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ABSTRACT

In this paper, we propose a speech intelligibility enhancement
method for typical in-car applications in noisy environments. While
traditional speech enhancement algorithms aim at increasing the
Signal to Noise Ratio (SNR), the goal here is to increase intelligibil-
ity by applying dedicated voice transformation techniques without
changing the original SNR. The proposed method consists in an
adaptive equalizer which reallocates the energy of frequency bands
to maximize the Speech Intelligibility Index (SII) under the con-
straint of a fixed perceived loudness. The validation of the algorithm
is carried out by means of a perceptual test derived from the Hearing
in Noise Test (HINT) using four typical in-car noises of different
driving conditions. The results obtained demonstrate the merit of the
algorithm for low-frequency noises, that correspond to usual driving
conditions, but also show the limit of the algorithm on noises with a
spectrum more spread out induced by rain.

Index Terms— near-end listening enhancement, speech intelli-
gibility index, sentence recognition in noise

1. INTRODUCTION

Speech is nowadays present in a number of in-car applications rang-
ing from hands-free communications, radio programs and podcasts
to speech synthesis messages from the various car devices (board,
navigation system,...). However, despite the steady car manufactur-
ing progress, significant noise still remains in the car interior. It may
come from the engine, the air friction, the rolling or from any other
source of noise. In any case it often leads to a loss of intelligibility
of speech signals.

Typical methods for increasing in-car listening comfort involve
on the one hand classical noise reduction methods (to directly pro-
cess corrupted speech) and mechanical noise control methods (to
reduce the production of noise at its source). In our case, we rather
try to mitigate the noise impact by transforming the speech signal
before it is transmitted or played in the noisy environment. More
precisely, we are aiming at efficiently process speech signals in or-
der to improve their intelligibility without modifying their perceived
loudness. There is a clear growing interest for this near-end listen-
ing enhancement problem [1–13] for which a dedicated international
challenge was recently organised [14].

The main idea of our approach is to apply a dynamic equalizer
to the speech signal in order to optimize an objective measure of in-
telligibility. A general approach to measure intelligibility is to make
a correlation-based comparison between the spectro-temporal rep-
resentation of the clean and degraded versions of the speech sig-
nal [15–17]. In contrast, the SNR-based measures need the noise as
a separate signal for the estimation of intelligibility [18, 19]. In both
case, the computation can be done on small signal chunks [17, 19]

or on longer segments [15, 16, 18]. Typical car noises we are inter-
ested in are stable, mostly stationary and can usually be measured
in absence of speech with the in-car microphones. That is why we
selected the widely used SNR-based measure Speech Intelligibility
Index (SII) [18] computed on complete signals.

This strategy has already been followed in previous studies us-
ing linear [6] or non-linear approximations [11, 12]. Besides being
sub-optimal, these approaches rely on a power limitation constraint
which cannot guarantee that the perceived loudness is not increased
by the processing. The main contribution of our approach is then to
propose an exact solution to a direct speech intelligibility optimiza-
tion problem under the constraint of a fixed perceived loudness.

Our results with this new power constraint show smaller but
still noticeable improvement of the SII in different noisy car con-
texts. Besides, our results permit to highlight the functional proper-
ties of the previous approaches based on approximations [6, 11, 12].
Then subjective listening tests confirm the efficiency of the proposed
method in low frequency noises but also show its limitation for wide-
band noises.

The paper is organized as follows. In section 2, we detail the
optimization of the speech intelligibility index and the speech sig-
nal processing method. The subjective validation test protocol and
results are discussed in section 3. We finally suggest some conclu-
sions and perspectives of this work.

2. SPEECH INTELLIGIBILITY INDEX OPTIMIZATION

2.1. SII computation

The main hypothesis of the SII is that speech is composed of imax

frequency channels carrying independent information. The standard
ANSI/ASA S3.5 [18] provides a computational method for several
frequency band decompositions. In our study, the results for a third-
octave band decomposition (imax = 18) are presented but a critical
band decomposition (imax = 21) is also well suited. Equivalent
spectrum levels expressed in decibels (dB) are obtained by integrat-
ing the periodogram of a signal on each sub-band, divided by its fre-
quency bandwidth bi. From the equivalent speech spectrum levels
Ei and the equivalent noise spectrum levels Ni, two coefficients per
sub-band are computed: the audibility and distortion coefficients.

The audibility coefficients represent the portion of audible spec-
trum above a so-called perturbation spectrum. The equivalent per-
turbation spectrum levels Di are directly derived from the noise and
the listener threshold of hearing, and thus they will be considered
as constant. For normal-hearing listeners in a noisy environment,
the Di are often equal to the equivalent masking spectrum levels Zi

obtained by applying a perceptual masking model to the equivalent
noise spectrum levels {Nj}j≤i. The audibility coefficients Ai are
then computed as follows:



Ai(Ei) = min(max(
Ei − (Di − 15 dB)

30 dB
, 0), 1) . (1)

The distortion coefficients Li represent the loss of intelligibility
that occurs when the equivalent speech spectrum levels are exces-
sively greater than some average speech reference levels Ui given
by the standard ANSI/ASA.

Li(Ei) = min(1− Ei − (Ui + 10 dB)

160 dB
, 1) . (2)

All sub-bands do not carry the same average amount of speech
information. This is characterized by a Band Importance Function
(BIF) which is applied to weight each sub-band. Several BIF are
suggested in the standard depending on the speech material used. In
this work, we select the default function which was designed for av-
erage speech. The SII is then a weighted sum of all these coefficients
:

SII({Ei}) =

imax∑
i=1

fi(Ei) , (3)

with fi(Ei) = Ii · Ai(Ei) · Li(Ei) . (4)

where Ii are the BIF weighting coefficients.

2.2. SII Optimization

In order to take into account the varying sensitivity of the human ear
to different frequencies we use the dB(A) weighting coefficients Hi

for estimating the signal level as follows :

EdBA = 10 · log(
∑
i

gi(Ei)) , (5)

with gi(Ei) = bi ·10(Ei+Hi)/10 . (6)

Let EdBA
0 be the reference level, the optimization problem can then

be written as:
{Eopt

i } = arg max
{Ei}

∑
i

fi(Ei) , (7)

subject to
∑
i

gi(Ei) = G = 10EdBA0 /10 . (8)

The exponential functions gi are continuous and convex on R and it
can be shown that the fi are:

• constant and minimal on ] − ∞, d−i = Di − 15 dB] so ei-
ther Eopt

i > d−i either the ith sub-band is deactivated (e.g.
Eopt

i = −∞),

• decreasing on [d+
i = Di + 15 dB,+∞[ so Eopt

i ≤ d+
i ,

• continuous and concave on [d−i , d
+
i ] ,

• non-differentiable on dui = Ui + 10 dB if d−i < dui < d+
i .

Let us note Ω2 the set of sub-bands where d−i < dui < d+
i .

These sub-bands have two search intervals where fi is concave and
differentiable: [d−i , d

u
i ] and [dui , d

+
i ]. The set Ω1 composed of the

remaining sub-bands have only one search interval where fi is con-
cave and differentiable: [d−i , d

+
i ]. For each sub-band of both sets,

either Eopt
i belongs to one of these search intervals, or Eopt

i = −∞
which means that the sub-band must be deactivated. As a result we
have 3|Ω2| · 2|Ω1| sub-problems and we use the Lagrange multiplier
search method [20] to solve everyone of them and select the best
solution.

Each sub-problem is solved as follows. Let Ωdeact be the set
of deactivated sub-bands, the remaining sub-bands composes the set
Ωact = (Ω2∪Ω1)\Ωdeact and their search interval are noted [li, ui]

with li ∈ {d−i , d
u
i } and ui ∈ {dui , d+

i }. Let λ denote the Lagrange
multiplier for equation 8, vi for Ei ≥ li, and wi for Ei ≤ ui.
The Karush-Kuhn-Tucker (KKT) conditions for the problem can be
written as follows: ∑

i∈Ωact

gi(Ei) = G , (9)

∀i ∈ Ωact , li ≤ Ei ≤ ui , (10)

− f′i +λ · g′i−vi + wi = 0 , (11)
vi · (li − Ei) = 0 , (12)
wi · (Ei − ui) = 0 , (13)
vi ≥ 0 , (14)
wi ≥ 0 . (15)

For i ∈ Ωact let Ei(λ) be the solution to − f′i +λ · g′i = 0 i.e.:

Ei(λ)=

10·log(
Ii

3·ln 10·λ·bi
)−Hi if dui ≥ui ,

160+dui +d
−
i

2
− 10

ln 10
W(

24·λ·bi
Ii/ ln2(10)

10

2Hi+160+dui +d
−
i

20 ) if dui ≤li .

Note the use of the Lambert W function when dui ≤ li. The follow-
ing equations satisfy all the KKT conditions except (9):

Ei(λ) =


li if Ei(λ) ≤ li
Ei(λ) if li < Ei(λ) < li

ui if Ei(λ) ≥ ui

, (16)

vi(λ) =

{
− f′i(li) + λ · g′i(li) if Ei(λ) ≤ li
0 if Ei(λ) > li

, (17)

wi(λ) =

{
0 if Ei(λ) < ui

f′i(ui)− λ · g′i(ui) if Ei(λ) ≥ ui

. (18)

Therefore, the problem is solved by using an iterative procedure to
identify a λ that yields

∑
i∈Ωact

gi(Ei(λ)) = G.

2.3. Voice processing

From the dB(A) level of a signal EdBA
0 we can compute the op-

timum equivalent spectrum levels {Eopt
i } and design a frequency

equalizer that aims to transform the long term equivalent speech
spectrum into the optimum equivalent spectrum. For generalization
purposes we consider that we do not have access to the speaker long
term equivalent speech spectrum levels but only to normalized refer-
ence levels U ′i obtained from the signal dB(A) level as follows:

U ′i = Ui − UdBA + EdBA
0 , (19)

The computation of the equivalent equalization levels Fi is detailed
in equation 20 and the resulting frequency equalizer is applied on the
whole signal using a Short Time Fourier Transform (STFT) overlap-
add method.

Fi = Eopt
i − U ′i . (20)

For deactivated sub-bands (Eopt
i = −∞) we fix Eopt

i = −60 dB.

2.4. Quantitative results analysis

We selected typical car noises recorded with an acoustic head (HMS
IV, HEAD acoustics GmbH) in three different driving conditions:
high-speed noise (HS), low-speed noise (LS) and low-speed noise
with rain (LS+R). All the corresponding equivalent masking spec-
trum levels Zi are available on figure 1. Due to space limitations



we only show herein the results for the LS noise but all the follow-
ing comments also apply on the two other noises. The SNR used
thereafter is defined as the ratio between the level of the normalized
reference speech and the level of the noise :

SNR = 10 · log(
∑
i

bi ·10U′i/10/
∑
i

bi ·10Ni/10) . (21)

The optimum equivalent speech spectrum levels as a function of
SNR can be seen on figure 2 for the LS noise. The optimum spectra
seem to have logical patterns : for low SNRs, many sub-bands are
deactivated (hatched on the figure) and all the energy is allocated
to the high frequencies where the masking noise is the lowest. For
higher SNRs, each sub-band is progressively activated as soon as
there is enough energy to be redistributed above the masking noise.

We compare below our proposed optimal solution of the dB(A)
constrained SII optimization problem to several existing methods
based on the optimization of an approximated SII curve [6, 11, 12].
To that aim, we compute the SII obtained by all optimization ap-
proaches and compare them to the SII of an average speech spectrum
for a wide range of SNR. The figure 3 shows the SII improvements
according to the SNR in the LS noise for each solution.

As expected, all methods do increase the SII for nearly all SNR
but the approximated methods do not perform well on the full SNR
range. It can be noticed that Taal & al. approach [9] is close to our
optimal approach for low SNR but is clearly less efficient at higher
SNR while on the contrary the other methods [6, 12] are only nearly
optimal at high SNR. Nevertheless, our proposed optimal solution
is more costly since it is based on an exact solution of the direct
SII optimization problem. Clearly, the Stanton & al. approach is an
excellent alternative choice for typical in car applications since it is
fast and nearly optimal for SNR above -35dB.

3. SUBJECTIVE VALIDATION TEST

3.1. Experimental Setup

The speech material is composed of 200 sentences from the Cana-
dian French Hearing In the Noise Test (HINT) [21] and Fournier
sentences recorded by the French Collège National d’Audioprothèse,
pronounced by an unique male speaker. In order to have a speech
material of equal difficulty in the considered noises we equalized the
difficulty of sentences as suggested by Nielsen et al. [22] in a syn-
thetic stationary noise (noted EQ) whose spectrum is an average of
our in-car noises. The equalization has been done in two iterations
with two groups of six subjects each. As a result of this equalization,
a correction in dB is assigned to every sentence : difficult sentences
are slightly amplified while the easy ones are slightly attenuated. Fi-
nally, 10 lists of 20 sentences have been created. Eight lists are com-
posed of the sentences with the lowest correction (less than 3 dB) in
a way that the mean variance is minimized. The other sentences are
divided in two lists that will be used to train the subjects to the task.

Traditionally, the noise used in Sentence Recognition in Noise
(SRN) test is synthesized from a Long Term Average Speech Spec-
trum (LTASS) from the speaker in order to have almost the same
SNR in each sub-band but in our case, the noises are given by our
applicative context (see figure 1). HS and LS are both stationary
and are spectrally similar except that LS is slightly flatter; the main
difference is their global level, respectively 92 dB and 87 dB. The
presence of raindrop impacts adds high frequency noise components,
that is why the LS and LS+R spectra are identical in the low fre-
quencies but differ in the high frequencies. The presence of rain
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Fig. 1. Long term equivalent masking spectrum levels Zi of three
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Fig. 2. Optimum equivalent speech spectrum levels Eopt
i as a func-

tion of SNR for the LS noise.
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Fig. 4. Box plots of the mean SRT estimates.

also adds non-stationarity to the noise which may induce an uncon-
trolled bias in the perceptual tests. To assess the potential effect of
non-stationarity, we generated a synthetic stationary noise (S-LS+R)
from the same long term spectrum as LS+R. For the tests, all stimuli
are played using a programmable equalizer (HEAD acoustics GmbH
PEQ V) and calibrated headphones (SennheiserTM HD 650).

The Speech Reception Threshold (SRT) is the speech level that
corresponds to 50% intelligibility and the adaptive process used for
its estimation is the one from Brand et al. [23]. For a specific list, the
first sentence is presented at low level and is increased until the lis-
tener is able to repeat at least one word. The 19 following sentences
are presented only once and their level depends on the previous an-
swer. If a subject repeats less (resp. more) than 50% of a sentence
the next presentation level is increased (resp. decreased) proportion-
ally to the gap. Also the more the level oscillates the smaller the
step. The exact formula used is the one suggested in [23].

The repetition of one word from a sentence presented at a spe-
cific level is considered as an independent Bernoulli trial of prob-
ability expressed as in [23] by a sigmoid whose inflection point is
characterized by two parameters : its slope and its center. At the
end, the probability parameters are estimated using a maximum like-
lihood estimator on the resulting Bernoulli process and the SRT cor-
responds to the center of the sigmoid.

The tests have been conducted on 13 normal-hearing listeners
whose hearing sensitivity has been verified by pure-tone audiome-
try. The subjects who participated to the equalization phase have not
been part of the main SRN test.

First the SRT estimate is applied on the two training lists in the
EQ noise so the subject gets used to the task. The SRT estimate
is then conducted on the eight balanced lists: two for each noise
either with the original voice or the processed voice. Every list, every
sentence and every noise condition are presented in a pseudo-random
order using a balanced latin square to avoid any order effect.

3.2. Results
The mean SRT estimates are displayed with box plots on figure 4.
First it can be noticed that the SRT is improved by the processing for
all situations. However, performances vary across noises as the SRT
have a mean decrease of 6.9 dB for the HS noise and only 3.9 dB
for the LS noise. For the LS+R and S-LS+R noises, the mean SRT
decrease is even smaller with respectively 1.7 dB and 1.1 dB.

To assess the significance of the obtained result, we ran an Anal-
ysis Of VAriance (ANOVA) with repeated measure and the two fixed
factors were the noise condition (4 possible values), the processing
(2 possible values) and the interaction between these two. The re-
sults show an overall statically significant differences : noise (p =

4E-61), processing (p = 3E-29) and the interaction noise*processing
(p=3e-17). A post-hoc analysis has been run on the interaction to
confirm where the differences occurred and there are two main ob-
servations. First, the SRT improvement is significant in the HS and
LS noises but not in the LS+R and S-LS+R ones (for a level of sig-
nificanceα = 0, 01), the p-values are on figure 4. Finally, the SRT in
dB SNR is not significantly different between the HS and LS noises
for the unprocessed speech while it is for the processed speech: the
processing has better performance in the HS noise than the LS noise.

3.3. Discussion
In re-allocating the signal energy in low-noise sub-bands, we im-
prove the perception of some frequency content at the expense of
others but which are masked anyway. This process greatly improves
the intelligibility when the noise spectrum is located in a specific
area, here in the low frequencies for the HS and LS noises. But as
soon as the noise spectrum becomes flatter or more wide-band, the
improvement is less noticeable and no more significant. This result
is easily understandable as there are no more noise free bands to re-
allocate the energy in, it is then harder to efficiently filter the signal.

As shown in figure 3 the theoretical intelligibility improvement
in the LS noise is maximum for SNRs around -37 dB specifically
where the SRT was estimated. However these levels are lower than
those encountered in real-life applications since they ask for a strong
and sustained effort to understand the sentences. For SNR greater
than -30 dB the theoretical range of improvement decreases as the
SNR increases. The SRT improvement in more realistic in-car use
cases may then be quite smaller. The SRT indicator may always be
used in SRN tests but its improvement at low SNR does not prove its
improvement at reasonable listening levels. A thorough validation
of intelligibility improvement would need a different and specific
subjective listening test at higher SNR for all the approaches which
claim to improve intelligibility in noise.

4. CONCLUSION

We expressed the speech intelligibility enhancement task as a con-
stant dB(A) constrained SII optimization problem for which an exact
solution was proposed. We have shown that despite the new power
constraint the SII optimization approaches still significantly improve
the speech intelligibility in low-frequency in-car noises where it is
indeed straightforward to reallocate the signal energy in noise free
sub-bands : we observed a mean SRT improvement of 3.9 dB (resp.
6.9 dB) for a low-speed (resp. high-speed) car noise. However for
noises with flatter spectrum the mean SRT improvements fall be-
tween 1.1 dB and 1.7 dB and are no more significant.

Solving the exact maximization problem of the SII also showed
that for our car noises the approximations from earlier studies are
nearly optimal in specific SNR ranges and less efficient in others.
More precisely, some approximated methods are more efficient in
low SNR and other in high SNR. Since these approaches have a
lower computational complexity, our proposed method may be used
to guide the choice of the best suited approximation for a given ap-
plication.

We have also addressed a criticism of SRT-based validation pro-
cedures to assess intelligibility improvements of SNR-based pro-
cessing that requires suitable subjective listening tests at reasonable
listening levels.

Future work will be dedicated to the extension of the method for
measures based on short time frames to allow for a dynamic local op-
timization to adapt to the mean energy variation between phonemes.
Another perspective will be to combine our approach with dynamic
compression.
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