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1LTCI, Télécom Paris, Institut Polytechnique de Paris, France
2Groupe PSA, Chemin de Gisy, 78943 Vélizy-Villacoublay, France

ABSTRACT

In this paper, we propose several approaches for neutral to Lombard
speech conversion. We study in particular the influence of differ-
ent recurrent neural network architectures where their main hyper-
parameters are carefully selected using a bandit-based approach. We
also apply the Continuous Wavelet Transform (CWT) as a multi-
resolution analysis framework to better model temporal dependen-
cies of the different features selected. The speech conversion re-
sults obtained are validated by means of objective evaluations which
highlight in particular the interest of the wavelet transform for the
learning process.

Index Terms— speaking style conversion, lombard effect, deep
learning, recurrent neural networks, wavelets

1. INTRODUCTION

Speaking Style Conversion (SSC) aims at modifying the style of a
given speech signal while keeping the speaker acoustic characteris-
tics. This is of clear interest e.g. for the improvement of current
speech synthesis systems in allowing a wide range of personalized
and specific speaking styles. Some examples of SSC include the
conversion of neutral to emotional speaking styles (happy, sad, fear,
angry) [1–6] or to vocal effort speaking styles [7–11].

One particular vocal effort based speaking style called Lombard
effect [12] refers to the speech changes involuntary induced by a
speaker while he is communicating in noise. This is particularly
interesting since a Neutral-to-Lombard SSC system has the poten-
tial to improve the intelligibility of the original synthetic (or natu-
ral) speech in noisy environments. For example, adapting the neu-
tral speech of car on-board applications or announcement systems
in large train stations may increase the overall intelligibility of the
message and induce an improved end-user hearing experience. One
of the main interests in such a transformation is to adapt the rendered
speech in the listening environment (car, train station, ...) taking into
account the surrounding noise while the speech (natural or synthetic)
has been produced in a different or silent environment.

SSC transformations can be either direct or parametric. The di-
rect approach aims at filtering the signal as in [7]. The parametric
approach is based on a model such as a vocoder to extract speech
parameters that will then be transformed [1–6, 8–10, 13]. This latter
approach allows a more comprehensive processing while maintain-
ing a good quality and naturalness of the converted speech. In this
paper, we follow the same strategy and use a parametric approach
based on the well known STRAIGHT vocoder [14], widely used in
SSC [1–3, 5, 6, 13]. This has been shown to be a good compromise
between quality of speech and perceptive changes for the neutral to
Lombard SSC task among other vocoders [9].

In early works the functions used to transform the speech pa-
rameters are empirical, based on rules made out of observations of

the speaking style [4, 13]. The results are interesting but important
temporal and inter-features dependencies are not well taken into ac-
count. Hence, most recent SSC approaches are based on statistical
learning models that learn the speech features transformation func-
tions exploiting more or less large speech dataset. Previous methods
exploit Gaussian Mixture Models (GMM) [1–3, 5, 8], Deep Neural
Network (DNN) architectures [9] and more recently RNN architec-
tures [6]. Most approaches are based on parallel data learning tech-
niques, with some exceptions such as for example with Cycle con-
sistent Generative Adversarial Networks (CycleGANs) [10]. To the
best of our knowledge, RNN architectures have not been used for
neutral to Lombard SSC. In this paper we study the influence of
different RNN architectures and its main hyper-parameters on the
learning task in SSC by focusing on the neutral to Lombard case.
The hyper-parameters are carefully selected using a bandit-based ap-
proach called Hyperband [15] to select nearly optimal settings for
each proposed model.

Another contribution of this work is to consider a multi-
resolution analysis framework to better model temporal depen-
dencies of the different features selected. In fact, the use of the
Continuous Wavelet Transform (CWT) has been suggested to de-
scribe speech parameters at several time-scales [16] and already
used with success in emotional SSC [5, 6]. In this paper, we more
specifically study the effect of CWT on the fundamental frequency
and the energy contour features applied to the neutral to Lombard
SSC task.

Our results show that the use of CWT greatly improves the learn-
ing process for the fundamental frequency feature but it is less no-
ticeable for the energy contour feature. Some RNN variants also
manage to slightly enhanced the learning task for every speech fea-
ture.

The paper is organized as follows. In section 2, we detail the
SSC system framework and speech features considered in our study.
The system performance in section 3. We finally suggest some con-
clusions and perspectives of this work.

2. SPEECH STYLE CONVERSION (SSC) SYSTEM

2.1. Framework

A block diagram describing the information flow of our system can
be seen on figure 1. In the training phase the vocoder first analyses
the speech parameters for each utterance in the source and target
styles. The parameters to map are pre-processed into features then
aligned with Dynamic Time Warping (DTW). Finally, the learning
model is trained using the resulting parallel features. Once the model
is trained, the framework can be used to convert new speech signals
from the source style to the target style. In this generative phase, only
the features of the source style speech are computed and fed to the
trained model to estimate the converted features. A reconstruction



Fig. 1. Block diagram of our SSC system.

step then allows to get the converted speech parameters that are used
by the vocoder to synthesize the converted speech. Finally, temporal
modifications may be applied before the synthesis.

2.2. Speech parameters and features

The learning features are computed from the speech parameters so
they heavily depend on the vocoder used. In this study we are us-
ing the STRAIGHT source-filter vocoder [14] to extract the speech
parameters including the power spectrum, aperiodicity spectrum and
fundamental frequency. All the parameters are computed frame-wise
with a hop duration of 5 ms.

Since our interest is to alter the timbre and prosody of the speech
signal, we rely on features classically used in SSC systems. These
features are the logarithmic values of the fundamental frequency, the
logarithmic values of the energy contour, and the Mel-Frequency
Cepstral Coefficients (MFCCs). The fundamental frequency values
of the input signal segmented in L frames, noted f0 ∈ R1×L, are di-
rectly obtained with STRAIGHT. The energy contour values, noted
e ∈ R1×L

+ , are computed from the STRAIGHT power spectrum,
noted |S|2 ∈ RN×L+ , as follows:

ei =

√√√√N−1∑
n=0

|Si,n|2 . (1)

In order to manipulate perceptually relevant magnitudes, the funda-
mental trajectory is transformed to the logarithmic semi-tone scale
f0st = 39.87 log10(f0/50) and the energy contour on the decibel
scale edB = 20 log10 e. The MFCCs, noted mc ∈ RM×L, are con-
ventionally computed applying a M -dimensional mel-spaced filter-
bank on the power spectrum then taking the Discrete Cosine Trans-
form (DCT) from the log of the resulting mel-power spectrum :

|S|2 ∈ RN×L+
mel scale−−−−→ ˜|S|

2
∈ RM×L+

log + DCT−−−−−→mc ∈ RM×L .
(2)

We choose M = 25 but we do not retain the first coefficient since
it is directly related to the energy of the analysed frame. For the
generative phase, we simply use an inverse DCT to convert the mel-
cepstrum back to the power spectrum.

In this work a Continuous Wavelet Transform (CWT) is used
to describe the fundamental frequency and energy contour at sev-
eral time-scales with an objective of improving the learning process
for these features. The continuous wavelet transform of a discrete
sequence x ∈ R1×L

+ at a scale s ∈ R∗+ is computed as follows :

Wi(s) =

L−1∑
i′=0

xi′ψ
∗
[
i′ − i
s

]
(3)

where ψ(t) is a function called the mother wavelet. First, a linear
interpolation is used on f0st to fill the unvoiced segments. Then f0st
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Fig. 2. Example of a standardized f0st and its CWT coefficients.

and edB are standardized to zero mean and unit variance as required
by wavelet analysis. Finally a ten octave scale CWT is applied on
both features using the classic Ricker mother wavelet (sometimes
called Mexican hat) of length s0 = 2 i.e. a temporal duration of
10 ms. The features noted xcwt ∈ R10×L are represented by the
resulting components :

xcwtn,i = Wi(sn) = Wi(2
ns0) . (4)

An example of standardized f0st and its CWT components can be
seen on figure 2. For the generative phase, the reconstruction is
achieved using the following equation given in [17] :

x̂i =
1

Cδψ0(0)

9∑
n=0

xcwtn,i√
sn

, (5)

where ψ0(0) = 0.8673 is the normalized wavelet basis function
evaluated at time zero and Cδ = 3.541 is the given reconstruction
factor for the Ricker wavelet.

Finally, from any feature x ∈ R1×L
+ one can compute its delta

(resp. delta-delta), features noted xδ (resp. xδ
2

), as follows :

xδi = delta(xi) =

D∑
d=1

d(xi+d − xi−d)

2
D∑
d=1

d2
, (6)

xδ
2

i = delta(xδi ) , (7)

where typically D = 2. For the generative phase, to take the dynam-
ics of a feature into account, the Maximum Likelihood Parameter
Generation (MLPG) algorithm [18] is used to estimate the feature
trajectory :

x̂ = MLPG(x,xδ,xδ
2

) (8)

2.3. Learning models

The learning model chosen has a major influence on the system
performance. In this work we study the influence of several archi-
tectures in SSC applied to the neutral to Lombard speech conversion
task from the usual Gaussian Mixture Models (GMM) to more recent
Deep Neural Network (DNN) architectures such as Feed-Forward
Neural Network (FFNN) and Recurrent Neural Network (RNN).
More specifically, we study the influence of three popular RNN



FFNN RNNs
hp distributions low high low high
Nhl int uniform 2 6 2 4
Nhu int log-uniform 64 512 32 512
dr uniform 0. 0.4 0. 0.4
Nbatch int log-uniform 128 1024 1 32
lr log-uniform 10−5 10−3 10−5 10−3

wd log-uniform 10−9 10−5 10−9 10−5

Table 1. Probability distributions of the hyper-parameters. The dis-
tributions may be discrete (int), uniform or log-uniform.

variants, namely Fully Recurrent (FR), Gated Recurrent Unit (GRU)
and Long Short-Term Memory (LSTM). All these variants are Uni-
Directionnal (UD) as they predict each element of the sequence
based on the previous ones but they may be used as Bi-Directional
(BD) RNN to predict each element also based on the next ones.

The choice of the hyper-parameters is critical on a model perfor-
mance. For the GMM we use a variant called Variational Bayesian
GMM (VBGMM) with a high number of mixtures (200) because
VBGMM has a natural tendency to set some mixture weights val-
ues close to zero and then automatically choose a suitable number
of effective components. However for the DNN models, hyper-
parameters are carefully selected using a bandit-based approach
called Hyperband [15]. It is a recent adaptive random search that
managed to provide a speedup over other hyper-parameters search
algorithms on a variety of deep-learning problems.

This algorithm is based on adaptive resource allocation and
early-stopping : several brackets of randomly selected configura-
tions are run with a limited amount of training resource allocated
before some configurations are discarded; a larger number of config-
urations in a bracket corresponds to a smaller allocated resource and
hence more aggressive early-stopping. For every DNN model we are
running Hyperband with the suggested input values i.e R = 81 and
η = 3 where R is the maximum amount of resource allocated to a
configuration and 1/η is the proportion of configurations discarded
in each round.

All the DNN models are using Nhl hidden layers with Nhu hid-
den neurons each, with a dropout rate of dr. The batch size isNbatch
and the optimization algorithm used is Adam with a starting learn-
ing rate of lr and a weight decay of wd. The FFNN hidden neurons
are Rectified Linear units (ReLu). Preliminary tests allowed us to
choose ranged probability distributions, displayed in table 1, that
sample the hyper-parameter search space for every model.

3. SYSTEM PERFORMANCE

3.1. Experimental Setup

The experiments are conducted on the Lombard GRID speech cor-
pus [19]. This dataset includes 54 speakers (30 females and 24
males) with 50 normal and Lombard parallel utterances per speaker.
The utterances are meaningless sentences built as a concatenation of
6 randomly chosen words. The speech corpus is split into a training
set (80%), a development set (10%) and a test set (10%) where each
speaker appears proportionally. In fact, the main goal of the pro-
posed objective evaluation is to assess the learning performance of
the systems. Since each speaker may use different Lombard strate-
gies, it is important to keep the same speakers in the training and
test sets. In contrast, for the subjective evaluations, where we aim
at evaluating the generalization properties of the systems, different

model f0st edB mc
MSE (st) corr. (%) MSE (dB) corr. (%) MCD (dB)

reference 4.34 45.3 10.03 91.3 5.53
GMM 3.34 47.7 8.37 91.3 4.65
FFNN 2.63 59.1 5.89 93.7 4.21
FR UD 2.62 59.7 5.70 94.1 4.27
FR BD 2.61 59.8 5.67 94.1 4.19

GRU UD 2.59 60.8 5.69 94.1 4.20
GRU BD 2.58 61.6 5.61 94.2 4.16

LSTM UD 2.60 60.8 5.77 93.9 4.19
LSTM BD 2.57 62.2 5.76 93.9 4.10

Table 2. A summary of the performance results. In this case f0st

and edB have been used with their raw values.

model f0st edB mc
MSE (st) corr. (%) MSE (dB) corr. (%) MCD (dB)

reference 4.34 45.3 10.03 91.3 5.53
GMM 3.34 49.9 8.44 91.5 4.72
FFNN 2.52 64.3 6.04 93.9 4.30
FR UD 2.54 63.6 5.88 94.1 4.31
FR BD 2.53 64.1 5.84 94.2 4.26

GRU UD 2.55 64.6 5.81 94.3 4.26
GRU BD 2.53 65.4 5.80 94.3 4.19

LSTM UD 2.51 65.4 5.82 94.2 4.29
LSTM BD 2.52 65.4 5.86 94.1 4.18

Table 3. A summary of the performance results obtained with the
CWT coefficients of f0st and edB .

speakers are placed in the training and test sets. We here follow a
leave-one speaker out strategy and thus using only 53 speakers in
the training set. In any case we apply a speaker-specific zero mean
and unit variance normalization to the features in order to remove
speaker-specific traits and focus on the speaking style characteriza-
tion. Finally, we use the delta, and delta-delta, features for every fea-
tures and every model even for the RNN as preliminary tests showed
that it was still beneficial for the learning.

A total of eight different configurations are trained : GMM,
FFNN, FR UD/BD, GRU UD/BD and LSTM UD/BD. As we also
want to study the influence of the CWT on the learning task, every
configuration is trained with and without CWT.

3.2. Objective Evaluation

The converted features are compared to the original Lombard fea-
tures by computing the correlation and the Root Mean Squared Er-
ror (RMSE) for f0st and edB , and the mean Mel-Cepstral Distortion
(MCD) for mc to measure the spectral distortion as follows :

MCD(m̂ci,mci) =
10

log 10

√√√√ 24∑
m=1

(m̂cm,i −mcm,i)2 . (9)

The references correspond to the neutral speech features to provide
an anchor when no conversion is applied. All the planned configura-
tions have been trained using Hyperband and the results can be seen
on table 2 with the raw features (without CWT) and on table 3 on
the transformed CWT coefficients.

First, in comparing the different models with the reference (ta-
ble 2), one can see that all the DNN models effectively learned the



model f0st edB mc
nocwt cwt nocwt cwt nocwt cwt

reference −2.47 −2.47 −7.65 −7.65 −0.55 −0.55
GMM 0.10 0.55 1.24 0.91 −0.12 −0.18
FFNN 1.62 1.83 6.27 5.10 0.67 0.63
FR UD 1.56 1.73 6.75 5.83 0.70 0.58
FR BD 1.72 1.80 7.09 5.93 0.71 0.66

GRU UD 1.78 1.98 7.17 5.85 0.60 0.62
GRU BD 1.72 1.96 7.34 5.74 0.63 0.63

LSTM UD 1.88 1.98 7.13 5.92 0.65 0.59
LSTM BD 2.04 2.02 7.46 5.30 0.60 0.66

Table 4. Scaled net divergence dnet× 100 for every model configu-
rations with or without CWT. The factor of 100 is for better reading.

transformation strategies and outperform the GMM model by far.
However, the difference in performance between DNN models are
not statistically significant (p > 0.1) due to high standard devia-
tions. Nevertheless, RNNs seems more promising even additional
tests with more data would be needed to confirm this. The BD ver-
sion of every RNN also slightly outperforms its UD counterpart as
it allows to predict the features based on the future observations. It
also uses twice as much parameters and more training data may be
needed to take full advantage of these variants.

Similar observations can be made on table 3 even though the
edB MSE and mc MCD are slightly worse. This performance loss
is easily understandable as we are increasing the number of input and
thus the number of parameters to optimize with the same number of
examples. However, the f0st feature learning task greatly benefits
from the use of the CWT with a significant increase in terms of cor-
relation. In fact, nearly all DNN models perform statistically better
with, for example, a mean f0st correlation increase of 5.3% (p =
0.055) for the FFNN, of 4.3% (p = 0.034) for the FR BD, or of 4.62%
(p = 0.026) for the LSTM UD. The only insignificant increase comes
from the LSTM BD which already had the best performance without
CWT and thus less room for improvement. The CWT provides an
improved learning but also reduces the gap between the models.

Figure 3 shows histogram plots of the three main timbre and
prosody features i.e. f0i, edBi and mc1,i (spectral slope) in nor-
mal, natural Lombard and two converted Lombard styles. The two
selected models for the converted Lombard style are FFNN with-
out CWT, the current baseline model, and GRU BD with CWT, our
model that objectively performed the best. We can clearly see that in
both cases the feature distributions of the converted speech tend to be
closer to the natural Lombard speech feature distribution. To better
quantify this observation, we compute the net divergence dnet that
measures the relative distance of the feature distributions to the nat-
ural normal and Lombard distributions. The net divergence is com-
puted with the Jenson-Shannon divergence (JSD), a symmetrized
version of the Kullback - Leibler divergence D(P ||Q), as follows:

dnet = JSD(conv.||normal)− JSD(conv.||Lombard) , (10)

where JSD(P ||Q) =
1

2
D((P ||P +Q

2
) +

1

2
D((Q||P +Q

2
) .

The net divergences for all models are given in table 4. It can be
seen that feature distributions of converted speech with DNN mod-
els are closer to the natural Lombard speech distribution than the
neutral speech distribution (dnet > 0). The increase of performance
brought by the CWT analysis is also clear here for the f0st with
a net divergence increase for all models but the LSTM BD : the
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Fig. 3. Histograms of the distributions of important timbre and
prosody speech features. Four distributions are displayed in each
figure corresponding to the normal utterances, the Lombard style ut-
terances and the utterances converted by two models : FFNN without
CWT and GRU BD with CWT. (a) for the semi-tone scaled funda-
mental frequency, (b) for the dB scale energy contour and (c) for the
first MFCC coefficient (spectral slope)

distributions differ even more from the neutral distribution to make
progress towards the Lombard one. Surprisingly, edB net divergence
is decreasing with CWT which seems to be contradictory with the
plots. However if we compute the JSD(conv.||Lombard) alone we
understand that even though it is decreasing, the converted Lombard
distributions are coming closer to the natural normal one faster and
decrease the net divergence as a result. Finally, the mcdB net diver-
gence is slightly worse like the MCD was previously, probably for
the same reasons related to the increased number of parameters to
optimize.

Our preliminary informal listening experiences tend to con-
firm the efficiency of the conversion methods, and in particular of
the RNN approaches exploiting CWT transformed features. Some
sound examples are given on our companion web site1.

4. CONCLUSION

In this paper, we have proposed and evaluated several strategies for
neutral to Lombard speech conversion. We have in particular shown
that it is beneficial to consider a multi-resolution wavelet representa-
tion to represent the timbre and prosody speech features. The sound
examples provided and the informal listening experiences done so
far show that the algorithms have good generalization properties for
converting speech from unknown speakers (i.e. not seen in the train-
ing phase). Future work will be dedicated to more formal listening
experiences to confirm these initial results.

1https://perso.telecom-paris.fr/egentet/ssclombard
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