIT al-
gorithm are of major interest for estimating discrete spectra,
since they overcome the resolution limit of the Fourier transform
and provide very accurate estimates of the signal parameters.
In signal processing literature, most contributions focus on the
estimation of exponentially modulated sinusoids in a noisy signal.
This paper introduces a more general class of signals, involving
both amplitude and frequency modulations. It shows that this
Polynomial Amplitude Complex Exponentials (PACE) model is
the most general model tractable by high-resolution methods.
A generalized ESPRIT algorithm is developed for estimating
the signal parameters, and it is shown that this model can be
characterized by means of a geometrical criterion.

Index Terms—ESPRIT, high resolution, multiple eigenvalues,
polynomial modulation, rotational invariance property.

I. INTRODUCTION

THE foundation of high-resolution methods dates back
from the work by de Prony [1] published in 1795, which

aims at estimating a sum of exponentials via linear prediction
techniques. More recently, this approach was further inves-
tigated by Pisarenko [2] for estimating sinusoids in noise.
On the other hand, modern high-resolution methods rely on
subspace-based signal analysis. This is the case of the MUltiple
SIgnal Classification (MUSIC) algorithm [3] and its variant
root-MUSIC [4], the Toeplitz Approximation Method (TAM)
[5], the Estimation of Signal Parameters via Rotational Invari-
ance Techniques (LS-ESPRIT) [6], and its variants TLS-ES-
PRIT [7] and PRO-ESPRIT [8]. In fact, all these estimation
methods are also suitable for the more general Exponential
Sinusoidal Model (ESM), which was successfully applied in
the field of audio signal processing for example [9]–[11]. In
addition, specific estimation techniques were designed for the
ESM, such as the Minimum-Norm (KT) method [12], the Ma-
trix Pencil method [13], and the modified KT (MKT) method
[14]. A survey of subspace-based signal analysis can be found
in [15]. A different approach for estimating the parameters of
the ESM is based on matching pursuit algorithms [16].

In signal processing literature, the ESM is generally consid-
ered as the general model tractable by high-resolution methods.
However, it can be shown that this model is restricted to signals
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which only contain single poles. Conversely, the more general
Polynomial Amplitude Complex Exponentials (PACE) model
proposed in this paper encompasses the multiple-poles case. It
describes a more general class of signals, involving both am-
plitude and frequency modulations, and leads to an alternative
interpretation of the frequency estimates obtained by means
of high-resolution methods. A physical example of the PACE
model is the critically damped simple harmonic motion of the
spring/mass system, which involves a double pole. Below, a
complete estimation scheme is proposed, based either on linear
prediction or on the ESPRIT algorithm.

The paper is organized as follows. In Section II, the solution
to general homogeneous linear recursions is discussed, and a full
parameterization is proposed. Then, it is demonstrated in Sec-
tion III that a Hankel data matrix containing successive samples
of the signal is rank deficient and that its range space, known as
the signal subspace, is spanned by a so-called Pascal–Vander-
monde matrix. In Section IV, the generalized ESPRIT method
for estimating the PACE signal model is presented, and its per-
formance regarding the estimation of amplitude and frequency
modulated sinusoids is illustrated in Section VI. Finally, the
main conclusions of this paper are summarized in Section VII,
and some theoretical results are presented in the Appendix.

II. DISCRETE SIGNAL MODEL

A. Homogeneous Linear Recursions

High-resolution methods are historically linked to linear pre-
diction techniques [1], [2], [12]. Indeed, all of them rely on the
following discrete signal model:

(1)

where , and all the poles
are distinct. It is well known that such a signal satisfies

an homogeneous linear recursion of the form

where , are the coefficients of the polynomial

(2)

written in the form , where
and . Based on this observation, the estimation methods
proposed in [1], [2], [12] consist of estimating the prediction
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polynomial from the samples of the signal, whose roots
form the estimated poles.

If the signal is modeled as a sum of real or complex sinusoids,
the poles are supposed to belong to the unit circle [1], [2]. Thus,
each pole can be written in the form where

is the frequency of the th sinusoid. More generally, if the
signal is modeled as a sum of exponentially modulated sinusoids
(ESM), the poles can be anywhere in the complex plane except
zero [12]. In this case, each pole can be written in the form

, where is the damping factor of the
th sinusoid. In particular, poles with the same polar angle and

different radii are associated to the same frequency.
Nevertheless, the ESM does not correspond to the general

solution of homogeneous linear recursions, since in the general
case a prediction polynomial can have multiple roots. To handle
this case, (2) must be replaced by

(3)

where can be greater than 1,
so that the degree of is . Thus,
the prediction polynomial can be written in the form

, where and . The general solu-
tion to the corresponding linear recursion

is obtained by turning (1) into

(4)

where is a complex polynomial of
order less or equal to (see [17, p. 33] for a proof). In this
paper, the signal model in (4) is referred to as the PACE model.
In particular, this model can associate several single poles to
a single frequency (as for the ESM), as well as multiple poles
(contrary to the ESM).

B. Full Parameterization of the Signal Model

The signal model in (4) is not yet complete, since a full pa-
rameterization would in addition require the choice of a polyno-
mial basis over which could be projected. Below, we focus
on a particular polynomial basis which satisfies a simple linear
recursion.

Definition II.1 (Falling Factorial): For all , the falling
factorial of order is the polynomial1

if
if
if

1Note that this definition does not exactly match the classical definition of
the falling factorial [18], [19], from which the multiplicative factor (1=m!) is
missing.

The family is a basis of since the degree
of is for all . In addition, these polynomials
satisfy for all the linear recursion

(5)

The polynomials of order can be decomposed into
the basis

where , so that (4) can be
rewritten in the form2

(6)

where
is a complex amplitude.

This signal model can be extended by introducing an additive
noise. More precisely, the observed signal can be modeled
as the sum of the deterministic signal defined in (6), plus an
additive white noise of variance .

Therefore, the parameters of the complete model are as fol-
lows:

• the order and the multiplicities ;
• the complex poles ;
• the complex amplitudes ;
• the variance .

High-resolution methods based on linear prediction, such as
[1], [2], and [12], can be used directly to estimate the parame-
ters and , which are completely characterized by the
prediction polynomial. However, in a noisy context, the esti-
mated prediction polynomial does not have multiple roots. This
problem will be discussed in Section V-A.

Remark: The modeling order for both the ESM and the
PACE model is the order of the prediction polynomial .
Thus, it would be interesting to compare the numbers of param-
eters involved by the two models for a same modeling order .
Indeed, the PACE model is interesting for coding applications
because all the poles of multiplicity only need to be
coded one time. However, the multiplicities
also have to be coded, which is not the case for the ESM, which
only contains single poles. More precisely, the PACE model
involves integers, plus real numbers.
As a comparison, the ESM model involves one integer (the
model order), plus real numbers. We can conclude that
the PACE model involves less parameters than the ESM when

. Besides, integers can be coded with less bits than
real numbers, which suggests that the PACE model can also be
interesting even if this inequality is not satisfied.

2The intentional introduction of the time shift t�m will be self-explanatory
in the following developments.
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III. MATRIX MODEL

As opposed to linear prediction techniques, modern high-res-
olution methods (e.g., [3], [6], [13]) rely on matrix analysis
(more precisely on the particular structure of the data matrix).

A. Definition and Range Space of the Data Matrix

The samples of a discrete signal can be arranged into a
Hankel data matrix with rows and columns, as
follows:

...
...

...

(7)

The following theorem shows that if the matrix has a
deficient rank then the observed signal satisfies
the noiseless model (6) under a simple condition.

Theorem III.1 (Equivalence of the Low-Rank Hankel Struc-
ture and the Signal Model): Let , and an integer
such that and . Let be the matrix extracted
from by deleting the last row. Similarly, let be the
matrix extracted from by deleting the first row. The fol-
lowing statements are equivalent.

1) The matrix has rank , and the extracted matrices
and also have rank .

2) The signal can be written in the form (6) on the
interval , and

.
The proof of this theorem is quite complex and can be found

in [20].
Below, we only assume that can be written in the form

(6) on the interval , without supposing
that . In order to charac-
terize the range space of , we need to introduce the so-called
generalized Pascal and Pascal–Vandermonde matrices. First,
generalized Pascal matrices form a generalization of the well
known lower triangular Pascal matrices,3 whose definition can
be found in [21].

Definition III.2 (Generalized Pascal Matrices): Let
and . The generalized Pascal matrix denoted is
a matrix whose coefficients are4

for all and .
Example III.3: If and

3A lower triangular Pascal matrix is a square generalized Pascal matrix for
which z = 1.

4If z = 0, we define CCC (0) = 1 8i, and 8i 6= j;CCC (0) = 0.

A Pascal–Vandermonde matrix is formed by concatenating
several generalized Pascal matrices. Thus, the following defi-
nition generalizes the classical Vandermonde structure [22, pp.
29]. It can also be found in [23].

Definition III.4 (Pascal–Vandermonde Matrices): Let
. For all , let and . Let

. The Pascal–Vandermonde matrix is the
matrix formed by concatenating the generalized Pascal matrices

Example III.5: If
, and

The following proposition generalizes a classical result about
the determinant of Vandermonde matrices [22, pp. 29].

Proposition III.6 (Determinant and Rank of Pascal–Vander-
monde Matrices): The determinant of the square Pascal–Van-
dermonde matrix is

As a result, the Pascal–Vandermonde matrix (with
) has rank if and only if the parameters

are distinct.
The proof of this proposition can be found in [20].

B. Factorization of the Data Matrix

Based on the above definitions, a factorization of the Hankel
data matrix is proposed in this section.5 Proposition III.7 is a
generalization of the result presented in [13] to the multiple-
poles case.

Proposition III.7 (Factorization of the Data Matrix): An
Hankel matrix of the form (7) where is the signal

defined in (6) can be factorized in the form

(8)

where is the block-diagonal matrix

. . .
...

...
. . .

. . .
(9)

5Such a factorization was already established by Vandevoorde and Boley in
[23] and [24]. However, the developments presented here rely on different con-
cepts. Moreover, they lead to an explicit formulation of the block-diagonal factor
DDD(t) (see Proposition III.7).
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whose th block is the upper antitriangular
Hankel matrix

...
...

whose coefficients are, for all and

(10)

The Proof of Proposition III.7 is presented in Appendix A.
The following corollary is the foundation of the estimation tech-
nique presented in Section IV.

Corollary III.8 (Rank of the Data Matrix): A Hankel
matrix of the form (7), where is the signal defined in
(6), has rank if and only if

(11)

The Proof of Corollary III.8 can be found in Appendix A. In
Section IV, it is always supposed that condition (11) is satisfied.
This condition means that , the polynomial

in (4) is of order .

IV. ESTIMATION OF THE MODEL PARAMETERS

Below, the generalized ESPRIT algorithm for estimating the
poles independently from the complex amplitudes is presented.
Then methods for estimating the model order and the complex
amplitudes are briefly reviewed in Section IV-D.

A. Low-Rank Structure of the Correlation Matrix

Subspace-based methods rely on the particular structure of
the correlation matrix of the signal , which is defined as
follows:

(12)

Substituting (8) into (12) yields the following factorization of

(13)

where is the time-varying positive definite matrix

In particular, (13) shows that the matrix spans the
-dimensional range space of , which is called signal

subspace in the literature. Since is a positive semidef-
inite matrix, it is diagonalizable in an orthonormal basis, and its
eigenvalues are nonnegative. Moreover, since has rank

of its eigenvalues are positive, whereas the other
ones are zero.

Similarly to (12), define the correlation matrix of the
noisy signal

(14)

where the data matrix is defined from the noisy signal
in the same way as in (7). Since the additive noise
is white and centered, of variance , the expectation matrix

satisfies

This last equation shows that all the eigenvectors of are
eigenvectors of , and that the eigenvalues of are
equal to those of plus . Therefore, the range space

(called signal subspace) is also the -dimensional prin-
cipal subspace of , i.e., the eigensubspace of as-
sociated to the eigenvalues of magnitude strictly higher than

(with the other ones being equal to ).

B. Rotational Invariance Property

The ESPRIT estimation method relies on a particular
property of Vandermonde matrices known as the rotational
invariance [6], which reflects the invariance of the signal
subspace to time shifts. Theorem IV.1 generalizes this property
to Pascal–Vandermonde matrices.

Theorem IV.1 (Rotational Invariance Property of Pascal–Van-
dermonde Matrices): Suppose that . Let be the ma-
trix extracted from by deleting the last row. Similarly, let

be the matrix extracted from by deleting the first row.
Then and span the same subspace, and

(15)

where is the block-diagonal matrix

. . .
...

...
. . .

. . .
(16)

whose th block is the Jordan block

. . .
...

. . .
...

. . .
. . .

. . .

Theorem IV.1 is a corollary of Lemma B.1, presented in Ap-
pendix B. The interesting fact in Theorem IV.1 is that (15) in-
volves a Jordan matrix , which characterizes the poles and
their multiplicity . As shown below, the generalized ESPRIT
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algorithm consists in computing as a by-product of the Jordan
canonical decomposition6 of a so-called spectral matrix.

C. Generalized ESPRIT Method

In practice, the Pascal–Vandermonde matrix is unknown,
but a matrix spanning the signal subspace can be es-
timated by computing the eigenvalue decomposition of ,
or the singular value decomposition of , or by means of
subspace tracking techniques [25]–[27]. Since and
span the same subspace, there is a nonsingular matrix of
dimension such that

(17)

Substituting (17) into (15) shows that satisfies an equation
similar to (15)

where , herein called the spectral matrix, is defined by its
Jordan canonical decomposition

(18)

Finally, the generalized ESPRIT algorithm consists of the fol-
lowing steps:

• estimate a basis of the signal subspace;
• compute an estimator of the spectral matrix, using

a LS7 or TLS8 technique;
• compute the eigenvalues of from which the esti-

mated poles and their multiplicities can be extracted.
Note that in a noisy context, the estimated spectral matrix

does not have multiple eigenvalues in practice, and the general-
ized ESPRIT algorithm cannot be applied as it is. This problem
will be discussed in Section V-B.

D. Estimation of the Other Parameters

We now focus on the estimation of the model order and the
complex amplitudes .

1) Estimation of the Modeling Order: In the above discus-
sion, the model order is supposed to be known, which is not the
case in practice. Many methods were proposed in the literature
for estimating the number of sinusoids in white noise. The most
classical ones are the maximum likelihood method [28] and the
information theoretic criteria, among which the Akaike Infor-
mation Criterion (AIC) and the maximum description length
(MDL) [29], and their generalization known as the Efficient De-
tection Criterion [30]. In [31] and [32], we proposed a concep-
tually different approach which minimizes the frequency esti-
mation bias. This method can be applied directly for estimating
the order of the PACE signal model.

2) Estimation of the Complex Amplitudes: The least
squares (LS) and weighted least squares (WLS) are very clas-

6See [22, pp. 121–142] for a definition of the Jordan canonical decomposition.
7The classical LS-ESPRIT method [6] computes �̂(t) = ŴWW (t) ŴWW (t)

(where the symbol y denotes the Moore–Penrose pseudo-inverse).
8The TLS-ESPRIT algorithm estimates �̂(t) as the solution of a total least

squares (TLS) minimization problem [7].

sical methods for estimating the amplitudes of sinusoids of
known frequencies corrupted by noise. A good survey of such
techniques was proposed in [33]. Again, these methods can
be adapted in a straight manner for estimating the complex
amplitudes of the PACE signal model.

V. PERTURBATION ANALYSIS

In this section, we illustrate how sensitive single and multiple
poles are to perturbations. Linear prediction-based high-resolu-
tion methods are analyzed in Section V-A, and the generalized
ESPRIT method is analyzed in Section V-B.

A. Perturbation of the Prediction Polynomial

As mentioned in Section II-B, high-resolution methods based
on linear prediction, such as [1], [2], and [12], estimate the pa-
rameters , and by computing the roots of the prediction
polynomial .

In practice, contrary to , the estimated prediction poly-
nomial does not have multiple roots. Indeed, the additive noise

perturbs the estimated coefficients, so that each multiple
root of is scattered into several single roots. The estimated
prediction polynomial is denoted ,
where is a polynomial of order lower than , and is
supposed to be small. In practice, the deviation depends
both on the noise and on the particular method used to es-
timate the prediction polynomial, such as [1], [2], and [12].

Proposition V.1: Let be a root of multiplicity
of the th-order polynomial . For all , let

, where is a polynomial of order lower
than . Suppose that . Then there exists a positive

such that for all there are exactly roots of ,
denoted , which admit the first-order
fractional expansion

(19)

where is an arbitrary th root of the complex number

This proposition is related to a classical result about algebraic
functions [34, pp. 64–66]. Note that in (19) the first-order pertur-
bation of is homogeneous and isotropic, so that the per-
turbed roots form the vertices of a th-order regular polygon
in the complex plane. This may be a way of discriminating be-
tween several perturbed single poles and a single perturbed mul-
tiple pole (when ). Multiple poles appear to be more
sensitive to perturbations than single poles, since the first-order
term in (19) is . In fact, this apparent sensitivity can be cir-
cumvented by taking the multiplicity structure of the polyno-
mial in (3) into account [35].

B. Perturbation of the Spectral Matrix

In the case of the generalized ESPRIT method, the poles are
obtained by computing the eigenvalues of the spectral matrix
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. In practice, contrary to , the estimated spectral ma-
trix does not have multiple eigenvalues. As mentioned in Sec-
tion V-A, in the case of linear prediction techniques, the additive
noise perturbs the estimation, so that each multiple eigen-
value of is scattered into several single eigenvalues.

The estimated spectral matrix is denoted
, where is a matrix, and is supposed to

be small. In practice, the deviation depends both on the
noise and on the particular method used to estimate the
spectral matrix, such as [6] and [7].

Proposition V.2: Let be a nonderogatory9 eigenvalue of
multiplicity of the matrix , whose Jordan
canonical form is . For all , let

, where is an arbitrary
matrix. Then define the matrix . Let

be the element of which belongs to the row of index
and the column of index .

Suppose that . Then there exists a positive such
that for all there are exactly eigenvalues of ,
denoted , which admit the first-order
fractional expansion

(20)

where is an arbitrary th root of .
This proposition is a corollary of Theorem 2.1 in [36], in the

particular case of nonderogatory eigenvalues. Its proof can be
found in [20]. If , the first-order perturbation of in
(20) looks like that in (19): it is homogeneous and isotropic,
so that the perturbed eigenvalues form the vertices of a

th-order regular polygon in the complex plane. As men-
tioned in Section V-A, multiple poles appear to be more sensi-
tive to perturbations than single poles, since the first-order term
in (20) is . In fact, this apparent sensitivity can be cir-
cumvented by computing the arithmetic mean of the estimated
eigenvalues, as shown in Proposition V.3.

Proposition V.3: Let . Let
be the matrix extracted from , which cor-

responds to the rows and columns of indexes to
.

Suppose that . Then for all , the
function admits the first-order expansion

where .
The proof of proposition V.3 can be found in [20]. This propo-

sition confirms that multiple poles are not more sensitive to per-
turbations than single poles. Moreover, multiple poles can be
estimated by computing the arithmetic mean of the scattered
eigenvalues. Thus, the generalized ESPRIT algorithm presented
in Section IV-C can be simplified in the following way:

• apply the classical ESPRIT algorithm for estimating the
eigenvalues of the spectral matrix;

9An eigenvalue is nonderogatory if and only if it appears in only one Jordan
block (see e.g., [36] for more details). Since the complex poles are distinct, all
the eigenvalues in the Jordan form (16) are nonderogatory.

• compute the arithmetic mean of the estimated eigenvalues
associated to multiple poles.

Since the computational complexity of the first step is much
higher than that of the second step, the overall complexity of
this generalized ESPRIT algorithm is the same as that of the
classical ESPRIT algorithm.

VI. SIMULATION RESULTS

In this section, the ESPRIT method is applied to real-valued
signals. The real-valued signal model is presented in Sec-
tion VI-A. Then Section VI-B illustrates a case of polynomial
amplitude modulation, and Section VI-C illustrates a case of
both amplitude and frequency modulation.

A. Real Valued Signal Model

In this section, the signal model introduced in Section II-A is
applied to the particular case of real-valued signals. Since the
prediction polynomial has real-valued coefficients, its roots can
be partitioned into real poles and complex conjugate pairs of
poles of same multiplicity. Thus, by grouping poles whose polar
angles have the same absolute value, (4) can be rewritten in the
form

(21)

where is the number of distinct frequencies
, and , both and be-

long to a class of parametric functions. More precisely, a func-
tion of this class has the form

where is the number of poles of the same polar angle, all
the damping factors are distinct, and

is a polynomial with real valued coefficients. Then (21)
can be written in the form

(22)

where the time-varying amplitude and phase of the
th sinusoid satisfy the equations

(23)

whose solutions are10

(24)

10Note that arctan((�b (t))=(a (t))) = ' (t) only if ' (t) 2

] � (�=2); (�=2)[. Conversely, the proposed inversion formula is valid for all
' (t) 2] � �; �[.
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Fig. 1. Polynomial amplitude modulation (a) Test signal (solid line) and its
envelope (dashed line) (b) True pole (?), scattered eigenvalues (�) and their
mean (+).

Note that the signal model in (22) looks like that of McAulay
and Quatieri [37]. However, in [37], and are non-
parametric functions such that and have slow
variations and is positive, whereas in our model
and are parametric functions. Note that the variations of
the instantaneous frequency of the th sinusoid can be calcu-
lated analytically, by differentiating (23), as follows:

(25)

Thus the PACE signal model consists of both amplitude and fre-
quency modulated sinusoids. Equations (24) and (25) show that
these amplitude and frequency modulations are closely related.

B. Polynomial Amplitude Modulation

The test signal shown in Fig. 1(a) is a noisy single sinu-
soid with polynomial amplitude modulation and no frequency
modulation (the dotted lines represent its envelope). More pre-
cisely, this signal is that defined in (21) with

and , plus an ad-
ditive white noise whose variance was chosen so that the Signal
Noise Ratio (SNR) is 20 dB. The corresponding complex model
parameters are and (thus ), and the
observation window is .

The ESPRIT algorithm was applied with parameters
. The three estimated eigenvalues with positive angles are

represented in Fig. 1(b), by means of ‘ ’ marks at the vertices
of the triangle. The true multiple pole is represented
by a ‘ ’ mark. As mentioned in Section V-B, it can be noticed
that the first-order perturbation of is approximately homoge-
neous and isotropic, so that is close to the arithmetic mean
of the three estimated eigenvalues (represented by a mark).

Fig. 2. Both amplitude and frequency modulation: (a) Test signal (solid line)
and its envelope (dashed line) and (b) true pole (?), scattered eigenvalues (�),
and their mean (+).

The relative frequency deviation between the true pole and the
arithmetic mean of the estimated eigenvalues is 0.48%.

C. Both Amplitude and Frequency Modulation

The test signal shown in Fig. 2(a) is that defined in (21) with
, and

where , plus an additive white
noise whose variance was chosen so that the SNR is 50 dB.11

The corresponding complex model parameters are and
(thus ), and the observation window is
.12

Equations (24) and (25) yield the corresponding amplitude
and frequency modulations

In particular, the observation window of Fig. 2(a) shows both an
amplitude and frequency increase.

The ESPRIT method was applied with parameters
. The five estimated eigenvalues with positive angles are rep-

resented in Fig. 2(b), by means of “ ” marks at the vertices of
the pentagon. The true multiple pole is represented
by a “ ” mark. As mentioned in Section V-B, it can be noticed
that the first-order perturbation of is approximately homoge-
neous and isotropic, so that is close to the arithmetic mean
of the five estimated eigenvalues. In fact, the relative frequency

11Since the multiplicity of the poles is higher than in Section VI-B, Propo-
sition V.2 shows that the scattering of the eigenvalues is emphasized. Thus, we
chose a higher SNR to obtain a similar result (a SNR of 20 dB is not sufficient
to obtain an homogeneous and isotropic scattering).

12Fig. 2(a) zooms in on the central part of the signal.
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deviation between the true pole and the arithmetic mean of the
estimated eigenvalues is 0.23%.

VII. CONCLUSION

In this paper, we introduced the Polynomial Amplitude Com-
plex Exponentials (PACE) signal model as the general solution
to homogeneous linear recursions. This model extends the well
known Exponential Sinusoidal Model (ESM) to the case of mul-
tiple poles, and represents the signal as a sum of both amplitude
and frequency modulated sinusoids. A general factorization of
Hankel matrices related to this model was proposed, which in-
volves Pascal–Vandermonde matrices. Based on the rotational
invariance property of such matrices, a generalized ESPRIT al-
gorithm for estimating the signal poles was proposed, involving
the Jordan canonical form of the spectral matrix.

In presence of noise, the multiple poles are scattered into
several single eigenvalues, forming the vertices of a regular
polygon as a first-order approximation. This phenomenon was
observed in our numerical simulations, which confirmed that
the arithmetic mean of the scattered eigenvalues is a good ap-
proximation of the original multiple pole. Therefore, the PACE
model leads to an alternative interpretation of a set of estimated
eigenvalues belonging to the same neighborhood (several single
eigenvalues can correspond to a single modulated sinusoid).

In other respects, it can be noticed that the specific ampli-
tude and frequency modulations involved in the PACE model
are closely related. This might suggest that this model is not
appropriate for independent phase and envelope modulations.
In practice, we observed that single poles were generally suf-
ficient for representing chirps and sinusoidal modulations (like
tremolo and vibrato in music signals). However, it is well known
that complex polynomials can uniformly approximate any con-
tinuous complex function in a closed and bounded interval.13

Thus, the PACE model might be appropriate for coding arbi-
trary frequency and amplitude modulations on short time win-
dows. Indeed, we found some audio signals (e.g., violin vibratos
and guitar attacks) which could be coded more efficiently with
multiples poles than single poles (i.e., more precisely or with
less parameters) on very short windows (5 ms), but most often
the best results are obtained with single poles only. As a con-
clusion, the PACE model offers interesting outlooks for signal
processing, but its application to audio coding is not straightfor-
ward.

APPENDIX A
FACTORIZATION OF THE DATA MATRIX

The following lemma, known as the binomial identity [18],
[19], will be involved in the Proof of Proposition III.7 below. It
can be proved by induction over [20].

Lemma A.1 (Binomial Identity): For all , the falling
factorials satisfy the identity

13This result is known as the Weierstrass approximation theorem.

Proof of Proposition III.7: The coefficients of the matrix
are

(26)

Substituting (6) into (26) yields

(27)

where the coefficients of the matrix are

(28)

Then Lemma A.1 yields

(29)

Substituting (29) and (10) into (28) shows that

(30)

Applying Lemma A.1 again yields

(31)

Then substituting (31) into (30) yields

which can be written as a product of matrices

(32)

Substituting (32) into (27) finally yields factorization (8).
Proof of Corollary III.8: Proposition III.6 shows that both

and have rank . Consequently, factorization (8) shows
that has rank if and only if the matrix is
nonsingular. Besides, (9) shows that is nonsingular if and
only if is nonsingular . Since
is upper antitriangular with all antidiagonal coefficients equal to

is nonsingular if and only if .
Moreover, (10) shows that

. It follows that is nonsingular if and
only if .

APPENDIX B
ROTATIONAL INVARIANCE PROPERTY OF

GENERALIZED PASCAL MATRICES

The following lemma is used to show the rotational invariance
property of Pascal–Vandermonde matrices in Section IV.

Lemma B.1 (Rotational Invariance Property of Generalized
Pascal Matrices): Suppose that . Let be the
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matrix extracted from by deleting the last row. Similarly,
let be the matrix extracted from by deleting the
first row. Then and span the same subspace,
and

(33)

Proof: The coefficients of the matrix are defined
as . Moreover, (5) shows that

. Consequently

This last equation can be written in the form (33).
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