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ABSTRACT sponding to symptomatic emotions occurring when the matter of sur-
ival is raised, including the different fear-related emotional states
from worry to panic.

Existing real-life corpora [7][8] illustrate everyday life contexts
which social emotions currently occur. The lack of corpora il-
strating strong emotions in real abnormal situations has encour-
ed us to build the SAFE Corpus (Situation Analysis in a Fictional
d Emotional Corpus) [9] which consists of 7 hours of recordings
tracted from fiction movies and which totals about 400 different
speakers.

Recent work on emotional speech processing has demonstrated
interest to consider the information conveyed by the emotional com-
ponent in speech to enhance the understanding of human behavioirr§.
But to date, there has been little integration of emotion detecti0r|1u
systems in effective applications. a

The present research focuses on the development of a fear-ty%%
emotions recognition system to detect and analyze abnormal situg;(
tions for surveillance applications. Tikear vs. Neutral classifica-

tion gets a mean accuracy rate at 70.3%. It corresponds to quite op* A fear-type emotions detection system based on acoustic cues

timistic results given the diversity of fear manifestations |IIustratedhas been developed using this corpus [10]. The targetadclass

|r|1 thebdata. I\_/Idorg Spt?]C'f'C aEOLiSt]lcemg?eeli:er%ftlz”et éﬁgﬁ);g?r;eﬁrs_ a global class containing a high variability in terms of emotional
class by considering e context o 9 presentations. Fear manifestations are evolving according to the

ifestations, i.e. the stage of the threat during which they occur, an ituation and according to the stage of the threat in particular. The

which _has a strong influence on fear acoustic mamfestgt_mns. T asic idea of this paper is to model the various types of fear manifes-
potential use of these models for a threat stage recognition systeig

is also investioated. Such information about the situation can indee tions, firstly to enhance the performance on fear recognition and,
IS &iSo Investigated. Suc orma econdly to derive information about the stage of the threat (latent,
be useful for surveillance systems.

potential, immediate or passed). Each stage of threats requires an
Index Terms— emotional speech database, speaker indeperappropriate intervention to limit the damage. There is therefore a
dant fear recognition. strong interest to extract such information. With this purpose, the
Fear class is divided into subclasses according to the stage of threat
1. INTRODUCTION Qurin_g which fear manifestations_ occur. A modgl for each _subclass
is built and we present here various classification strategies to the
These last years have seen an upsurge of interest in automatic survéitection and the analysis of the threat. _
lance systems[1]. Such systems are used as an assistance to humangn the next section, a description of the audio-based fear-type
which have to keep watch on more than one place at once. In su@notions detection system is provided. Then, in Section 3, the SAFE
systems video cues have been largely used to detect abnormal Sjatabase and protocols used to evaluate the system are described.
uations : detection of abnormal objects, detection of crowd moveFEinally, Section 4 presents the various classification strategies which
ments, etc. At the same time, audio events classification/detection fiave been tested and an analysis of the results.
receiving a growing interest by the scientific community [2] [3].
It is especially the case in the context of audio retrieval and in- 2. THE FEAR-TYPE EMOTIONS DETECTION SYSTEM
dexing applications but also in the context of multimedia event de-
tection applications where audio can be used as a complementathe fear-type emotions detection system focuses on differentiating
source of information. However audio event detection has only beFear class fromNeutralclass. Theear class gathers all fear-related
gun to be used in some specific surveillance applications such asnotional states and tiNeutralclass corresponds to neutral speech.
medical surveillance [4]. Audio cues, such as shots or cries [5] typiThe audio stream has been manually pre-segmented into decision
cally, may convey useful informations about the situation which carframes, calledegmentsvhich correspond to a speaker turn or a sec-
no longer be ignored in surveillance systems. tion of speaker turn portraying the same annotated emotion. The
The goal of this paper is to develop an audio-based abnormalystem is based on acoustic cues and focuses as a first step on a clas-
situations detection system in the context of civil safety. The tarsification of the predefined emotional segments.
geted abnormal situations correspond to situations during which the The classification system merges two classifiersytheed clas-
human life is in danger (fire, physical or psychological attack, etc.)sifier and theunvoiced classifiewhich consider respectively the
The human oral communication in such situations is strongly basedoiced portions and the unvoiced portions of the segment [10]. The
on the emotional channel. Thus we choose to focus on the deteemotional unvoiced content needs indeed also to be modeled, since
tion of emotional manifestations occurring in abnormal situationsemotions in abnormal situations are accompanied by a strong body
More precisely the targeted emotions are fear-type emotions correctivity, such as running or tensing, which modifies the speech sig-



nal, by increasing the proportion of unvoiced speech in particular. 3. THE SAFE DATABASE AND PROTOCOLS

2.1. Feature extraction and selection 3.1. Global Presentation

In this work, the emotional content is characterized by a large set of® SAFE Corpus consists of audio-visual sequences from 8s to
features including: 5min extracted from a collection of 30 recent movies in English lan-

-prosodic featureselating to pitch (FO), intensity contours and 9Uage. Emotions are considered in their temporal context. We seg-
the duration of the voiced trajectory; mented each sequence that provides a particular context into a basic
-voice quality featuresepresented by the jitter (pitch modula- annotation unit, theegmentwhich has been defined in Section 2.
tion), the shimmer (amplitude modulation), the unvoiced rate (corre#724 segments of speech with a duration varying from 40ms to 80s

sponding to the proportion of unvoiced frames in a given segmeng}"® thus obtained from the 400 sequences of the corpus. _
and the harmonic to noise ratio: A genericannotation strategy was developed [9] and takes into

-spectral featuresonsisting in the first two formants and their &ccount various aspects of the sequences content. efftutional

bandwidths, the Mel Frequency Cepstral Coefficients (MFCC), théubstances considered at the segment level and includes among
Bark band energy and the spectral centroid. other descriptors a description in four major emotion clasBear,

The acoustic content of easbgmenis represented with various Other Negative EmotionsNeutral Positive Emotions The situa-
levels of temporality. Features are computed every 10 ms on 40 m§onal contexis described by a threat track and a speaker track (gen-
length frame analysis. In order to model the temporal evolution off€r and identity of the speaker). The threat track describes the stage
the features, their derivatives and statistics (min, max, range, meafif the threat (potential, latent, imminent, passed) and its intensity.
standard deviation, kurtosis, skewness) are computed at more globHP€ acoustic contexis described by the labelers in terms of audio
temporal levels, corresponding for example to the voiced trajector§nvironment and speech quality. _
for pitch-related features or to the segment level for unvoiced rate. A 1Wo labellers annotated the corpus. The segmentation and the
total of 534 features are thus calculated every 10 ms of each segmefifinotation of the corpus were carried out by a first English native la-
All the features are normalized by their global maximum so that they€ler. A second French/English bilingual labeler independently an-
are put on a single scale between -1 and 1. Silence frames are rmtated the emotional content of the pre-s_egmented sequences. The
considered and are automatically removed. inter-labeller agreement for the four empt[onal categories is evalu-
The feature space is reduced by selecting the 40 more relevafitéd thanks to the traditional kappa statistics [13]. The kappa score
features for a two classes discrimination by using the Fisher sele®etween the two labellers is at 0.47 which is an acceptable level of
tion algorithm [11] in two steps. A first selection is carried out on @dreement for subjective phenomena such as emotions. We do not
each feature family (prosodic, voice quality, and spectral) separate ovide a vallqlatlon protocol for the segmentation step because of
providing a first feature set. The final feature set is then selected b@e scale of this task.
performing a second time the Fisher algorithm on the first feature
set. This method ensures to avoid strong redundancies between tB€. Experimental Database
selected features by forcing the selection algorithm to select featur

from each family. eﬁme following experiment and analysis are performed on a subcor-

pus containing onlgood qualitysegments labeldeearandNeutral
Remaining segments include various environment types (noise, mu-
sic). The quality of the speech in the segments concerns the speech

The classification is performed using the Gaussian Mixture Modepudibility and has been evaluated by the labelers. Overlaps have
(GMM) based approach which has been well-tried in the speecheen avoided. Only segments where the two human labelers agree
community. For each clagg, of each classifieNiced FearVoiced ~ are considered, i.e. a total of 98égment$38% of Fear segments
Neutral Unvoiced Fearand Unvoiced Neutrdla probability den- ~and 62% oNeutralsegment). The emotional categories annotations
sity is computed and consists in a weighted linear combination ofre correlated with the threat track annotations. The segment repar-
8 Gaussian components, , : p(z/C,) = anzl Win.qPrm.q(T) tition of the Fear class in t.he experlmental database acqordlng to
wherew,, , are the weighted factors. Other model orders have beeHe stage of the threat during which the segment occurs is stored in
tested but have not lead to as good results. The parameters of tthable 1.

models (the weighted factors, the mean vector and the covariance

2.2. The training/classification steps

matrix of each Gaussian component) are estimated using the tradi- _ Fear i

tional Expectation-Maximization algorithm [12]. No Threat| Potential | Latent | Immediate| Passed
Classification is performed using the Maximum A Posteriori de- 7.4% 3.7% |333%| 501% | 5.5%

cision rule. For the voiced classifier, the A Posteriori Score (APS) - )

of a segment associated to each ckesar or Neutralcorresponds to Table 1. Segment repartition of the experimental database.

the mean a posteriori log-probability and is computed by multiplying

the probabilities obtained for each voiced analysis frame. The APS

is computed in the same way for the unvoiced classifier. Depending 3 The Experimental Protocol

on the proportion- of voiced frames« € [0; 1]) in the segment, a

weight w = 1 — r®) is assigned to the classifiers in order to obtain The test protocol follows the protocbkeave One Movie Out the

the final APS of the segment: data is divided into 30 subsets, each subset contains all the segments

of a movie. 30 trainings are performed, each time leaving out one of

APSfinar = (1 — w) * APSyoiced + w % AP Sunvoiced the subsets from training, but using only the omitted subset for the

The parametery has been previously fixed at = 10™* in [10] test. This protocol ensures that the speaker used for the test is not

which means that the unvoiced classifier is considered with a weigtfound in the training database.

decreasing quickly when the voiced rate increases.



4. CLASSIFICATION STRATEGIES AND RESULTS threats, which explains the performance gap betvweamn NoThreat
(60.7%) orFear LatPot(61.0%) segments arfeear InmPasseg-
4.1. Abnormal situations recognition : Fear/Neutral classifica- ments.
tion

It emerges from the feature selection step that pitch-related featurds2. Threat analysis:Fear InmPassvs. Fear LatPot

are th‘? most u_seful for thieear vs. Neutra_l_voiced classifie_r. What In the previous framework, only two classes have been considered:
the voice quality features concerns the jitter and the shimmer havlgear andNeutral This system framework provides good perfor-

been both selected. The spectral centroid is also the most relev%fance when the threat is immediate or passed. However when the
spectral features for the voiced content. As for the unvoiced contenfy, oo+ is |atent or potential, performance is decréasing

spectral features and the Bark Band Energy in particular come out The Fear class gathers indeed a large scope of emotional man-
the most useful_. . . ifestations which are evolving according to the threat in particular.
. The confusion matrix resulting from teear vs. Neutralclas-  \ye propose here to build more specific acoustic models according
sifier is presented in Table 2. It illustrates the confusions betvvee{b the stage of the threat. The two subclaggear LatPotand Fear
the automatic labeling of the classifier and the manual labels prg; mPassrepresent the best trade off between independence (i.e.:
vided by the labelers. These results are obtained on the experimenigl,, \tic proximities inside the subclasses) and future model qual-
database described n Section 3.2. The system behav_|or on _the Vay (i.e.: sufficient number of members for training each subclass).
ous segments according to the stage of the threat during which thegf,e 56ustic proximities between fear segments occurring during
occur is also detalled in this table. Due to the limited size of OUfjatent (respectively immediate) threats and those occurring during
datgbase fc_Jr potentlal or passed_ threats (S?e Table 1), and to the Yk nig) (respectively passed) threats have been previously checked
uation proximity between potential (respectively passed) threats al performing a k-means unsupervised clustering on the segments
latent (respectively immediate) thre_ats, r_esults are considered sepd: already done in [14]. Fear occurring during normal situation
rate_ly on theFear subclasses (_jescrlbed in the Figure 1. One shal FearNoThrea} will not be specifically modeled since it is not tar-
notice that the passed threats illustrated in the corpus corresponds, 8ted in priority by the abnormal situation detection system.
contexts occurring just after the threat with almost as strong emo- 1,4 goal of this paragraph is to investigate the use of previous
tional manifestations as those occurring during immediate threats., J4ais to derive information about the stage of the threat. The previ-
ously described fear-type emotions recognition system indicates the
Fear No Threat : fear occuring presence of an abnormal situation. It would be interesting to provide
during normal situations a supplementary information about the stage of the threat by rec-
ognizing the various emotional manifestations inside the fear class.
This information about the threat could indeed help humans to take
Fear LatPot : fear occuring during the appropriate decision to limit the damage.
Eogt fatent (Lat)ﬂfr pct’te"t'a' (Pot) A classifier is associated to each fear subclasses. The fear recog-
reats nition is now based on the merging two classifieFear LatPotvs.
- NeutralandFear ImmPasss. Neutral Each classifier considers the
Fear ImmPass : fear occuring features selected as the more relevant for the associated two-classes
during Imnzggfst;atﬂ:;g:)sor passed discrimination problem. Typically pitch related features are simi-
larly selected by the two classifiers for the voiced content. That is
not the case for example for formant and Bark Band energy related
Fig. 1. Fear subclasses features which seem to be more relevant to Eear ImnmPass/s.
Neutraldiscrimination. Inversely a higher number of MFCC related
features is selected by tivear LatPotvs. Neutral classifier.

automatic Fear LatPot /
manual Neutral Fear Neutral |:> Fear LatPot
Neutral 71.3 28.7 Input L. Foar
NoThreat 39.3 60.7 segment Fear ImmPass / |:> —
Fear LatPot 29.7 | 39.0| 70.3| 61.0 Neutral =i
ImmPass 222 7.8 Hastie-Tibshinari_| Fear LatPot /
Mean Accuracy Rate 70.8 coupling Fear InmPass
Table 2. Confusion Matrix in percent of thEear vs. Neutral classi- l
fication system Fear LatPot?

Fear ImmPass?

The mean accuracy rate of the system is 70.8%. With regard to
the fear recognition, 70.3% of the segments labefiedr are cor-

rectly recognized by the system. Best performances (77.8%) are E h h . babil d
obtained onFear ImmPasssegments. Normal situations and la- . or each segment the a posteriori probability score correspond-

tent or potential threats correspond to situations where the threl}9 1O the dtvtvot%lasseﬂtar _La_tPot Eeg_rl_ltmmPas)msf ;I(Qtpu'l[e? and
is not clearly present and where types of fear such as anxiety mpared 1o the a posteriort probabiiity SCore o ralclass.

worry occur. In such segments, fear is less expressed at the aco gle_ cIassif_ic_atiorFear VS. Neut_rgl is_the_n perf_orme_d using the fol-_
tic level than inFear segments occuring during immediate or passe owing decision rulefear classification is decided if the segment is

Fig. 2. An example of the classification system running



classed~ear (Fear LatPot Fear ImmPaskby one of the two classi- We have built specific models of fear manifestations according

fication pairs. to the stage of the threat. These specific models have also led us to
Segments which have been recognize@fear are then submit-  investigate the possibility to upgrade our system by providing a sup-

ted to a supplementary binary classifiear LatPotvs. Fear Imm-  plementary information about the threat type. Future work will be

Passas illustrated in Figure 2. dedicated to the correlation of information derived from fear acoustic
The Fear LatPotvs. Fear ImmPasglassification is carried out manifestations with information derived from additional cues, such

using the Hastie-Tibshirani [15] approach to perform optimal cou-as visual or linguistic cues, to improve the robustness of the threat

pling of the three classifiers as used in [3]. For a given test observaletection and the analysis of its incidence.

tion x¢, the likelihoods of each clag®ar LatPot p(C1 |z:) andFear

ImmPassp(C-|z.) are estimated by assuming the following model: 6. REFERENCES
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