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ABSTRACT

In this article, we introduce a novel approach for monaural source
separation with the specific aim to separate a polyphonic musical
recording into two main sources: a main instrument (or melody)
track and an accompaniment track. To that aim, we propose to
model the power spectral densities (PSDs) of both contributions with
a source/filter model for the main instrument while retaining a model
emphasizing temporal repetitions of the musical background. We
show that improved source separation performances can be obtained
by a two-step estimation strategy where the model parameters are
re-estimated in a second stage by adequately exploiting the main
melody line estimated in a first stage. The experiments conducted
on several monaural signal databases show that our system achieves
state-of-the-art performances compared to other unsupervised source
separation algorithms.

Index Terms— Music Information Retrieval (MIR), Blind Au-
dio Source Separation (BASS), Melody extraction, Karaoke, De-
soloing

1. INTRODUCTION

Blind audio source separation (BASS) has many useful applications,
such as speech enhancement, karaoke or audio remixing. It is also
gaining interest for a number of Music Information Retrieval (MIR)
applications such as music and drum transcription since it can, as a
pre-processing step, ease the indexing of complex polyphonic sig-
nals [1], [2]. The aim of BASS is to extract separated contributions
(or sources) from a mixture by exploiting their differences in terms
of spatial location and/or time-frequency (or timbral) content. It
is common to categorize the source separation problem according
to the difference between the number of sensors or channels and
the number of desired contributions: it is called over-determined,
determined and under-determined when the number of sensors re-
spectively is larger than, equal to and smaller than the number of
sources. This paper addresses the latter category, in the specific
case where there is only one sensor and two desired contributions:
the main (or solo) instrument and the accompaniment. This spe-
cific task is particularly interesting for applications such as karaoke,
cover version discovery or author copyright protection.
A number of source separation approaches (see for example [3]
and [4]) rely on supervised techniques to extract the vocal part from
any other musical background. They introduce a statistical yet flex-
ible framework. The sources are specified and classified by their
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spectral characteristics. They are then separated using a Wiener
time-frequency mask. On the other hand, approaches like [1], [5]
or [6] rely on sinusoidal models and unsupervised techniques to
label several groups of sinusoids as belonging to either of the ex-
pected sources. The use of a sinusoidal model however significantly
impairs the subjective quality of the results.
In this paper, we propose an algorithm that takes advantage from
both approaches. We first estimate the melody of the predominant
instrument, as in [6], then separate this instrument from the rest
of the accompaniment thanks to the signal model adapted from
[3]. Our algorithm is based on an improved version of the model
proposed in [7], which was originally designed for MIR purposes.
We show that state-of-the-art source separation performances are
obtained by a two-step estimation strategy: first the pitch contour is
estimated, then the parameters of our signal model are re-estimated
by constraining the search space to the estimated melody.
This paper is organized as follows. We first recall our signal models
which are based on a source/filter model for the main instrument
and on a Non-negative Matrix Factorization (NMF) for the accom-
paniment part. The parameter estimation is also briefly described.
In section 3, the complete source separation system based on the
two-step strategy is described. The experiments and the results ob-
tained are presented in section 4. We conclude and discuss future
improvements for the system in the last section.

2. SIGNAL MODEL

The proposed signal model is adapted from the work of Benaroya [3]
and is only briefly reviewed below since it was initially introduced
in [7].

2.1. Mixture model

The observed musical signal x is composed of two main contribu-
tions: v the main instrument’s voice and m the accompaniment. We
assume that the mixture is instantaneous: x = v + m. Their Short-
Time Fourier Transform (STFT) matrices, noted by capital letters,
follow:

X = V + M

Let the centered, circularly wide-sense stationary (cwss), signal y ∈
{x, v, m}: its Fourier transform Y is distributed as a proper complex
Gaussian, centered, with a diagonal covariance matrix. For a given
frequency bin f , the corresponding element on the diagonal of this
matrix SY (f) is the power spectral density (PSD) of y at f .
We assume that V and M are independent. This implies:

SX(f, n) = SV (f, n) + SM (f, n) (1)
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with f the frequency bin index and n the frame index. In order to be
able to distinguish between the two sources, the PSDs of V and M
are parameterized separately with different models as in [7]. In the
following sections, we explain these differences.

2.2. Source/Filter Model of the Main Instrument

A generative source/filter model is used to represent the main in-
strument. Such a model is particularly well adapted for describing
speech or singing voice production phenomena and since we mostly
consider songs in this work, this model appears particularly relevant.
However, due to its generality it is also, to a certain extent, adequate
for other musical instruments.
In this model, the source part is strongly related to the pitch intended
by the performer, while the filter part is mostly related to the tim-
bre or the vowel sung. We assume that the desired instrument is
harmonic and monophonic, and we only consider its voiced compo-
nents.
The source spectrum σf0(f) is a “comb” with peaks at every
multiple frequency of the fundamental frequency f0. The am-
plitudes of the peaks are determined by the glottal source model
KLGLOTT88 [8]. To model the timbral flexibility of the main in-
strument, the filter frequency response w(f) acts as an envelope that
reshapes the source comb in order to fit the analyzed signal.
We assume that the instrument produces only a limited number of
notes, with a limited range of timbres: we set the fundamental fre-
quency range to the interval [Fmin, Fmax], with notes spaced every
1
8

th
tone. The filters are limited to K = 9 possible envelopes wk(f),

1 ≤ k ≤ K. Let these spectra form the normalized source dictio-
nary WF0 such that WF0(f, f0) = σf0(f) and filter dictionary WK ,
WK(f, k) = wk(f). The smoothness of these filters is also simu-
lated: each filter is modelled as a non-negative linear combination of
atomic elements as in [9]. At a given frame n, the frequency domain
representation of each part is a non-negative linear combination of
the corresponding dictionary:

SF0(f, n) =
∑

f0

σf0(f)HF0(f0, n)

SK(f, n) =
∑

k

wk(f)HK(k, n)

where SF0(f, n) and SK(f, n) respectively are the source and filter
parts of the predominant instrument PSD at frame n and bin f , while
HF0 > 0 and HK > 0 are the amplitude coefficient matrices. The
columns of HK are normalized, to avoid any ambiguity between
HF0 and HK . For a monophonic instrument, there should be only
one non-null coefficient per frame in HF0 . However, the estimation
in the first step is unconstrained and the monophonic main melody
is tracked in a post-processing step as explained in section 3.1. We
see in section 3.2 how the monophonic assumption is integrated in
the second estimation. One can write the above equations as matrix
products:

SF0 = WF0HF0 SK = WKHK (2)

At last, as proposed in [7], the PSD of the main instrument is identi-
fied with the Hadamard product (noted “.∗”) of SF0 and SK :

SV = SF0 . ∗ SK (3)

2.3. Accompaniment Model

The accompaniment is modelled by an instantaneous mixture of R
contributions. This model is similar to the one in [7] and leads to
a NMF problem [10]. It emphasizes the repetition in time of the
spectra of notes played by most musical instruments. Let WR and
HR respectively be the accompaniment dictionary and the associated
non-negative amplitude coefficient matrices. The music PSD SM

matrix is [10]:

SM = WRHR (4)

2.4. Parameter Estimation

Maximum Likelihood (ML) estimation of the proposed model pa-
rameters, under the Gaussian assumption, is equivalent to minimiz-
ing the Itakura-Saito divergence between the power spectrum |X|2
of the observed STFT and the parameterized PSD SX [10]. In addi-
tion, with equations (1),(2),(3) and (4), we have:

SX = (WF0HF0) . ∗ (WKHK) + WRHR (5)

The five parameters in Θ = {HF0 , WK , HK , WR, HR} are esti-
mated by ML. We use multiplicative updates for all the parame-
ters [7]. The source dictionary WF0 is fixed and generated with
the KLGLOTT88 model. The initial set of parameters Θ0 is ran-
domly drawn, except in the second step estimation, where we choose
a specific initial HF0 which is constrained to the estimated melody.
Although the convergence is not proved, the resulting decomposi-
tion is satisfying as the chosen criterion globally decreases over the
iterations.

2.5. Source Separation using Wiener Filters

The minimum mean squared error (MMSE) estimator of v knowing
x is given by the Wiener estimator v̂ = E[v|x]. In the class of
estimators restricted to v̂ = gv ∗x, where gv is the impulse response
of a linear filter, the MMSE estimator is obtained with the Wiener
filter for which the frequency response is given by:

Gv(f) =
SV X(f)

SX(f)

where SV X is the inter-spectrum between v and x. With the inde-
pendence assumption between v and m, we obtain: SV X = SV and
SX = SV + SM , therefore:

Gv(f) =
SV (f)

SV (f) + SM (f)
(6)

We apply the filter in equation (6) in the frequency domain, in an
adaptive way [3]: for each frame, we estimate the PSDs SV and SM

with the parameter set Θ obtained by our algorithm and equations
(3) and (4). We then compute the corresponding Wiener filters and v̂
and m̂ are reconstructed with the help of an overlap-add procedure.

3. COMPLETE SOURCE SEPARATION ALGORITHM

Figure 1 shows the outline of the complete blind audio source sepa-
ration algorithm. It consists of two steps: the first one mainly aims
at tracking the pitch contour (or melody) of the solo instrument. The
second step estimates the parameters using the sequence of funda-
mental pitches estimated in the first step.
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Fig. 1. Solo/Accompaniment Separation: algorithm outline.

3.1. Melody Estimation Step

Pre-accentuation: The mixture signal x is pre-accentuated with a
conventional first order moving-average filter, with parameter a =
0.95.
Model parameter estimation: A set of parameters Θ0 is randomly
generated. At iteration i ≤ I , Θi−1 is updated to Θi thanks to the
multiplicative updates in [7], with I = 300 the number of iterations.
Melody tracking: We use the Viterbi smoothing algorithm in [7]

to retrieve the melody φ0: φ̂0(n) is the estimated fundamental fre-
quency of the solo instrument at frame n. It is important to note
that our approach induces some ambiguities and this especially for
the source model: the model as such allows the main instrument to
be polyphonic, while we are interested in monophonic instruments.
The smoothing step therefore has two goals: finding the smooth se-
quence of predominant pitches and limiting it to one pitch per frame.
The algorithm in [7] is further improved by two new contributions:
octave error reduction and silence detection.
To circumvent some octave errors, we use a modified “a posteriori
probability” matrix GF0 for the Viterbi algorithm: GF0(f0, n) =
HF0(f0, n) + 0.5HF0(2f0, n). Our initial algorithm tends to favor
the estimation of the pitch as being the upper octave instead of the
fundamental frequency on some notes from our database. GF0 is
designed to compensate this effect.
To detect silences in the solo track, the separated solo is computed
thanks to a Wiener filter masking (see section 3.2). The energy for
each frame is computed and the frames with an energy lower than
a given threshold are classified as silence frames of the solo. The
threshold is chosen such that the energy of all remaining frames is
above (100 − ε)%, where ε = 0.06 in our system.

3.2. Source Separation Step

Computing HF0 : The coefficients of HF0 lying outside a scope of
1
2

tone around the estimated melody are set to 0:

HF0(f0, n) = HF0(f0, n), if |f0 − φ̂0(n)| <
1

4
tone,

= 0, otherwise.

Given this new matrix and the other parameters in Θ, we could pos-
sibly compute the separated signals v̂(1) and m̂(1). However, since
we modified HF0 , the estimated parameters are no longer optimal,
especially for WK , and a second estimation taking into account this
new parameter matrix is necessary and improves the separation as
shown by the results in section 4.
Parameter re-estimation: Again, Θ0 is randomly drawn, except for

the matrix HF0 which is initially set to HF0 . Since we use multi-
plicative updates, the null coefficients in HF0 do not evolve and stay
null. The solo instrument is therefore limited to follow the estimated
melody sequence φ̂0 and the estimated parameters constrained to fit
this melody (within 1

2
tone).

Wiener filters: With the estimated final parameter set Θ, we obtain
the separated signals v̂(2) and m̂(2). The pre-accentuation is com-
pensated before comparison with the original sources.

4. EXPERIMENTS

4.1. Dataset description and Evaluation Criteria

Our database is composed of 3 subsets: (A) the SiSEC 2008 devel-
opment set for the “professionally produced music recordings” sep-
aration task1, (B) some songs from Ozerov and Lagrange’s private
database ([4] and [1]) and (C) publicly available songs by S. Hurley,
under Creative Commons licence. C is further divided into a pitch
contour annotated set C1 and its complementary set C2. These files
are described on our webpage2. The songs are split into one-minute-
long excerpts, discarding the ones that have no solo instrument. The
sampling rate is 11025Hz, the analysis window size is 512 samples
and the hopsize 64 samples.
We use the objective evaluation criteria proposed for the SASSEC
and SiSEC evaluation campaigns [11]1: the Source to Distortion Ra-
tio (SDR), the Source to Interference Ratio (SIR) and the Sources to
Artifacts Ratio (SAR). The SDR/SIR gains are defined as in [4]: e.g.
the SDR gain for the estimated source v̂ is the difference between
the SDR obtained by v̂ and the SDR obtained by setting v̂ = x.
These gains give the improvement in SDR/SIR of the estimated v̂
compared to an algorithm which directly returns the mixture as the
estimated separated source.

4.2. Melody Tracking Performance

In addition to the study done in [7], our submissions to the audio
melody extraction task at MIREX 20083, scored 1st for the 2008
subset of the database and 2nd for the two other subsets. These
results show that our system based on the source/filter parametric
model reliably transcribes the desired melody.
On subset C1, the recall is at around 70%, while the precision only
scores at 50%. This is explained by the fact that our system essen-
tially focuses on energetic cues to track the melody line, and not on
timbral cues. It therefore tracks the solo even if the solo instrument
changes during the excerpt.

4.3. Source Separation with the True Pitch Contour

We verify that the model is able to separate the desired signals
when the true pitch contour is given. We validate it on the melody-
annotated subset C1. We separate the contributions by skipping the
“melody estimation” step and use the annotated groundtruth of the
melody pitch sequence φGT to initialize HF0 .
Table 1 summarizes the results of the proposed system given the
pitch contour, named “Melody”, for these songs along with two
other cases: “Mixture” characterizes the criteria computed by set-
ting v̂ = m̂ = x, “Wiener” gives the results with the optimal Wiener
filter computed with the original separated contributions. The first
line therefore shows how difficult the task is and the last one gives

1Details and software available online at: http://sisec.wiki.irisa.fr/
2http://www.tsi.enst.fr/%7Egrichard/icassp09/
3http://www.music-ir.org/mirex/2008/
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Main Instrument Accompaniment

Method SDR SIR SAR SDR SIR SAR

Mixture -6.2 -6.0 – 6.2 6.2 –
Melody 8.1 16.1 9.0 14.3 19.4 16.6
Wiener 11.9 21.3 12.8 15.5 26.5 16.6

Table 1. Evaluation criteria (in dB) for the method given the pitch
contour on dataset C1.

Main Instrument Accompaniment

Subset SDR SIR SAR SDR SIR SAR

All (1) 1.6 5.4 5.2 7.7 14.6 10.7

A (2) 8.2 17.4 8.9 10.8 15.4 12.9
B (2) 2.4 6.6 5.2 8.5 14.6 11.7
C (2) 2.7 9.2 5.0 9.1 14.1 12.7

C1 (2) 3.5 8.2 4.1 9.7 14.2 12.6

All (2) 2.7 8.1 5.2 8.8 14.4 12.1

Table 2. Evaluation criteria (in dB) for our global system averaged
over each subset.

the theoretical performance limit.
For the main instrument as well as the accompaniment, the separa-
tion results are satisfying. Most of the interferences and artefacts
correspond to the unvoiced part of the vocal part, which is not
explicit in our model and therefore estimated as belonging to the
accompaniment. Our approach is bounded in average by the re-
sult given in table 1, and the good performances there validate the
proposed model.

4.4. Source Separation with Estimated Melody

Table 2 shows the results obtained by the proposed algorithm for
each set of our database. The number into brackets indicates whether
the separation is directly held after the melody extraction step (1) or
after the second step (2). The mean “main instrument to accompani-
ment” ratio is -6.1dB. In average, the SDR/SIR gains obtained by the
proposed iterative method on the database respectively are 8.8/13.8
for the solo voice and 2.6/8.0 for the accompaniment.
The figures in table 2 first show the improvement of our iterative
approach (2) compared to the direct separation after the melody es-
timation (1). Informal listening tests confirm that the parameter re-
estimation really improves the quality and selectivity of the separa-
tion. It also seems that most of the interferences are due to estimated
fundamental frequencies belonging to instruments of the “accompa-
niment”, especially on the Celtic rock songs from subset B. In those
songs, v̂ often corresponds to musical instruments performing solos
and not to the expected singer voice. It is worth noticing that our
algorithm is designed to track the main melody without assuming
timbre coherence. It is therefore possible to obtain a main solo track
v̂ played by different subsequent instruments.
In spite of these drawbacks, our results compare well with the state
of the art. In [4], the authors report, for their supervised system, a
SDR gain of 10.5dB for the separated voice, while our system ob-
tains an average of 8.5dB SDR gain on the corresponding subset B,
without the voice/music automatic segmentation as pre-processing
and no learning step, since our approach is unsupervised. In [6], the
separated accompaniment obtains a SDR gain average of 0.8dB at
a -5dB “main instrument to accompaniment” ratio, while we obtain
a SDR gain of 2.6dB. Some separation results are available on our
webpage at http://www.tsi.enst.fr/%7Egrichard/icassp09/.

5. CONCLUSIONS AND FUTURE WORKS

We have proposed a single-channel solo-instrument / accompa-
niment separation algorithm based on the estimation of the main
melody. The performance are very promising and are at the state of
the art. Informal tests suggest that the artifacts of our system are less
objectional than prior approaches. Contrary to source separation
based on sinusoidal models, the choice of Wiener filters to separate
the signals seems to significantly improve the quality of the results.
The system could be further improved by taking into account the un-
voiced parts of the main instrument or by extending this framework
to multi-channel signals. A post-processing step to discriminate
between the different solo instruments that were extracted would
also help for source tracking and therefore for specific tasks such as
singer/accompaniment separation.
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