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Abstract. We address the issue of source separation in a particular
informed configuration where both the sources and the mixtures are
assumed to be known during a so-called encoding stage. This knowledge
enables the computation of a side information which ought to be small
enough to be watermarked in the mixtures. At the decoding stage, the
sources are no longer assumed to be known, only the mixtures and the
side information are processed to perform source separation.
The proposed method models the sources jointly using latent variables in
a framework close to multichannel nonnegative matrix factorization and
models the mixing process as linear filtering. Separation at the decod-
ing stage is done using generalized Wiener filtering of the mixtures. An
experimental setup shows that the method gives very satisfying results
with mixtures composed of many sources. A study of its performance
with respect to the number of latent variables is presented.

1 Introduction

This study concerns a special case of source separation, called informed source
separation (ISS), that was introduced by Parvaix in [7]. ISS can be understood
as an encoding/decoding framework in which both the sources and the mixtures
are available at the encoder’s side, but only the mixtures are available at the
decoder’s side, as well as some side information that may have been created
by the encoder and transmitted along with the mixtures to assist the separation
process. ISS thus aims at making source separation robust by providing adequate
prior knowledge to the separation algorithms, and allows applications such as
active listening that consists in being able to mute tracks as in classical Karaoke
applications or to add separate effects to them.

The main advantage of ISS is that it permits to reliably recover the sepa-
rated tracks from the mixtures with only a very small amount of side information.
The method we propose here allows to control the quantity of information that
is sent to the decoder. As highlighted by Parvaix in [7], if the side information
is sufficiently small, it can be directly embedded in the mixture signals by wa-
termarking, allowing active listening of recordings on conventional stereophonic
audio CD.
? This work is supported by the French National Research Agency (ANR) as a part of
the DReaM project (ANR-09-CORD-006-03) and partly supported by the Quaero
Program, funded by OSEO.



We propose a new method for informed source separation that is based on
jointly modeling the sources at the encoder side using latent additive independent
Gaussian variables in a framework that is very similar to Non-negative Matrix
Factorization (NMF). Then, the mixing process is modeled via linear filters that
are estimated using techniques inspired from the automatic mixing literature
[1]. The side information considered in our proposed system thus consists of
the spectrum and activation coefficients of each latent component as well as the
mixing parameters. The number of necessary bits to store this information is
mainly controlled by the number of latent variables considered. At the decoder
side, the separation process involves generalized Wiener filtering [2] and allows
reaching excellent performance provided that enough latent variables have been
chosen.

This paper is organized as follows. In section 2 we detail the model used
for representing the source signals as well as the mixing process at the encoder
side. In section 3 we describe the estimation method and outline the separation
technique induced by the model at the decoder side. Finally, we give some ex-
perimental results along with a study of the influence of the number of latent
variables on the separation quality in section 4.

2 Model

2.1 Introduction

We consider a set ofM source signals (sm,t)m=1···M,t=1···L and a set ofK mixture
signals (xk,t)k=1···K,t=1···L of same lengths L. We define Sm,ωn = [F(sm,.)]ω,n
and Xk,ωn = [F(xk,.)]ω,n as the complex-valued Short Time Fourier Transforms
(STFT) of the signals sm,. and xk,. for frequency bin ω ∈ [1 : Nω] and frame
index n ∈ [1 : Nn].

2.2 Source signals

Complex Gaussian model Following the formalism introduced by Benaroya
in [2], the signals of interest are locally modeled as independent wide-sense sta-
tionary centered random variables and can thus be characterized by their covari-
ance. In the spectral domain, this can be expressed by writing that the STFT
Yωn of some signal yt for frame index n and frequency bin ω obeys1:

Yωn ∼ Nc(0, σ2
Yωn)

where σ2
Yωn

is the power spectral density of yt for the frame n at frequency ω.
We further assume that {Yωn}ω,n are independent, which stands asymptotically
for all (ω, n).

1 Nc is the proper Gaussian complex distribution and is defined on the plane by its
probability density function f(z) = 1

πσ2 exp
“
− |z|2

σ2

”



Mixture of latent components The study presented here considers R un-
derlying latent independent centered random Gaussian variables cr,t called the
latent components, each of which has a power spectral density Wωr and is only
modulated in time by some frame-dependent activation coefficients Hrn. In the
frequency domain, the STFT Cr,ωn of each latent component cr,t for frame n
and frequency ω is thus modeled as:

Cr,ωn ∼ Nc(0,WωrHrn) (1)

Each source signal sm,t is then simply modeled as a weighted sum of these
R latent components:

sm,t =
R∑
r=1

√
Qmrcr,t (2)

where the non-negative coefficient
√
Qmr is the contribution of the latent com-

ponent r to source m. As can be seen, all the sources are modeled as a sum of
the same underlying components. Combining (1) and (2), we have, for frequency
bin ω and frame index n:

Sm,ωn ∼ Nc(0,
R∑
r=1

QmrWωrHrn) (3)

We can readily see that the model (3) is equivalent to the multichannel NMF
model presented in [6]. Indeed, the source signals sm,t are modeled as linear
instantaneous mixtures of R latent components. An interesting feature of our
model is to allow one single number of latent components for all the source
signals.

2.3 Mixing process

Following [1], we will model each mixture signal as a sum of filtered versions of
the sources

xk,t =
M∑
m=1

P∑
τ=0

akm,τsm,t−τ =
M∑
m=1

skm,t (4)

where P is the order of the mixing filters, (akm,τ )τ=0..P is the impulse response
of the filter from source m to mixture k and skm,t is called the contribution
of source m to mixture k for time t. We will only consider causal and Finite
Impulse Response (FIR) filters here. This model can be approximated in the
spectral domain as Xk,ωn =

∑M
m=1Akm,ωSm,ωn, where Akm,ω is the frequency

response of the filter (akm,τ )τ=0..P at the frequency corresponding to bin ω.

2.4 Unmixing process

During the estimation process, we aim at recovering the original sources sm,t
given their contributions skm,t in the mixtures. To that purpose, we follow a



beamforming approach that consists in estimating sm,t as the sum of filtered
versions of skm,t: ŝm,t =

∑K
k=1

∑Pu
τ=0 umk,τskm,t−τ , where umk is the FIR un-

mixing filter of length Pu from mixture k to source m. If Umk is the frequency
response of umk, this can be approximated in the spectral domain as:

Ŝm,ωn =
K∑
k=1

Umk,ωSkm,ωn. (5)

2.5 Set of parameters

The total set Θ of parameters is Θ = {W,H,Q,A,U}, where A and U are
respectively composed of all the M × K impulse responses of the mixing and
unmixing filters from theM sources to the K mixtures and vice versa. The total
number of parameters is then:

#Θ = Nω ×R︸ ︷︷ ︸
for W

+Nn ×R︸ ︷︷ ︸
for H

+M ×R︸ ︷︷ ︸
for Q

+M ×K × (P + Pu)︸ ︷︷ ︸
for A and U

(6)

As can be seen from (6), using fixed parameters for the STFT, #Θ is con-
trolled by the number R of latent components and the orders P and Pu of the
mixing and unmixing filters.

3 Parameters estimation

3.1 Multichannel NMF for source signals

Multiplicative update rules for the parameters For only one source, the
model (3) is equivalent to the NMF approach that was popularized by Lee and
Seung in [5] when using a particular measure called the Itakura-Saito diver-
gence, which is a special case of β-divergence for β = 0 (see [4] on this point).

Algorithms in the aforementioned papers can be generalized to the case ofM
sources and the corresponding update rules for the parameters are summarized
in Algorithm 1 for any β-divergence2.
2 Notations :

– . denotes element-wise product
– A

B
denotes element-wise division

– Mm. is the mth row of matrix M
– [A.α]mn = [A]αmn
– Sm = |Sm|.2 is the power spectrum of source m
– diag(D) is a column vector containing the diagonal elements of D if D is a matrix

or is the matrix whose diagonal elements are composed of the elements of D if D
is a vector.

– Ŝm = Wdiag(Qm.)H is the estimated power spectrum of source m with current
model parameters.



Algorithm 1 Update rules for the parameters of the source model (3) for one
iteration
– Q update:

Qm. ← diag
„
diag(Qm.).

WT (Ŝ.β−2
m .Sm.(WH))HT

WT Ŝ
.β−1
m HT

«
– W update:

W ←W.
PM
m=1(Ŝ

.β−2
m .Sm)(diag(Qm.)H)TPM

m=1 Ŝ
.β−1
m (diag(Qm.)H)T

– H update:

H ← H.
PM
m=1(Wdiag(Qm.))T (Ŝ.β−2

m .Sm)PM
m=1(Wdiag(Qm.))T Ŝ

.β−1
m

– Normalization of W and Q and scaling of H accordingly.

As pointed out by Bertin in [3], better results can be obtained if optimiza-
tion is first performed with convex cost functions such as the Kullback-Leibler
generalized divergence (β = 1) and then with the Itakura-Saito distance (β = 0),
which is not convex. Such a tempering approach was hence used in this study
and indeed proved to show better performance.

3.2 Estimation of the mixing filters

The problem of estimating the mixing filters of different sources in a mixture has
already been addressed in so-called automatic mixing studies such as [1]. The
main idea of these techniques is to choose the mixing filters so as to minimize the

mean squared error 1
L

∑
t

∣∣∣xk,t −∑M
m=1 (akm ∗ sm) (t)

∣∣∣2 for all k. This is done
using standard least-squares methods.

3.3 Source separation at the decoder

Sources contributions in mixtures When the parameters of the model have
been estimated, we no longer suppose that the source signals sm,t are avail-
able. We then focus here on the decoder side, where only the mixtures xk,t and
the parameters Θ are available. Considering the mixing model given in 2.3 and
the source model (3), we have Skm,ωn ∼ Nc

(
0, |Akm,ω|2

∑R
r=1QmrWωrHrn

)
.

If we define σ2
km,ωn = |Akm,ω|2

∑R
r=1QmrWωrHrn, we then have Xk,ωn ∼

Nc
(
0,
∑M
m=1 σ

2
km,ωn

)
and the minimum mean square error (MMSE) estimate

of Skm,ωn is thus given by (see also [2,6,4]):

Ŝkm,ωn =
σ2
km,ωn∑M

m′=1 σ
2
km′,ωn

Xk,ωn (7)

Sources estimates through beamforming Given all the ŝkm,t, our objective
is now to estimate sm,t. Using (5) and (7), we readily see that the estimate Ŝm,ωn



of source m for time-frequency bin (ω, n) given Θ and the mixtures is given by:

Ŝm,ωn =
K∑
k=1

Umk,ωŜkm,ωn (8)

This computation at the decoder side does not require much computational
resource as its complexity is O (R×M ×K).

The decoder requires the the unmixing filters umk in order to compute (8).
They are included in the parameters set Θ by the encoder, which also computes
ŝmk,t following (8) and then chooses umk so as to minimize the squared error
1
L

∑
t |sm,t − ŝm,t|

2 for all m.

4 Evaluation

4.1 Corpus and metrics

Corpus Experiments were done with the internal Source Separation Corpus
gathered for the Quaero program 3, from which 9 different excerpts were chosen
of various musical styles along with their constitutive separated tracks. The cor-
pus includes excerpts constituted of 5 to 11 separated tracks, which are of many
kinds, including acoustic instruments such as piano, guitar, male and female
singers, distorted sounds/voices, digital effects, etc.

All mixing was done in stereo on real Digital Audio Workstations. It includes
equalizing and panning. All sampling rates were set to 44.1kHz and signals are
approximately 30s long.

Metrics Objective criteria to evaluate the quality of the separation were used
as defined in the bsseval toolbox [8] and include the Source to Distortion Ratio
(SDR), the Source to Interference Ratio (SIR) and the Source to Artifacts Ratio
(SAR). All values are in dB. In order to assess the quality of separation, we
have compared the results given by the proposed method to results given by the
idealized (oracle) time-frequency mask expressed as follows:

Ŝkm,ωn =
‖Skm,ωn‖2∑M

m′=1 ‖Skm′,ωn‖
2
Xk,ωn

For each excerpt, statistics are averaged over all its constitutive sources in
order to give a general overview of the performance of the method. Complete
evaluation along with sample signals can be downloaded from our website.

Models parameters All the STFT were computed for frames of 70ms, with
30% overlap. The order of the mixing and unmixing filters akm and umk were
all set to P = 150 and the number of iterations for Algorithm 1 was set to 60,
the first 30 iterations used β = 1 and the last 30 iterations used β = 0. As #Θ
is mainly controlled by the number R of latent components, we have studied the
performance of the method with respect to R.
3 www.quaero.org



4.2 Sources estimates

The results for estimating the sources from the mixtures are given in Figure 1.

Fig. 1. Average SDR/SIR/SAR scores (in dB) for the estimation of the individual
sources. Results are averages over the sources for each excerpt of the corpus.

4.3 Discussion

Several remarks can be made when considering the results given in Figure 1.
First, it is perceptually very hard to notice any difference between the original
signals and the sources recovered using the oracle method.

Secondly, the quality of the separation is directly controlled by the number
R of latent components. As R increases, performance gets closer to the oracle
method. There is thus a trade-off between the quality of the separation and the
weight of the models parameters. For the results given here, #Θ ranges from 1%
for R = 10 to 7.5% for R = 90 of the number of samples in the mixtures.

Finally, even if damaged for small R, the sources are very well isolated one
from another, as confirmed by the very high SIR scores.



5 Conclusion

Informed source separation consists in providing valuable prior knowledge to a
source separation algorithm. This study considers the case where this knowledge
has been computed at an encoding stage where both the mixtures and the origi-
nal sources are known. It then jointly models the source signals through additive
latent variables and models the mixing and unmixing processes as linear filters.
At the decoding stage, separation is performed using generalized Wiener filtering
of the mixtures signals.

The total weight of the parameters is extremely small compared to that of
the mixtures, typically less than 5 percents. Even though this information is
neither quantized nor compressed, this aready allows hiding it directly in the
mixture signals through watermarking.

The proposed method allows reaching excellent performance and managed
to successfully separate up to 11 sources in stereophonic mixtures during our
experiments. The quality of the separation is directly related to the number of
latent components used for modeling the sources and can be reliably known by
the encoder.

References

1. D. Barchiesi and J. Reiss. Automatic target mixing using least-squares optimization
of gains and equalization settings. In Proc. of the 12th Conf. on Digital Audio Effects
(DAFx-09), pages 7–14, Como, Italy, September 2009.

2. L. Benaroya, F. Bimbot, and R. Gribonval. Audio source separation with a single
sensor. IEEE Trans. on Audio, Speech and Language Processing, 14(1):191–199,
2006.

3. N. Bertin, C. Févotte, and R. Badeau. A tempering approach for Itakura-Saito
non-negative matrix factorization. With application to music transcription. In Proc.
IEEE Intl. Conf. Acoust. Speech Signal Processing (ICASSP’09), pages 1545–1548,
Washington, DC, USA, April 2009.

4. C. Févotte, N. Bertin, and J.-L. Durrieu. Nonnegative matrix factorization with the
Itakura-Saito divergence. with application to music analysis. Neural Computation,
21(3):793–830, 2009.

5. D. D. Lee and H. S. Seung. Algorithms for non-negative matrix factorization. Ad-
vances in Neural Information Processing Systems, 13:556–562, 2001.

6. A. Ozerov and C. Févotte. Multichannel nonnegative matrix factorization in con-
volutive mixtures for audio source separation. IEEE Trans. on Audio, Speech and
Language Processing, 18(3):550–563, 2010.

7. M. Parvaix, L. Girin, and J.-M. Brossier. A watermarking-based method for in-
formed source separation of audio signals with a single sensor. IEEE Transactions
on Audio, Speech and Language Processing, to be published, 2010.

8. E. Vincent, C. Févotte, and R. Gribonval. Performance measurement in blind au-
dio source separation. IEEE Trans. on Audio, Speech and Language Processing,
14(4):1462–1469, 2006.


