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ABSTRACT

An analysis/synthesis scheme for musical signals is introduced in
this paper. It is based on an adaptive subspace analysis and the
Exponentially Damped Sinusoids model. This method leads to a
new representation, called the HR-ogram, where the signal compo-
nents are represented as points in the time-frequency plane. These
points are gathered according to their frequency, phase and ampli-
tude proximity from an analysis time-instant to the following one.
This leads to an accurate deterministic/stochastic decomposition
using a projection onto the noise subspace. The whole technique
allows a separate processing for both components.

1. INTRODUCTION

Most of the analysis/synthesis schemes designed for musical sounds
found in the literature are based on either a frequency-domain
or a time-domain approach. Both families have evolved into a
broad variety of algorithms from their very ancestors: the so-called
phase-vocoder [1] and the OLA (overlap-add) method. These tools
and their derivatives (Quatieri and Serra techniques [2, 3], syn-
chronized OLA methods SOLA [4], PSOLA [5] ) are widely used
in the context of audio signal processing [6, 7].

The technique described in this paper is mostly related to the
first class of methods: it relies on an Exponentially Damped Si-
nusoids (EDS) model and takes advantage of the signal decompo-
sition into a deterministic part and a noise component. The EDS
modelling allows an accurate representation of each signal frame
in terms of the amplitudes, phases, damping factors and frequen-
cies of the component sine waves while the modifications can be
processed separately on both parts (deterministic and stochastic)
of the signal decomposition.

This work follows earlier ones designed for estimating, track-
ing and modifying musical sounds [8, 9] and rely on the high reso-
lution properties of the subspace analysis [10]. The main drawback
of this approach is the computational cost of such algorithms but
the newest versions have become adaptive and overcome the con-
straint of computing a Singular Value Decomposition at each time
step [11].

The theoretical background presented in section 2 mainly re-
covers from [9], highlighting the relationship with the well-known
quasi-stationary models [2] and [3] and the applicative context.
Section 3 shows analysis results and the modification and synthe-
sis techniques are discussed in section 4.

2. THEORETICAL BACKGROUND

2.1. Definitions and model

The discrete signal to be analysed and modified is assumed real
valued and denoted s(t). It is segmented in overlapping frames
x(t, u) = s(t + ta(u))wa(t) where ta(u) are the analysis marks
indexed by the non-negative integer u and wa is the analysis win-
dow assumed of finite length La. The time-instants ta(u) are usu-
ally regularly spaced, i.e. ta(u) = u∆a, u ∈ N, where the inter-
val ∆a is a fixed increment such as ∆a ≤ La. In this paper, wa

will always be the rectangular window of length La.

For each frame, an Exponentially Damped Sinusoids model is
used:

x(t, u) =
M
∑

k=1

(bkzt
k + b∗kz∗t

k ) (1)

where bk =
Ak

2
exp(jφk) is the complex amplitude of the kth

component (Ak is the amplitude of the corresponding real compo-
nent and φk its initial phase), and zk = exp(−αk + j2πfk) is its
complex pole. αk and fk denote its damping factor and frequency,
ranging in R for the first one and in [0 1/2] for the other. These
parameters are implicit functions of ta(u), not reported in (1) for
lightening purposes. Like the well-known sinusoidal decomposi-
tions found in [2, 3], the parameters are assumed to vary slowly,
i.e. they are considered constant over the window duration. Any-
way, it should be noted that, in contrast, the definition of the EDS
model includes a possible variation of the components envelopes
leading to a more accurate representation for each frame, yielding
to a residual of lower energy than the one obtained by an undamped
modelling for the same order M and window length La.

2.2. Analysis stage

The estimation of the 4M parameters for each frame x(t) (for sim-
plicity the u-dependency is removed) is performed using a subspace-
based technique for the frequencies fk and damping factors αk.
The bk are jointly estimated by a least squares method. The sub-
space analysis takes into account the particular mathematical struc-
ture of the model, leading to a high resolution (HR) estimation:
when the signal is noise-free the limit for separating two close
components is only restrained by the limited computational capac-
ity.
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2.2.1. HR method outlines

Using the La = 2N − 1 samples of the frame, the square Hankel
structured data matrix H is defined as

H =











x(0) x(1) . . . x(N − 1)
x(1) x(2) . . . x(N)

...
...

. . .
...

x(N − 1) x(N) . . . x(La − 1)











. (2)

Assuming 2M ≤ N , the symmetric real matrix H is rank-deficient
of dimension 2M [9]. Its eigendecomposition yields

H = UΛU
T (3)

where U is an N × 2M orthonormal real matrix. In presence of
an additive white noise, H becomes full rank and the columns of
U are defined as the 2M dominant eigenvectors, corresponding to
the 2M eigenvalues of highest magnitude.

The signal poles {zk, z∗
k}k=1,...,M are estimated by taking

into account the rotational invariance property of the signal sub-
space, which is expressed in terms of a real 2M × 2M matrix Φ

whose eigenvalues are the signal poles:

U↑ = U↓Φ (4)

where U↑ (resp. U↓) is obtained by deleting the first (resp. the
last) row of U.

2.2.2. Estimation of the complex amplitudes

This estimation of the complex amplitudes {bk, b∗k}k=1,...,M is
performed for each frame using a Least Squares (LS) method. The
N × 2M Vandermonde matrix Z is defined by

Z =











1 . . . 1 1 . . . 1
z1 . . . zM z∗

1 . . . z∗
M

...
. . .

...
...

. . .
...

zN−1
1 . . . zN−1

M z∗N−1
1 . . . z∗N−1

M











. (5)

When the frame is noise-free, the column vector
b = [b1, . . . , bM , b∗1, . . . , b

∗
M ]T satisfies the relation

Zb = x (6)

where x = [x(0), . . . , x(N −1)]T . The solution of (6) in the least
squares sense is b = Z

+
b where Z

+ denotes the pseudo-inverse
of the matrix Z.

2.2.3. Subspace tracking

Since the HR-method relies on the eigenvalue decomposition (EVD)
of the data matrix H, without further modification the estimation
of the frequencies and damping factors would require an EVD at
each time step and thus would lead to a high computational cost
(cf. [9] for more details). However this cost can be reduced by
using an adaptive algorithm which avoids the computation of the
EVD. It is based on an iterative algorithm called Orthogonal It-
eration [12] and uses a two steps procedure which yields the ma-
trix U when the convergence is reached. For our tracking pur-
pose, this algorithm is applied in a sequential way, assuming that
it converges much faster than the variations of the signal subspace.
As shown in table 1, it involves two auxiliary matrices A(u) and
R(u) and an economy size QR factorization since A(u) is of di-
mension N × 2M .

Table 1: Sequential iteration for subspace tracking

Initialization of the signal subspace matrix

U(0) =

(

I2M

0(N−2M)×2M

)

For each analysis time-instant ta(u), u = 1, 2, . . . iterate:
matrix product A(u) = H(u)U(u − 1)
skinny QR factorization A(u) = U(u)R(u)

3. ANALYSIS RESULTS: HR-OGRAM

In this section, the capabilities of the algorithm are demonstrated
for both synthetic and real data (singing voice). A time-frequency
representation is introduced, called the HR-ogram1 which serves
the same goals as the spectrogram in Fourier analysis. The HR-
ogram represents the components as points (ta(u), fk(u)) in the
time-frequency plane for each analysis time-instant ta(u). The
energy εk of the kth component is represented in decibels using
gray levels and defined as

εk = A2
k

1 − exp(−2αkLa)

1 − exp(−2αk)
. (7)

This definition includes the effect of the damping factor in the
graph. This avoids the overvaluing of spurious poles, often re-
lated to noise, which can be highly damped and estimated at very
high magnitude values, resulting in a weak component.

3.1. Simulation example

The graphs of figure 1 show the analysis results for a three compo-
nents signal with an additive white noise corresponding to a 27dB
signal to noise ratio (SNR). All the components are undamped.
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Figure 1: Analysis results for a synthetic signal

1standing for High Resolution Spectrogram
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Two of them present a frequency jump at distinct time-instants
while the third one is sinusoidally modulated at the period of 2000
samples and with a 0.05 frequency deviation.

The analysis parameters are set as follows: the window length
is La = 201, the number of components is overestimated to M =
6 and the analysis is performed every ∆a = 25 samples.

The results show clearly the good tracking of the three compo-
nents. The convergence of the algorithm is fast enough to handle
the frequency jumps and when they occur for one component the
estimation of the other ones remains stable and accurate. The mod-
ulated component is often represented by a few (2 or 3) poles. The
signal model (1) is indeed not fully respected by the frequency
modulated component. The spurious poles corresponding to the
additive noise are easily identifiable for they do not aggregate in a
specific shape and are widely spread in the whole frequency range.

3.2. Singing voice subspace tracking

This example is a female soprano singing voice, who realizes an up
and down glissando between C5 and E5 . The signal is recorded at
the 44100 Hz sampling rate. The analysis provides the HR-ogram
shown in figure 2, which highlights the spectral lines associated to
the harmonic structure but also the poles related to noise, gathered
in formant-like shapes.

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5
x 10

4

time (s)

fr
eq

ue
nc

y 
(H

z)

analysis results

Figure 2: HR-ogram of a soprano singer

4. MODIFICATION AND SYNTHESIS

Each point of the HR-ogram is well localized both in frequency
and time domains and can be modified individually. However,
in order to achieve a high quality analysis/modification/synthesis
the poles related to the sinusoidal components and those related
to noise must be processed separately. Moreover, the EDS model
does not represent accurately the stochastic part of the signal.

4.1. Deterministic/stochastic decomposition

4.1.1. Method

As in most of the analysis schemes, a noise component w(t, u) is
added to the model (1) leading to:

x(t, u) =
M
∑

k=1

(bkzt
k + b∗kz∗t

k ) + w(t, u). (8)

This component is often expressed as a time-varying filtering of a
white stochastic process [6] and will be referred to as the stochastic
component of the signal while the noise-free EDS model will be
referred to as the deterministic component.

A common technique to derive the noise component consists
in subtracting to x(t, u) the deterministic part, after its estimation.
But this can lead to a significative amount of sinusoidal compo-
nents introduced in w(t, u). In order to avoid this effect, w(t, u)
is obtained by projecting the signal onto the noise subspace. For
the noisy model (8), the matrix H is full rank. The signal subspace
is the space spanned by the eigenvectors associated to the N−2M
smallest eigenvalues.

The number M of sinusoids is chosen accordingly to the sta-
bility of the spectral lines of their associated poles. M is first
overestimated and the signal poles zk(u)k=1,...,M and correspond-
ing complex amplitudes bk(u) are estimated at the analysis time-
instant ta(u). zm(u + 1) and bm(u + 1) are estimated at the
time-instant ta(u+1) and distances are computed to measure how
these poles are close in terms of frequency, amplitude and phase.
The corresponding distances df , dA and dφ are thus defined as:

df (k, m) = 4(fk(u) − fm(u + 1))2 (9)

dA(k, m) = (Ak(u) − Am(u + 1))2 (10)

dφ(k, m) =
(bφk(u) + 2πfk(u)∆ac − bφm(u + 1)c)2

4π2
(11)

where bφc denotes the principal determination of φ and the signal
is normalized to a maximum magnitude equal to one. The spectral
lines are formed according to the following steps:

1. for each k, mk = argm min d(k, m) is computed
where d(k, m) = dA(k, m) + df (k, m) + dφ(k, m) ,

2. for each k, the poles zk(u) and zmk
(u + 1) are connected

if |fk(u) − fmk
(u + 1)|/fk(u) < 1% and dA < −20dB

and dφ < −30dB.

The number of components of the deterministic part M̂ < M is
defined as the number of poles which have been connected be-
tween ta(u) and ta(u + 1). The stochastic component is obtained
by the projection:

w = (I2M̂ − U
H

2M̂
U2M̂ )x (12)

where U2M̂ is the subspace matrix whose columns are the 2M̂

dominant eigenvectors, w = [w(0, u), . . . , w(La − 1, u)]T and
x = [x(0, u), . . . , x(La − 1, u)]T .

4.1.2. Results

Figure 3 shows the spectral lines tracked by the technique de-
scribed in section 4.1.1, leading to a time-frequency representa-
tion of the deterministic component of the preceding singing voice
signal for the time indices ranging between 1s and 1.25s (cf. the
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Figure 3: HR-ogram of the deterministic part

HR-ogram of figure 2). Besides a few lines related to noise compo-
nents and easily identifiable because of their short time duration,
the harmonic structure is highlighted and shows clearly the fre-
quency modulation due to the glissando produced by the soprano
singer. The short-term spectra (10ms) of the signal and its stochas-
tic part are represented in figure 4. The sinusoidal part has been
mostly removed by the projection while the formant-like reinforce-
ments around 4000 Hz and 7500 Hz are emphasized.
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Figure 4: Short-term spectra of x(t, u) and w(t, u)

4.2. Modifications

Coming along with the deterministic/stochastic decomposition, many
audio effects can be processed. For example, pitch-shifting can
be applied only on the deterministic part, eventually taking into
account the spectral envelope. An interesting by-product of this
decomposition is the capability of processing each spectral line to
add or remove vibrato and tremolo, to adjust the pitch or the du-

ration or to modify the ratio between the voiced and the unvoiced
part of the sound.

5. CONCLUSIONS

In this paper an analysis/synthesis scheme has been proposed. It
uses a High Resolution adaptive method which overcomes the Fourier
resolution limit and achieves an accurate estimation of the sinu-
soidal components of the signal . The stochastic part is then de-
rived by projecting the signal onto the noise subspace. The de-
terministic and stochastic parts can thus be processed separately,
leading to high quality audio effects.
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