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ABSTRACT

This paper introduces a fast implementation of the power it-
erations method for subspace tracking, based on an approxima-
tion less restrictive than the well knownprojection approxima-
tion. This algorithm guarantees the orthonormality of the esti-
mated subspace weighting matrix at each iteration, and satisfies a
global and exponential convergence property. Moreover, it outper-
forms many subspace trackers related to the power method, such
as PAST, NIC, NP3 and OPAST, while keeping the same compu-
tational complexity.

1. INTRODUCTION

Subspace tracking has been widely investigated in the fields of
adaptive filtering, source localization or parameter estimation. One
of the various approaches proposed in the literature consists in the
iterative optimization of a specific cost function involving the esti-
mated covariance matrix of the data, in conjunction with a projec-
tion approximation hypothesis (seee.g. the PAST [1] and NIC [2]
methods).

In [3], it has been shown that these subspace trackers are closely
linked to the classical power iterations method [4]. A fast im-
plementation of this method was proposed in [3], but numerical
simulations showed that this algorithm (referred to as NP3) does
not converge in many situations. Concurrently, the Orthonormal
PAST (OPAST) algorithm [5, 6] is an other fast implementation of
the power method which outperforms both PAST and NP3.

In this paper, we propose a new subspace tracker based on the
power method and on a new mild projection approximation, which
has the same computational complexity as the above mentioned
algorithms, but reaches better performances than NIC and OPAST.

The paper is organized as follows. In section 2 the classical
power iterations method is summarized. The projection approxi-
mation is discussed in section 3. Then our approximated power
iterations (API) method is introduced in section 4, and a fast im-
plementation of this algorithm is proposed in section 5. Section 6
shows that both PAST and OPAST can be viewed as approxima-
tions of the fast API algorithm. In section 7, the performance of
this method is compared to that of NIC and OPAST. Finally, the
main conclusions of this paper are summarized in section 8.

2. THE BASIC POWER ITERATIONS METHOD

Let{x(t)}t≥0 be a sequence ofn dimensional data vectors, whose
estimated covariance matrix is recursively updated according to
the following scheme:

Cxx(t) = β Cxx(t− 1) + x(t) x(t)H (1)

whereβ > 0 is the forgetting factor. IfW (t − 1) is a n × r
orthonormal matrix (withr < n) spanning the principal subspace
of Cxx(t− 1), the compressed data vector is defined as

y(t) = W (t− 1)Hx(t). (2)

To track the subspace weighting matrixW (t), the power itera-
tions method [3] consists of a data compression step (3) plus an
orthonormalization step (4) at each iteration:

Cxy(t) = Cxx(t) W (t− 1) (3)

W (t) R(t) = Cxy(t) (4)

whereCxy(t) can be seen as an × r covariance matrix, and
R(t)H is a square root of ther × r hermitian matrixΦ(t) ,
Cxy(t)HCxy(t), which means thatR(t)H R(t) = Φ(t). Note
thatR(t)H can be any square root ofΦ(t) (for example,R(t) can
be triangular [7], or hermitian [3]).

If Cxx(t) remains constant and if its firstr eigenvalues are
strictly larger than the(n − r)th other ones, the power iterations
method converges globally and exponentially to the principal sub-
space [3][4, pp. 410-411]. Note that the multiplication in the first
step involvesO(n2r) operations, and the orthonormalization step
requiresO(nr2) operations. Because of its high computational
cost, this algorithm is not suitable for real-time processing.

3. THE PROJECTION APPROXIMATION

The classical projection approximation [1] has been used in con-
junction with various subspace trackers in order to reduce their
complexity. It assumes thatW (t) ' W (t − 1) at each time
step. In the case of the power method, this approximation yields
W (t− 1)HCxx(t)W (t− 1) ' R(t). Consequently,R(t)H can
no longer be any square root ofΦ(t), since it must be close to a
non-negative hermitian matrix1.

The NP3 implementation of the power method [3] was based
on this approximation, but this algorithm relies on a matrixR(t)
which deviates from the non-negative hermitian structure constraint.
Therefore, the projection approximation does not stand, and this
subspace tracker may not converge. To solve this problem, con-
sider the less restrictive approximation

ΠW (t) ' ΠW (t−1) (5)

whereΠW (t) , W (t) W (t)H is the projection onto the range
space ofW (t). Equation (5) yields thenew projection approxi-
mation(NPA):

W (t) ' W (t− 1)Θ(t) (6)

1Conversely, it can be shown that ifR(t)H is the non-negative hermi-
tian square root ofΦ(t), thenW (t) ' W (t− 1).



whereΘ(t) , W (t− 1)HW (t) is not necessarily close to the
identity. SinceW (t − 1)HCxx(t)W (t − 1) = Θ(t)R(t), the
non-negative hermitian structure constraint is now related to the
productΘ(t) R(t), andR(t)H can be any square root ofΦ(t),
like in the exact power method. Based on the NPA, the API method
will be introduced in the next section. It will be shown that this
algorithm appromatively satisfies the structure constraint on the
matrix productΘ(t) R(t).

4. APPROXIMATED POWER ITERATIONS

Substituting equation (1) into equation (3) yields

Cxy(t) = β Cxx(t− 1)W (t− 1) + x(t) y(t)H (7)

Applying the NPA (6) at timet − 1, equation (7) can be replaced
by the following recursion:

Cxy(t) = β Cxy(t− 1)Θ(t− 1) + x(t) y(t)H . (8)

Based on this recursion, it will be shown that the factoriza-
tion in equation (4) can be efficiently updated. LetS(t − 1) ,
(R(t− 1)Θ(t− 1))H and suppose thatS(t−1) is non-singular.
Define the auxiliary matrixZ(t− 1) = S(t− 1)−1, and consider
ther dimensional vector

h(t) = Z(t− 1) y(t). (9)

Proposition 4.1 shows thatZ(t) can be recursively updated.

Proposition 4.1 The matrixS(t) , (R(t)Θ(t))H is non-singular
if and only if β + y(t)Hh(t) 6= 0, and in this case the matrix
Z(t) , S(t)−1 satisfies the recursion

Z(t) =
1

β
Θ(t)H

(
I − g(t)y(t)H

)
Z(t− 1)Θ(t)−H (10)

whereg(t) is ther dimensional vector

g(t) =
h(t)

β + y(t)Hh(t)
. (11)

Proof Substituting equation (4) into equation (8) and left multi-
plying byW (t− 1)H shows that

Θ(t) R(t) = β S(t− 1)H + y(t) y(t)H . (12)

Next, consider the following matrix inversion lemma [8, pp. 18-19]:

Lemma 4.2 LetA be ar× r non-singular complex matrix. Con-
sider ther × r matrix B = A + y zH , wherey and z are
r dimensional vectors. ThenB is non-singular if and only if
1 + zH A−1 y 6= 0, and in this case

B−1 = A−1 − 1

1 + zH A−1 y
(A−1 y)(A−Hz)H .

Lemma 4.2 applied to equation (12) shows thatΘ(t) R(t) is
non-singular if and only ifβ + y(t)Hh(t) 6= 0, and in this case

(Θ(t) R(t))−1 =
1

β
Z(t− 1)H

(
Ir − y(t) g(t)H

)
(13)

In particular, detecting thatβ + y(t)Hh(t) = 0 is a fast way
of detecting the singularity ofR(t) or Θ(t). In the non-singular
case, equation (13) finally yields equation (10).

Next, proposition 4.3 introduces a fast update for the subspace
weighting matrix.

Proposition 4.3 In the caseβ + y(t)Hh(t) 6= 0, W (t) satisfies
the recursion

W (t) =
(
W (t− 1) + e(t) g(t)H

)
Θ(t) (14)

wheree(t) is then dimensional vector

e(t) = x(t)−W (t− 1) y(t). (15)

Proof Substituting equation (4) into equation (8) and right multi-
plying byΘ(t) shows thatW (t) satisfies the recursion

W (t)S(t)H =
(
βW (t− 1)S(t− 1)H + x(t)y(t)H

)
Θ(t)

(16)
Substituting equations (12) and (15) into equation (16) yields

W (t)S(t)H = W (t− 1)Θ(t)S(t)H + e(t)y(t)HΘ(t). (17)

Left multiplying equation (12) byg(t)H shows that

y(t)H = g(t)H Θ(t) R(t). (18)

Finally, substituting equation (18) into equation (17) and right mul-
tiplying by Z(t)H yields equation (14).

SinceW (t−1) is orthonormal,e(t) is orthogonal toW (t− 1).
Moreover, the orthonormality ofW (t) yields

Θ(t)Θ(t)H =
(
Ir + ‖e(t)‖2g(t) g(t)H

)−1

. (19)

Therefore,Θ(t) can beany inverse square root of the matrix
Ir + ‖e(t)‖2g(t) g(t)H . The choice of this inverse square root
will not affect the subspace tracking performance. Indeed, note
that the error vectore(t) is the component ofx(t) that does not
belong to the signal subspace spanned byW (t− 1). Thus, if this
subspace slowly varies upon time,e(t) ' 0. Therefore,Θ(t) is
nearly orthonormal. Consequently, equation (10) shows thatZ(t)
remains nearly non-negative hermitian, and so doesΘ(t)R(t) (see
equation (12)). Finally, the API method satisfies the non-negative
hermitian structure constraint mentioned in section 3.

The complete pseudo-code is presented in table 1. It can be
noted that the first section of this subspace tracker is exactly the
same as that of the PAST algorithm [1]. This section requires only
O(nr) operations, while the rest of the algorithm has aO(nr2)
computational complexity.

In the particular caseβ + y(t)Hh(t) = 0, Z(t) andW (t)
can no longer be updated with equations (10) and (14). A solution
consists in computingW (t) andR(t) by means of a SVD or a
QR factorization ofCxy(t). ThenΘ(t) = W (t− 1)HW (t) can
be deduced. Note that the whole processing requiresO(nr2) op-
erations; this technique must be used whileR(t) or Θ(t) remains
singular. When bothR(t) andΘ(t) become non-singular again,
thenZ(t) can be computed, and the algorithm can switch back to
the fully adaptive processing. In practice, we never encountered
the rank deficiency case in our numerical simulations.



Table 1: Approximated Power Iterations (API) method

Initialization :

W (0) =

 Ir

0(n−r)×r

 , Z(0) = Ir

for each time step do

input vector : x(t)

PAST main section :

y(t) = W (t− 1)Hx(t) (2)

h(t) = Z(t− 1) y(t) (9)

g(t) =
h(t)

β+y(t)Hh(t)
(11)

e(t) = x(t)−W (t− 1) y(t) (15)

API main section :

Θ(t) =
(
Ir + ‖e(t)‖2g(t) g(t)H

)− 1
2 (19)

Z(t) = 1
β
Θ(t)H

(
I − g(t)y(t)H

)
Z(t− 1)Θ(t)−H (10)

W (t) =
(
W (t− 1) + e(t) g(t)H

)
Θ(t) (14)

5. FAST API METHOD

In this section, a fast implementation of the API method will be
proposed, based on a particular choice of the matrixΘ(t), which
reduces the overall complexity toO(nr). Let

τ(t) =
‖e(t)‖2

1 + ‖e(t)‖2‖g(t)‖2 +
√

1 + ‖e(t)‖2‖g(t)‖2
. (20)

A direct calculation shows that ther × r hermitian matrix

Θ(t) , Ir − τ(t) g(t) g(t)H (21)

is an inverse square root ofIr + ‖e(t)‖2g(t) g(t)H . Then substi-
tuting equation (21) into equation (10) yields

Z(t) =
1

β

(
Z(t− 1)− g(t) h′(t)H + ε(t) g(t)H

)
(22)

whereh′(t) andε(t) are ther dimensional vectors

h′(t) = Z(t− 1)H ((
1− τ(t)‖g(t)‖2) y(t) + τ(t)g(t)

)
(23)

ε(t) =
τ(t)

1− τ(t)‖g(t)‖2

(
Z(t− 1)g(t)−

(
h′(t)Hg(t)

)
g(t)

)
(24)

Finally, substituting equation (21) into equation (14) yields

W (t) = W (t− 1) + e′(t) g(t)H (25)

wheree′(t) is ther dimensional vector

e′(t) =
(
1− τ(t)‖g(t)‖2) e(t)− τ(t)W (t− 1)g(t). (26)

The fast API (FAPI) method is summarized in table 2. Its over-
all computational cost is4nr + O(r2) flops per iteration (whereas
the complexities of PAST and OPAST are respectively3nr + O(r2)
and4nr + O(r2)).

Table 2: Fast API (FAPI) method

Initialization (cf. table 1)

for each time step do

input vector : x(t)

PAST main section (cf. table 1)

FAPI main section :

τ(t) =
‖e(t)‖2

1+‖e(t)‖2‖g(t)‖2+
√

1+‖e(t)‖2‖g(t)‖2

h′(t) = Z(t− 1)H
((

1− τ(t) ‖g(t)‖2
)
y(t) + τ(t) g(t)

)
ε(t) =

τ(t)

1−τ(t)‖g(t)‖2
(
Z(t− 1)g(t)−

(
h′(t)Hg(t)

)
g(t)

)
Z(t) = 1

β

(
Z(t− 1)− g(t) h′(t)H + ε(t) g(t)H

)
e′(t) =

(
1− τ(t) ‖g(t)‖2

)
e(t)− τ(t) W (t− 1) g(t)

W (t) = W (t− 1) + e′(t) g(t)H

6. LINK WITH THE PAST AND OPAST ALGORITHMS

In this section, it will be shown that the classical PAST algorithm
can be seen as a first order approximation of the fast API method.
Indeed, if the second order term‖e(t)‖2 is disregarded,τ(t) = 0
andΘ(t) becomes ther × r identity matrix. Then equations (25)
and (22) become

W (t) = W (t− 1) + e(t) g(t)H

Z(t) =
1

β

(
Z(t− 1)− g(t) h(t)H

)
(27)

(in particular, it can be recursively shown thatZ(t) is always her-
mitian). Consequently, this first order approximation of the fast
API method is an exact implementation of the classical PAST sub-
space tracker [1]. In other respects, a thorough examination of the
OPAST algorithm presented in [5] shows thatW (t) is updated as
in equation (25), butZ(t) is updated as in equation (27). Con-
sequently, OPAST can be seen as an intermediary between PAST
and FAPI.

7. SIMULATION RESULTS

In this section, the performance of the subspace estimation is ana-
lyzed in the context of frequency estimation, in terms of the max-
imum principal angle between the true dominant subspace of the
covariance matrixCxx(t) (obtained via an exact eigenvalue de-
composition), and the estimated dominant subspace of the same
covariance matrix (obtained with the subspace tracker). This error
criterion was initially proposed by P. Comon and G.H. Golub as a
measure of the distance between equidimensional subspaces [4].

The test signal of Figure 1-a is a sum ofr = 4 complex si-
nusoidal sources plus a complex white gaussian noise (the SNR is
5.7 dB). The frequencies of the sinusoids vary according to a jump
scenario originally proposed by P. Strobach in the context of Di-
rection Of Arrival estimation [9]: their values abruptly change at
different time instants, between which they remain constant. Their
variations are represented on Figure 1-b.



Figure 1-c shows the maximum principal angle error trajectory
θFAPI(t), obtained with the FAPI method with parametersn =
80 andβ = 0.99. In Figure 2-a, this result is compared to that
obtained with the NIC subspace tracker2, which can be seen as a
robust generalization of PAST [2]. Figure 2-a shows the ratio in
dB of the trajectories obtained with FAPI and NIC,i.e.

20 log10

(
θFAPI(t)

θNIC(t)

)
.

It can be seen that the subspace estimation error is always smaller
with FAPI. Figure 2-b shows the ratio of the trajectories obtained
with FAPI and OPAST. It can be seen that the two algorithms reach
the same performance, except at initialization, where FAPI con-
verges faster. In fact, the difference is much more distinct with the
sliding window versions of both algorithms (the sliding window
API algorithm will be presented in [10]).

Finally, the orthonormality of the subspace weighting matrix
can be measured by means of the error criterion [11]

η(t) = ‖W (t)HW (t)− I‖2
F .

We observed on our test signal that the NIC subspace tracker reached
a maximum error of−20.5 dB, whereas OPAST never exceeded
−295 dB, and FAPI never exceeded−305 dB.

Figure 1: (a): Test signal; (b): Normalized frequencies of the sinu-
soids; (c): Maximum principal angle trajectory obtained with the
FAPI algorithm.

8. CONCLUSIONS

In this paper, a fast implementation of the power iterations method
for subspace tracking was presented, which guarantees the orthonor-
mality of the estimated subspace weighting matrix at each time
step. This algorithm reaches the linear complexityO(nr) and sat-
isfies a global and exponential convergence property. In the con-
text of frequency estimation, it proved to robustly track abrupt fre-
quency variations, and outperformed the NIC and OPAST algo-
rithms.

2The learning step was equal to0.5.

Figure 2: Ratio of the trajectories obtained with (a) FAPI and NIC;
(b) FAPI and OPAST.
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