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ABSTRACT

This paper introduces a new algorithm for tracking the minor

subspace of the correlation matrix associated with time series. This

algorithm is shown to have a better convergence rate than existing

methods. Moreover, it guarantees the orthonormality of the subspace

weighting matrix at each iteration, and reaches a linear complexity.

1. INTRODUCTION

Fast estimation and tracking of the principal or minor subspace of a

sequence of random vectors is a major problem in many applications.

We can cite, for example, code division multiple access (CDMA)

communications, where many multiuser detection algorithms are ac-

tually subspace-based [1]. Recently, we presented in [2] a new prin-

cipal subspace tracker dedicated to time series analysis, which is de-

rived from the SP algorithm by C.E. Davila [3]. This new algorithm,

referred to as YAST, reaches the lowest complexity found in the lit-

erature, and outperforms classical methods in terms of subspace esti-

mation. Moreover, it guarantees the orthonormality of the subspace

weighting matrix at each time step. In this paper, we focus on minor

subspace analysis (MSA). In the literature, it is commonly admitted

that MSA is a more difficult problem than principal subspace analy-

sis (PCA). In particular, the classical Oja algorithm [4] is known to

diverge. Some more robust MSA algorithms have been presented

in [5–9]. However the convergence rate of these algorithms is much

lower than that of the classical PCA techniques. Here we propose a

version of the YAST algorithm dedicated to MSA, which is shown

to have better convergence properties.

The paper is organized as follows. In section 2, the basic princi-

ple of the YAST algorithm is presented. Then a fast implementation

of YAST is proposed in section 3. The performance of this minor

subspace tracker is illustrated in section 4. Finally, the main conclu-

sions of this paper are summarized in section 5.

2. PRINCIPLE

Let {x(t)}t∈Z be a sequence of n-dimensional data vectors. We are

interested in tracking the minor subspace spanned by its correlation

matrix Cxx(t). This matrix can be recursively updated according to

Cxx(t) = β Cxx(t − 1) + x(t) x(t)H
(1)

where 0 < β < 1 is the forgetting factor.

The YAST algorithm for tracking the minor subspace relies on

the following principle: an n × r orthonormal matrix W (t) spans

the r-dimensional minor subspace of Cxx(t) if and only if it mini-

mizes the criterion
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J (W (t)) = trace
�
W (t)HCxx(t)W (t)

�
.

In particular, the minimum of this criterion is equal to the sum of

the r lowest eigenvalues of Cxx(t). However, implementing this

minimization over all orthonormal matrices is computationally de-

manding (the complexity is O(n2r)), and does not lead to a simple

recursion between W (t) and W (t − 1)).

In order to reduce the computational cost, this search is limited

to the range space of W (t − 1) plus one or two additional search

directions. In other words, the r-dimensional range space of W (t)
is to be found as a subspace of the (r+p)-dimensional space spanned

by the n × (r + p) matrix

V (t) = [W (t − 1), x(t)] (2)

where x(t) contains p = 1 or 2 columns. In practice, it is proposed

in [3] to choose x(t) = x(t) or x(t) = [x(t), Cxx(t − 1) x(t)].
Let W (t) be an n × (r + p) orthonormal matrix spanning the

range space of V (t). Then W (t) will be written in the form

W (t) = W (t) U (t). (3)

where U (t) is an (r + p) × r orthonormal matrix. In this case

J (W (t)) = trace
�
U (t)HCyy(t)U (t)

�
(4)

where Cyy(t) is the (r + p) × (r + p) matrix

Cyy(t) = W (t)H Cxx(t) W (t). (5)

The exhaustive search among all n × r orthonormal matrices
W (t) is replaced by the minimization of (4) over all (r + p) ×
r orthonormal matrices U (t). The result of this minimization is
well-known: U (t) must span the r-dimensional minor subspace of
Cyy(t). Thus the subspace weighting matrix W (t) can be tracked

by computing

• an orthonormal basis W (t) of the range space of V (t),

• the matrix Cyy(t) = W (t)H Cxx(t) W (t),

• an (r + p) × r orthonormal matrix U (t) spanning the r-
dimensional minor subspace of Cyy(t),

• the matrix W (t) = W (t) U (t).

In a particular implementation, U (t) can be obtained via the

eigenvalue decomposition of Cyy(t). As a consequence, the columns

of the resulting matrix W (t) defined in equation (3) correspond to

the r minor eigenvectors of Cxx(t). However, this calculation leads

to an overall complexity of O(nr2).

In order to reduce the global complexity to O(nr), we choose

a different strategy which avoids the eigenvalue decomposition. As

mentioned above, U (t) must be an orthonormal matrix spanning the

r-dimensional minor subspace of Cyy(t). Therefore U (t) can be

III  552142440469X/06/$20.00 ©2006 IEEE ICASSP 2006



obtained as an orthogonal complement of the p-dimensional domi-

nant subspace of Cyy(t). Thus the YAST algorithm consists in first

computing Cyy(t) and its p-dimensional dominant subspace, then

U (t) as an orthogonal complement of this subspace. As shown in

section 3, this algorithm can be efficiently implemented by updating

the r × r compressed correlation matrix Cyy(t), defined as

Cyy(t) = W (t)HCxx(t)W (t). (6)

3. FAST IMPLEMENTATION OF YAST

Below, a fast implementation of the YAST algorithm is proposed,

whose global cost is only (5p + 1)nr flops1. It can be decomposed

into four steps: computation of W (t) (section 3.1), computation

of Cyy(t) (section 3.2), update of W (t) (section 3.3), update of

Cyy(t) (section 3.4). This implementation is summarized in sec-

tion 3.5.

3.1. Computation of W (t)

Define the r × p matrix y(t) = W (t − 1)Hx(t) and let

e(t) = x(t) − W (t − 1) y(t). (7)

The n × p matrix e(t) is orthogonal to W (t − 1). Let

u(t) σ(t) = e(t) (8)

be a factorization of the matrix e(t), where u(t) is a n×p orthonor-

mal matrix, and σ(t) is a p× p matrix. Below, we suppose that σ(t)
is non-singular. Note that the matrix

W (t) = [W (t − 1), u(t)] (9)

is orthonormal. In particular, W (t) can be written in the form

W (t) = V (t) T (t) (10)

where T (t) is the (r + p) × (r + p) non-singular matrix

T (t) =

�
� Ir −y(t) σ(t)−1

0p×r σ(t)−1

�
� . (11)

3.2. Computation of Cyy(t)

Substituting equation (10) into equation (5) yields

Cyy(t) = T (t)HC ′
yy(t) T (t) (12)

where C ′
yy(t) is the (r + p) × (r + p) matrix

C ′
yy(t) = V (t)HCxx(t) V (t). (13)

Then let

α(t) = x(t)Hx(t) (14)

y(t) = W (t − 1)Hx(t) (15)

x′(t) = Cxx(t − 1) x(t) (16)

y′(t) = W (t − 1)Hx′(t). (17)

1In this paper, a flop is a multiply / accumulate (MAC) operation.

Substituting equations (1) and (2) into equation (13) yields

C ′
yy(t) =

�
� C ′

yy(t) y′′(t)

y′′(t)H cyy(t)

�
� (18)

where

C ′
yy(t) = β Cyy(t − 1) + y(t) y(t)H

(19)

y′′(t) = β y′(t) + y(t) α(t) (20)

cyy(t) = β x(t)Hx′(t) + α(t)Hα(t). (21)

Finally, substituting equations (11) and (18) into equation (12)

shows that

Cyy(t) =

�
� C ′

yy(t) −g(t)

−g(t)H γ′(t)

�
� (22)

where

g(t) = −h(t) σ(t)−1
(23)

γ′(t) = σ(t)−Hγ(t) σ(t)−1
(24)

h(t) = y′′(t) − C ′
yy(t) y(t) (25)

γ(t) = cyy(t) − y(t)Hh(t) − y′′(t)Hy(t) (26)

3.3. Update of W (t)

Let φ(t) be an (r + p)× p orthonormal matrix whose columns span

the p-dimensional dominant subspace of the positive definite matrix

Cyy(t) of dimension (r+p)× (r+p). In particular, there is a p×p
positive definite matrix λ(t) such that

Cyy(t) φ(t) = φ(t) λ(t). (27)

Let ϕ(t) be the r × p matrix containing the r first rows of φ(t),

and z(t) be the p × p matrix containing its p last rows:

φ(t)T =
�
ϕ(t)T , z(t)T

�
. (28)

Let

z(t) = ρ(t) θ(t) (29)

be the polar decomposition of z(t), where ρ(t) is positive definite

and θ(t) is orthonormal. Let2

f (t) = ϕ(t) θ(t)H
(30)

f ′(t) = f (t)
�
I + ρ(t)

�−1
. (31)

Then it can be readily verified that the (r + p) × r matrix

U (t) =

�
� Ir − f ′(t) f (t)H

−f (t)H

�
� (32)

is orthonormal and satisfies U (t)Hφ(t) = 0. Therefore U (t) is an

orthonormal basis of the r-dimensional minor subspace of Cyy(t).

Substituting equations (9) and (32) into equation (3) shows a recur-

sion for the subspace weighting matrix:

W (t) = W (t − 1) − e′(t) f (t)H
(33)

where

e′(t) = u(t) + W (t − 1)f ′(t). (34)

2Since ρ(t) is positive definite, the p × p matrix I + ρ(t) is also positive

definite. In particular, I + ρ(t) is non-singular.
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3.4. Update of Cyy(t)

The auxiliary matrix Cyy(t) can also be efficiently updated. Indeed,

substituting equations (3) and (5) into equation (6) yields

Cyy(t) = U (t)HCyy(t)U (t). (35)

Substituting equations (31), (30), and (28) into (32) shows that

U (t) =

�
Ir

−f ′(t)H

�
− φ(t) θ(t)Hf ′(t)H . (36)

Thus substituting equations (36), (22), (27) into (35) yields

Cyy(t) = C ′
yy(t) + g′(t) f ′(t)H + f ′(t) g(t)H

(37)

where

g′(t) = g(t) + f ′(t)
�
γ′(t) − θ(t)λ(t)θ(t)H

�
. (38)

Table 1. Pseudo-code of the YAST algorithm
eq.: flops:

y(t) = W (t − 1)Hx(t) nr
x′(t) = Cxx(t − 1) x(t) 9n
y′(t) = W (t − 1)Hx′(t) nr
switch p {

case 1: x(t) = x(t), x′(t) = x′(t),
y(t) = y(t), y′(t) = y′(t).

case 2: x′′(t) = Cxx(t − 1)2 x(t), 32n
y′′(t) = W (t − 1)Hx′′(t), nr
x(t) =

�
x(t), x′(t)

�
, x′(t) =

�
x′(t), x′′(t)

�
,

y(t) =
�
y(t), y′(t)

�
, y′(t) =

�
y′(t), y′′(t)

�
.}

e(t) = x(t) − W (t − 1) y(t) (7) pnr

u(t) σ(t) = e(t) (8) 2p2n
α(t) = x(t)Hx(t) (14) pn
y′′(t) = βy′(t) + y(t) α(t) (20) pr

cyy(t) = βx(t)Hx′(t) + α(t)Hα(t) (21) p2n

C′
yy(t) = βCyy(t − 1) + y(t) y(t)H (18) r2

h(t) = y′′(t) − C′
yy(t) y(t) (25) pr2

γ(t) = cyy(t) − y(t)Hh(t) − y′′(t)Hy(t) (26) 2p2r

g(t) = −h(t) σ(t)−1 (23) p2r

γ′(t) = σ(t)−Hγ(t) σ(t)−1 (24) 2p3

Cyy(t) =
�
C′

yy(t),−g(t);−g(t)H , γ′(t)
�

(22)�
φ(t), λ(t)

�
= eigs

�
Cyy(t), p

�
(27) O(pr2)�

ϕ(t)T , z(t)T
�

= φ(t)T (28)�
ρ(t), θ(t)

�
= polar (z(t)) (29) O(p3)

f(t) = ϕ(t) θ(t)H (30) p2r

f ′(t) = f(t)
�

I + ρ(t)
�−1

(31) p2r

e′(t) = u(t) + W (t − 1)
�

f ′(t) − W (t − 1)Hu(t)
�

(39) 2pnr

W (t) = W (t − 1) − e′(t) f(t)H (33) pnr

g′(t) = g(t) + f ′(t)
�

γ′(t) − θ(t)λ(t)θ(t)H
�

(38) p2r

Cyy(t) = C′
yy(t) + g′(t) f ′(t)H + f ′(t) g(t)H (37) 2pr2

Total: (5p + 1)nr + O(n + r2)

3.5. Implementation

The YAST algorithm as presented above shares one drawback with

some other minor subspace trackers : a numerical instability makes

the subspace weighting matrix slowly deviate from orthonormality.

In the literature, this deviation is often corrected by using House-

holder transformations [7–9]. Here, we observed that this devia-

tion is due to rounding errors in the normalization of e(t) in equa-

tion (8). Because of the divisions involved in this operation, u(t) is

not exactly orthogonal to W (t − 1) in practice. Nevertheless, the

orthogonality can be restored by projecting u(t) onto the orthogonal

complement of span (W (t)): u(t) =
�
In − W (t) W (t)H

�
u(t).

Substituting this last equation into equation (34) yields

e′(t) = u(t) + W (t − 1)
�
f ′(t) − W (t − 1)Hu(t)

�
. (39)

Thus replacing equation (34) by equation (39) makes the YAST al-

gorithm numerically very stable. Regarding the computational com-

plexity, the calculation cost of the vectors x′(t) = Cxx(t − 1) x(t)
and x′′(t) = Cxx(t − 1)2x(t) is normally O(n2). In the case of

time series analysis, this cost can be reduced to O(n) by means of

the technique described in [3], which exploits the shift invariance

property of the correlation matrix. Thus the global cost of the YAST

algorithm for MSA of time series is 6nr flops in the case p = 1,

whereas that of NOOja [8] and NFRANS [9] is 4nr, that of CAL [5]

is 6nr, and that of ODKA [7] is 7nr. In the case p = 2, the overall

cost of YAST is 11nr, which remains one order of magnitude lower

than that of the O(n2r) QRI algorithm [6].

4. SIMULATION RESULTS

4.1. A classical example

In the following, x(t) is a sequence of n = 4 dimensional indepen-

dent jointly-Gaussian random vectors, with zero mean and covari-

ance matrix

C =

�
��

0.9 0.4 0.7 0.3
0.4 0.3 0.5 0.4
0.7 0.5 1.0 0.6
0.3 0.4 0.6 0.9

	

� .

We choose r = 2 and W (0) =

�
Ir

0(n−r,r)


, as recommended

in [5]. As in [6–9], we calculate the ensemble averages of the per-

formance factors

ρ(t) =
1

K

K�
k=1

tr
�
W k(t)HE1 EH

1 W k(t)
�

tr
�
W k(t)HE2 EH

2 W k(t)
� ,

η(t) =
1

K

K�
k=1

���W k(t)HW k(t) − Ir

���2

F
,

where the number of algorithm runs is K = 50, k indicates that

the associated variable depends on the particular run, ‖.‖F denotes

the Frobenius norm, E1 is the exact (n − r)-dimensional principal

subspace, and E2 is the exact r-dimensional minor subspace of C .

The functions ρ(t) and η(t) measure the estimation error and the

departure from orthogonality of the subspace weighting matrix.

Figure 1-a shows the tracking results obtained with four minor

subspace trackers: QRI [6], ODKA [7], NOOja [8], and YAST3.

It can be noticed that YAST converges faster than the three other

algorithms. Besides, the estimation error reached by YAST and

QRI at convergence is lower than that of ODKA and NOOja. Fig-

ure 1-b shows the departures from orthogonality of the four above-

mentioned subspace trackers. It can be noticed that QRI and ODKA

are very stable, whereas the orthonormality error of YAST and NOOja

slowly increases. Nevertheless, this error remains of the order of the

machine precision after 10000 iterations.

3The QRI algorithm was implemented with parameter α = 0.99, ODKA
with µ = 0.01, NOOja with β = 0.05 and γ = 0.4, and YAST with
β = 0.99 and p = 1.
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Fig. 1. A classical example

Note that this example, usually encountered in the literature,

does not belong to the field of times series analysis. Therefore the

optimization mentioned in section 3.5 cannot be applied, and the

global complexity of YAST becomes pn2. Nevertheless, this cost

remains lower than that of the QRI algorithm, which is O(n2r). Be-

low, the YAST algorithm is applied to frequency estimation, so that

its complexity is only (5p + 1)nr.

4.2. Time series analysis

In this section, the test signal is a sum of 4 complex sinusoidal

sources, of same unitary amplitude, random phases, and normalized

frequencies equal to 0.2, 0.4, 0.5 and 0.8. This signal is perturbed by

an additive white gaussian noise, so that the SNR is 30 dB. The data

vectors are composed of n = 6 successive samples of the noisy sig-

nal, so that the dimension of the noise subspace is r = 2. However,

the n× n matrix C is defined as the covariance matrix of the noise-

less data vectors. The performance of the various subspace trackers

is measured by the functions ρ(t) and η(t) defined above.

Figure 2-a shows the tracking results obtained with the four

minor subspace trackers4. It can be noticed that the convergence

properties of YAST and QRI are similar. Again, the estimation er-

ror reached by YAST and QRI at convergence is lower than that of

ODKA and NOOja. Figure 2-b shows the departures from orthog-

onality of the four above-mentioned subspace trackers. It can be

noticed that QRI is more stable than the other algorithms. Neverthe-

less, the orthonormality errors of all these algorithms remain of the

order of the machine precision after 10000 iterations.

5. CONCLUSIONS

In this paper, a new algorithm for minor subspace tracking was pre-

sented, which is derived from the YAST principal subspace tracker.

In the case of time series analysis, this algorithm reaches the linear

complexity O(nr). Moreover, it greatly outperforms classical minor

4The QRI algorithm was implemented with parameter α = 0.99, ODKA
with µ = 0.01, NOOja with β = 0.05 and γ = 0.4, and YAST with
β = 0.99 and p = 2.

Fig. 2. Time series analysis

subspace trackers of the same complexity, and guarantees the ortho-

normality of the subspace weighting matrix at each time step. It can

also be adapted to the minor subspace tracking of a sliding-window

correlation matrix5.
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