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ABSTRACT

We discuss in this paper two post-processings for drum
transcription systems, which aim to model typical proper-
ties of drum sequences. Both methods operate on a sym-
bolic representation of the sequence, which is obtained by
quantizing the onsets of drum strokes on an optimal tatum
grid, and by fusing the posterior probabilities produced by
the drum transcription system. The first proposed method
is a generalization of the N -gram model. We discuss sev-
eral training and recognition strategies (style-dependent
models, local models) in order to maximize the reliability
and the specificity of the trained models. Alternatively, we
introduce a novel unsupervised algorithm based on a com-
plexity criterion, which finds the most regular and well-
structured sequence compatible with the acoustic scores
produced by the transcription system. Both approaches
are evaluated on a subset of the ENST-drums corpus, and
yield performance improvements.

1 INTRODUCTION

Many useful applications can be derived from the knowl-
edge of a semantic description of music signals. As a re-
sult, the field of music information retrieval (MIR) is re-
ceiving a continuously growing interest from the scientific
community. MIR has primarily focused on the extraction
of melodic and tonal information, though it is now ac-
knowledged that the rhythmic content, and the drum track
in particular, is of primary importance for a number of ap-
plications such as drum track remixing, automatic genre
recognition, automatic DJing or query by beatboxing.

The problem of drum transcription has already been
addressed in several studies (see [1] for a review of exist-
ing systems). However, most of the studies on drum track
transcription only use short-term acoustic information (as
carried in acoustic features, or for example, in the coeffi-
cients of a non-redundant decomposition), and thus con-
sider each drum event independently from the other adja-
cent events. Nevertheless, by analogy with speech, where
a sequence of random phonemes does not constitute a syn-
tactically correct sentence, most of the sequences of drum
events do not represent musically interesting drum tracks.
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In fact, as already shown in previous works [2, 3, 4], the
acoustic clues should be combined with sequence models
to take into account the structural specificities of drum se-
quences. Some of these specificities are listed here: some
drum subsequences may never be played (either because
they are musically irrelevant or because they are too com-
plex to be played by a drummer), some subsequences are
frequent, independently of the style (a tom fill for exam-
ple), and some subsequences are typical of a given style
(for example a disco rhythm has the bass drum played
on each beat). Furthermore, a drum sequence may con-
tain repetitive patterns that span several hierarchical lev-
els. For instance, a simple one-bar-long pattern may be
repeated to create a musical phrase, this phrase may be
repeated several times during the chorus, which itself is
played several times during the piece.

The aim of this paper is to present two strategies to in-
clude such information in drum transcription systems: a
supervised strategy, based on a generalization of N -gram
models (described in section 3); and an unsupervised strat-
egy (described in section 4) which aims to find the drum
sequence that exhibits the largest degree of repetitivity and
structure, while still being compatible with the acoustic
scores. Both these methods operate on a symbolic rep-
resentation of the drum sequence. We therefore briefly
discuss in section 2 how to obtain such a representation
from a list of unquantized onsets and posterior probabil-
ities produced by a drum transcription system. Finally,
experimental results are given in section 5, and some con-
clusions are suggested in the last section.

2 SYMBOLIC REPRESENTATION EXTRACTION

Drum transcription systems output a sequence of pairs
(ti, πij)1≤i≤N where πij expresses the probability that
the drum instrument Ij is played at time ti

1 . In this study,
we focus on three drum instruments: I1 = bass drum,
I2 = snare drum and I3 = hi-hat.

1 In some drum transcription systems, the (ti) are obtained by an on-
set detector, and the posterior probabilities (πij) by probabilistic models
trained for each class of drum instrument (bass drum, snare drum...) to
detect. Some other systems may require additional post-processings to
output a probability score, for example from a detected amplitude or a
distance to a template.



2.1 Temporal quantization

For further processing, the detected events should be aligned
on the same quantized time basis or grid. An ideal time
basis for this alignment is the tatum, which is defined as
the pulsation that most highly coincides with all note on-
sets. Several approaches have been proposed to extract the
tatum directly from an audio signal or from the inter-onset
intervals (IOI). In this work, we used a histogram-based
method similar to the one described in [5]. A smoothed
histogram of the observed IOIs is considered, and each
subdivision of the most frequent IOI is a tatum candidate.
Among the candidates, the one whose multiples coincide
the most with peaks in the IOI histogram is selected.

Once the tatum τ is estimated, a tatum grid G(φ) =
{φ+iτ, 0 ≤ i ≤ L

τ } can be considered to quantize events.
The phase parameter φ can be obtained to maximize the
coincidences of the grid with note onsets. However, it
is also important to adjust each point of the quantization
grid to take into account slight tempo changes (ritardandi,
accelerandi), swing, and the limited temporal resolution
of the tatum estimation algorithm. In this paper, a simple
approach based on dynamic programming is followed, to
optimize the individual position of each tatum event, in an
interval around the initial position. We further denote τn

the position of the n-th point on the tatum grid.

2.2 Temporally aligned acoustic scores

The next step consists in representing the rhythmic se-
quence as a set of symbols Sn ∈ A, each of them mapped
by φ to a combination of drum instruments played at time
τn of the tatum grid. φ(Sn) can be any subset of the
set A = {bass drum, snare drum, hi-hat} of drum instru-
ments of interest.

Let Tn be the set of indices of the onsets ti whose clos-
est tatum point is τn (i.e. Tn = {i, n = arg mink |τk −
ti|}). For a given symbol S denoting a combination φ(S) ⊂
A of drum instruments, the probability that this combina-
tion is played at τn is given by:

P (Sn = S|t, π) =
∏
j

{
1−

∏
i∈Tn

πij if Ij ∈ φ(S)∏
i∈Tn

πij if Ij /∈ φ(S)

(1)
where πij = (1 − πij). For example, the probability that
the symbol denoting the combination {sd, hh} is played
at time τn is calculated as the probability that there is at
least one snare drum and one hi-hat strokes detected in the
interval related to τn and that there is no bass drum stroke
detected in this same interval.

As a result of the processes described in this section,
the output of the drum transcription system can be repre-
sented as a sequence of tatum pulsations τn, and proba-
bilities P (Sn = S) ; a candidate transcription being rep-
resented as a sequence sn. Using only the acoustic clues,
the most likely transcription is simply:

s∗n = arg max
s∈A

P (Sn = s)

In the next section, we propose several means of combin-
ing these acoustic cues with sequence models. We also
consider, in section 4, a different decision rule which in-
cludes a regularization term penalizing complex transcrip-
tions.

3 SUPERVISED SEQUENCE MODELLING

3.1 Generalized N -gram models

Several techniques have been proposed in the past to de-
scribe the dependencies of symbols Sn in a drum sequence.
The most straightforward approach (as followed in [6]) is
the traditional N -gram model, where the probability to
observe a sequence s = (sn)1≤n≤L is:

P (s) =
L∏

n=1

P (sn|sn−1 . . . sn−N+1) (2)

A different approach was proposed in [3] where the de-
pendencies are tracked at the level of successive bars. In
this periodic N -gram model, the probability to observe a
sequence s is given by:

P (s) =
L∏

n=1

P (sn|sn−M . . . sn−(N−1)M ) (3)

In this paper we propose a generalization of the previ-
ous approaches by considering dependencies at different
scales. Let T be the sequence model time support – in
other words, the temporal levels at which the dependen-
cies are considered. Following this model, the probability
to observe a sequence s is then equal to:

P (s) =
L∏

n=1

P (sn|sn−T1 . . . sn−TN
) (4)

Note that the traditional N-gram model corresponds to
the case where T = (1, 2, . . . , N−1) and that the periodic
N -gram to the case where T = (M, 2M, . . . , (N−1)M).
As such, our model allows the use of a time support T
that achieves a trade-off between the observation length
and the number of probabilities to estimate. For instance,
when the tatum corresponds to a sixteenth note, with a

(
4
4

)
time signature, the choice T = (1, 4, 16) allows the model
to learn dependencies between successive bars, beats, and
tatum points, while keeping the overall complexity and the
number of degrees of freedom of the model low.

3.2 Probabilities estimation

The learning of sequence models consists in estimating
the probabilities of observing a given symbol sn knowing
its context. These probabilities can simply be estimated
by counting in a training corpus the number of times sn is
observed in a given context normalized by the number of
times this context is encountered. This simple approach
is unable to deal with infrequent or unseen substrings in
the training corpus. In this work, we used Witten-Bell
smoothing [7] to estimate the probabilities in such cases.



3.3 Most likely sequence

Given the probabilities P (Sn = S|t, π) (noted P (S|t, π)
for sake of clarity), and a generalized N -gram model of
time support T , the most likely sequence is:

arg max
s

∏
1≤n≤L

P (sn|t, π)P (sn|sn−T1 . . . sn−TN
) (5)

This optimal sequence can be approximated with a causal
greedy search (O(L|A|) complexity) or the non-causal Viterbi
algorithm (O(L|A|2) complexity). It can also be found
exactly by a Viterbi search through the space of all con-
texts (O(L|A|TN+1) complexity), where |A| is the num-
ber of rhythmic symbols.

3.4 Training sequence models: What to learn?

So far, we considered that a training corpus is available
to estimate the probabilities P̂ (sn|sn−T1 . . . sn−TN

). An
open question is the choice of this training corpus. Here,
we discuss several strategies, and evaluate the predictive
power of the models that can be obtained by following
them.

Generic model The training corpus consists in a set of
heterogenous sequences of different styles played by dif-
ferent drummers. This approach is the simplest to follow:
one unique model has to be trained once and for all.

Drummer-dependent model The training corpus contains
only sequences played by the same drummer as the se-
quences to transcribe. Such an approach is only feasible
for a few limited applications – where the system can be
calibrated to a given performer.

Style-dependent model The training corpus contains only
sequences of a given style (e.g. salsa, reggae or rock)
played by various drummers. Thus, a different model is
trained for each style. In order to select the model to
be used for the recognition, several approaches are pos-
sible: an independent style classification system can be
used (hierarchical classification), a human user with in-
fallible skills can select the model corresponding to the
sequence (classification with style oracle), or the recogni-
tion can be performed in parallel by each model, the final
result being the one produced by the model having the
highest likelihood.

Individual sequence model We assume, in this case, that
the sequence to be transcribed is known in advance, and
that we can estimate the probabilities from this sequence.
This approach is of limited interest, except for applica-
tions like computer aided teaching of drumming, or score
following, where the score is known in advance. A more
feasible solution consists in using an initial model (for ex-
ample, a generic model) to obtain a first transcription; and
then to train a local individual sequence model on the rec-
ognized sequence. Assuming that the errors made by the
transcription system are independent of the context, the
probabilities estimated from the recognized sequence will

T Generic Drummer Style Sequence
Generalized trigrams

-2,-1 0.153 0.237 0.357 0.405
-4,-1 0.157 0.237 0.347 0.396
-8,-1 0.192 0.262 0.359 0.403
-16,-1 0.185 0.254 0.348 0.391
-4,-2 0.179 0.253 0.356 0.398
-8,-2 0.204 0.265 0.353 0.390
-16,-2 0.213 0.273 0.370 0.407
-8,-4 0.219 0.279 0.354 0.392
-16,-4 0.196 0.254 0.344 0.380
-16,-8 0.229 0.283 0.348 0.379
-32,-16 0.208 0.264 0.325 0.361

Generalized quadrigrams
-3,-2,-1 0.281 0.414 0.523 0.552
-4,-2,-1 0.297 0.429 0.528 0.555
-8,-2,-1 0.307 0.429 0.531 0.558
-16,-8,-1 0.311 0.423 0.517 0.546
-8,-4,-2 0.318 0.428 0.515 0.540
-16,-4,-2 0.308 0.418 0.525 0.551
-16,-8,-2 0.322 0.423 0.514 0.541
-16,-8,-4 0.312 0.408 0.500 0.526
-48,-32,-16 0.309 0.403 0.470 0.504

Table 1. Predictive power of the sequence model, mea-
sured by the mutual information between a symbol and its
context I(C, S), for different time supports T and training
corpora (all of them subsets of the ENST-drums database).

be close to those estimated on the correct sequence. The
recognition is then performed using this local model.

These four approaches are evaluated by comparing the
predictive power of the learned sequence models, which is
measured by the mutual information between a rhythmic
symbol s and its context c (this context being defined by
the support T ):

I(C, S) =
∑

c∈AN−1

∑
s∈A

P (c s) log|A|
P (c s)

P (c)P (s)
(6)

Since I(C, S) = H(S) − H(S|C), the mutual infor-
mation measures the certainty with which a symbol is de-
termined, knowing its context. A null value implies that
the context has no predictive power on the observed sym-
bol. The results obtained on the different training corpora
(Refer to section 5 for a description of the database) with
different time supports T are summarized in table 1.

Firstly, the results show that drummer dependent mod-
els are only slightly more efficient than generic models.
Such models have a lower predictive power than style-
dependent models. Secondly, the efficiency of style-dependent
models, and their predictive power close to the one of in-
dividual sequence models, suggests that sequences played
in a specific style are rather homogeneous and played with
a limited degree of variability. Finally the results highlight
the usefulness of the generalized N-grams introduced: in
fact, they are, in most cases, more efficient than traditional
N-grams and pure periodic N-grams since they can simul-
taneously track short and long term dependencies. How-



ever, it is worth noting that we have only evaluated the
predictive power of the sequence model here. Such mod-
els might not offer any improvement in a full transcription
system, as their efficiency depends on the reliability of the
acoustic scores.

4 UNSUPERVISED SEQUENCE MODEL

Although powerful, the previously described supervised
approach suffers from two main drawbacks. On the one
hand, it needs a training phase for which a trade-off be-
tween genericity and predictive power needs to be found.
On the other hand, if higher performances can be obtained
by a generalized N -gram approach, the choice of the time
support T requires prior knowledge of the duration of a
bar or a sequence; and when N is large, the accuracy of
the estimated probabilities is poor. As a consequence, a
novel alternative approach, entirely unsupervised, is pro-
posed in this section.

This approach is based on the following assumption:
drum sequences are built with rather regular and repetitive
patterns at different time scales. The basic idea for our ap-
proach is thus to correct (or rather simplify) the drum se-
quence obtained by the transcription system so that it can
be more easily described in terms of hierarchical, repeti-
tive patterns.

4.1 Complexity criterion

The Kolmogorov complexity of a sequence K(S) is de-
fined as the length of the shortest program, represented
with a binary alphabet for a given model of computation
(for example, a universal Turing Machine), which outputs
the sequence S. K(S) is not computable, but can be ap-
proximated by compression algorithms. In this case, the
shortest program generating S is a compressed version of
S followed by a program decompressing it.

Complexity criteria have been used in [8] and [9] to
measure the similarity between melodies; and in [10] to
detect the melody in a polyphonic piece (the main melody
is considered to be the part of maximal complexity). All
these studies use the LZ77 or LZ78 [11] compression al-
gorithms as an approximation of Kolmogorov complexity.

Here, we propose to use a different compression algo-
rithm to measure the complexity of rhythmic sequence:
the SEQUITUR algorithm [12]. First, this algorithm out-
performs LZ78 for various text compression tasks, and
thus, gives a better approximation of the minimal descrip-
tion length. Moreover, this algorithm infers from the ob-
served sequence, not a dictionary of frequent prefixes (as
is the case with LZ78), but a context-free grammar, which
thus takes into account the hierarchical and recursive struc-
ture of the sequence. Finally, this algorithm can be easily
modified to include domain-specific transformation oper-
ators (transposition, time-reversal, etc.) in the inferred
grammar.

4.1.1 Inferring a grammar from a sequence

We recall here the principle of the SEQUITUR algorithm,
which processes the sequence, symbol by symbol, from
left to right, to update its representation as a context-free
grammar G verifying the following two properties:
Bi-gram uniqueness a bigram should not appear more
than once 2 in the right member of a production rule. Two
cases are possible:

• when G contains the rules A → XabY and B →
ZabT , a new rule C → ab is created and original
rules are modified as A → XCY and B → ZCT .

• when G contains the rules A → XabY and B →
ab, the first rule is modified into A → XBY .

Usefulness of a rule. Each production rule should be used
at least twice. Thus, if the grammar contains A → XBY
and B → ZT , and if the non-terminal B only appears in
the first rule, the second rule is deleted and the first rule
becomes A → XZTY .

As an example, the following grammar will be inferred
from the sequence abcbcabcbc:

S → AA A → aBB B → bc

4.1.2 Complexity from SEQUITUR

A context-free grammar is entirely defined by the string
obtained by joining the right members of the production
rules with a separation marker noted #. For example, the
grammar given in the previous example is entirely defined
by the string AA#aBB#bc. If an entropic code (e.g.
a Huffman code) is used to compress this sequence, an
approximation of the length of the corresponding binary
message is given by:

l(G) ≈
∑
a∈Ω

−C(a) log2

C(a)
N

(7)

where C(a)
N is the frequency of symbol a in the se-

quence, N the length of the sequence and Ω the alphabet
of symbols. The whole procedure for the approximation
of the complexity of a rhythmic sequence is summarized
below:

1. Inference of a context-free grammar G(s) from the
sequence s with SEQUITUR.

2. Reduction of the grammar production rules into a
string.

3. Compression of this string into a binary message of
length l(G(s)) with an entropic code.

2 Although it is not used in this work, it is possible to generalize this
rule to include bijective transformations in the production rules (such
rules would be of the form A → ϕ(B)C, where ϕ is the transforma-
tion). In the context of note sequences, useful transformations that can
be considered include transposition or reversal. In the context of drum
sequences, a useful transformation is the substitution of one cymbal by
another – for example, a sequence can be repeated with the ride cymbal
played instead of the closed hi-hat. In this work, we only consider the
hi-hat, and thus do not use such rules.



We observed in our database that the average complex-
ity of the original (ground-truth annotation) drum sequences
is 984 bits per sequence, while the average complexity
of the corresponding transcriptions 3 is 1179 bits per se-
quence. This supports our initial assumption that the er-
rors made by the transcription system break the structure
and repetitiveness of the drum sequences.

4.2 Penalized likelihood for sequences

We propose the following penalized likelihood criterion in
order to find the sequence that is both simple, according
to the previously defined complexity measure, and com-
patible with the acoustic scores:

s∗ = arg max
s

F (s) (8)

F (s) =
L∑

n=1

log P (Sn = sn|t, π)− αl(G(s)) (9)

The first term requires the sequence to be compatible
with the acoustic score, and the second term penalizes
complex sequences. Unfortunately, there exists to our knowl-
edge no deterministic algorithm to find s∗ (above all, con-
trary to the model we described in section 3, dynamic
programming cannot be used), and a search in the space
of all possible sequences is obviously intractable. Ge-
netic algorithms appear as an interesting approach to solve
this problem, especially because in our case, there exists
a trivial representation of the parameter to optimize as
“chromosomes”, for which the cross-over operator makes
sense: a good transcription is likely to be obtained by
combining parts of good transcriptions. The procedure is
described below :
Initialization of a population of Npop = 200 sequences
(si). This population is initialized with mutations of the
best sequence obtained without the complexity penaliza-
tion term, i.e. arg maxs

∑L
n=1 log P (Sn = sn|t, π).

Reproduction Nexp = 4Npop children sequences are pro-
duced by the following procedure:

1. Random choice of two parents s1 and s2 amongst
the current population.

2. Crossing-over. A recombination point p ∈ [1, L] is
randomly chosen. The child sequence is then deter-
mined by sc(n) = s1(n),∀n ∈ [1, p] and sc(n) =
s2(n),∀n ∈ [p + 1, L].

3. Mutation. A mutation position p ∈ [1, L] is ran-
domly chosen. The probability that the symbol at
position p mutates into a is given by the acoustic
score P (Sp = a|t, π).

Selection. A population of Npop sequences survives. This
population contains the 0.9Npop sequences for which the
criterion F is the largest and 0.1Npop sequences randomly
selected amongst the remaining sequences.

3 Produced by a system described in yet unpublished work.

BD SD HH BD SD HH
Baseline Unsupervised

79.4 59.6 76.7 81.3 61.7 80.4
Indiv. sequence Style-dep. model

T with sequence oracle with style oracle
-1 82.6 63.3 79.2 79.4 60.4 78.0
-2,-1 82.0 67.0 80.6 80.2 60.9 79.7
-4,-1 81.7 64.6 80.9 80.5 61.2 79.5
-8,-1 82.3 63.8 80.3 81.2 61.9 79.1
-16,-1 81.0 63.2 80.2 80.2 60.2 78.8
-3,-2,-1 80.9 66.7 81.5 78.1 61.8 80.3
-4,-2,-1 82.2 65.7 82.5 78.5 60.1 79.3
-8,-2,-1 81.2 65.4 81.2 78.7 59.8 79.3
-16,-2,-1 82.4 66.0 82.1 78.8 59.2 78.6
-4,-3,-2,-1 78.7 66.0 82.9 76.4 61.5 80.3
-16,-8,-2,-1 81.4 64.7 81.3 79.3 59.0 79.4

with local model with most likely style
-1 80.8 60.2 77.9 79.4 60.4 78.0
-2,-1 81.3 60.6 78.2 80.2 60.8 79.6
-4,-1 81.2 61.2 77.6 80.9 60.9 78.7
-8,-1 81.0 60.9 77.8 81.2 61.4 78.8
-16,-1 81.2 60.1 77.7 80.1 60.1 78.6
-3,-2,-1 81.3 60.8 77.2 78.1 61.8 80.3
-4,-2,-1 81.6 61.1 77.6 77.4 59.8 78.8
-8,-2,-1 81.5 61.1 77.7 77.2 59.9 78.6
-16,-2,-1 81.6 60.8 77.2 78.5 59.1 78.2
-4,-3,-2,-1 81.1 61.0 77.5 75.4 61.6 80.0
-16,-8,-2,-1 81.5 60.1 76.5 79.3 59.0 79.1

Table 2. Performance of the supervised sequence mod-
els for several contexts and training strategies, and of the
unsupervised error correction method

Iteration on N = 50 generations.
A specificity of this implementation is the control of

the mutation probabilities. This trick avoids the explo-
ration of regions of the solution space where the likelihood
term is too low. Actually, we observed that even when
α >> 1 (i.e., when the regularization term dominates the
likelihood term), the solutions have a high likelihood. We
used α = 0.5 in the following experiments.

5 EXPERIMENTAL RESULTS

The experiments were conducted on the minus one se-
quences of the ENST-Drums corpus [13], with a balanced
mix between drums and musical accompaniment to recre-
ate realistic use conditions. This corpus consists of 17
sequences, of various genre, played by 3 drummers – we
selected for these experiments the sequences played by the
second and third drummers. For each instrument, the per-
formance is measured by the F-measure. Results are given
in table 2. The baseline corresponds to the raw output of
the drum transcription system, without sequence model-
ing.

First of all and not surprisingly, we observe that the
greater gains are obtained by using an individual sequence
model with oracle – that is to say, by using a sequence
model trained in advance on the sequence to be recog-



nized. Interestingly, the best performances for each in-
strument are achieved by considering a different context:
the hi-hat requires long contexts, while the snare drum and
bass drum require shorter context. The best results are ob-
tained with generalized quadrigrams taking into account
the local context, and the event played 4 or 8 tatum points
earlier. The performance gain offered by the local model
is lower – this is probably due to the lack of training data
for the adapted model.

The performance gains offered by the style-dependent
models (be it with automatic style detection, or with an
oracle indicating the style in which the sequence is per-
formed) are very similar. Actually, the performance of
the style identification stage (which consists in selecting
the style-dependent model with the largest likelihood) is
rather satisfying – the model corresponding to the style in
which the sequence was played was selected 70% of the
time. We observed that even when the wrong model was
selected, some errors were eliminated in the transcription,
as a model from a different style still carried general prop-
erties of drum sequences.

The unsupervised method based on complexity mini-
mization performed similarly as style-dependent models.
However, its usefulness is hampered by its large computa-
tional cost.

6 CONCLUSION AND FUTURE WORK

We described in this work two methods to improve the
output of drum transcription systems by modeling sev-
eral typical properties of drum sequences. Firstly, a su-
pervised method based on a generalization of the N -gram
models is described. We particularly focused on the se-
lection of the corpus on which such models should be
trained, and we proposed several strategies and classifica-
tion schemes to efficiently use such models, since we ob-
served that their predictive power is limited on too diverse
corpora. Secondly, an unsupervised method based on a
complexity criterion is introduced. This criterion favors
sequences which exhibit a well-defined structure – more
precisely, which can be described by a compact context-
free grammar. However, there is, to our knowledge, no
efficient way to maximize this criterion. In this work,
we used genetic algorithms with controlled mutation rates
as a heuristic to efficiently explore the space of possible
drum sequences. Future work should address the prob-
lem of finding more efficient algorithms or heuristics to
minimize this criterion. Even if we are pessimistic about
the existence of a solution of polynomial complexity, the
use of such complexity penalization terms could benefit to
other MIR applications such as music transcription.

Our experimental results showed performance gains for
the two methods. However, these gains remain modest.
We suggest that this result is not due to the sequence mod-
els themselves, but rather to the lack of reliability of the
acoustic scores produced by the transcription system. Our
initial assumption that classifiers or detectors produce pos-
terior probabilities close to the decision boundary, but on

the wrong side, when they encounter a difficult case, is
wrong: we rather observed that most of the mistakes made
by classifiers indeed corresponded to posterior probabili-
ties far from the decision boundary. It is thus very likely
that the performance of sequence models is bounded by
the performance of the detection or classification module.
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