
ADAPTIVE ESPRIT ALGORITHM BASED ON THE PAST SUBSPACE TRACKER

Roland Badeau, Gaël Richard and Bertrand David

Ecole Nationale Supérieure des Télécommunications
46 rue Barrault, 75634 Paris Cedex 13 France

roland.badeau, gael.richard, bertrand.david@enst.fr

ABSTRACT

The Estimation of Signal Parameters via Rotational Invari-
ance Techniques (ESPRIT) algorithm is a subspace-based analysis
method used in source localization or frequency estimation, orig-
inally designed in a block signal processing context. In other re-
spects, the Projection Approximation Subspace Tracker (PAST) is
a fast and robust subspace tracking method. This paper introduces
a new frequency estimation and tracking algorithm, which relies
on the PAST subspace tracker and a fast adaptive implementation
of the ESPRIT algorithm.

1. INTRODUCTION

The Exponentially Damped Sinusoidal (EDS) model represents a
signal as a sum of damped sinusoids [1]. Although the Fourier
transform remains a prominent tool for frequency estimation, the
ESPRIT algorithm [2] overcomes the resolution limit of the Fourier
analysis and provides straight estimates of the model parameters.
This method relies on the rotational invariance property of the sig-
nal subspace spanned by the damped sinusoids. Its main drawback
is a high computational cost. Consequently, in an adaptive context,
tracking the model parameters by recursively applying the ESPRIT
algorithm would be very time consuming. Therefore, there is a
clear need for fast implementations of ESPRIT that make the best
of the recent subspace tracking techniques.

Adaptive implementations of ESPRIT were already proposed
in the literature, based on specific subspace trackers. For example,
the adaptive ESPRIT technique presented in [3] relies on an SVD
updating algorithm [4], and that proposed in [5] is based on the
rank-revealing URV decomposition [6]. The complexity of these
methods is proportional toO(n2) operations for each time update,
wheren is the dimension of the data vectors. In [7], other adap-
tive ESPRIT algorithms were proposed for use with the Loraf [8]
or the Bi-SVD subspace tracker [9]. In comparison with [3] and
[5], the complexity of these algorithms is reduced toO(nr2) or
O(nr), wherer is the dimension of the signal subspace (in prac-
tice r << n). Concurrently, the PAST algorithm is a very light
and robust subspace tracker, which requires onlyO(nr) opera-
tions at each time step. The PAST estimation consists in the itera-
tive optimization of a specific cost function involving the estimated
covariance matrix of the signal, in combination with a projection
approximation hypothesis [10]. Relying on this very fast subspace
tracker, the adaptive ESPRIT algorithm presented below reaches
the linear complexity1 O(nr).

1In fact, the last step of this algorithm is the EVD of ar × r matrix,
which involvesO(r3) operations. Such a computation is also required in
[5] and [7]. The latter proposes a fast eigenvalue tracking method.

This paper is organized as follows. Section 2 briefly describes
the application of the ESPRIT method to the EDS model. Sec-
tion 3 summarizes the PAST algorithm. Section 4 introduces our
fast adaptive ESPRIT method, whose performance is compared to
that of the reference algorithm [7] in section 5. Finally, section 6
summarizes the main conclusions of this paper.

2. ESTIMATION OF SIGNAL PARAMETERS VIA
ROTATIONAL INVARIANCE TECHNIQUES

The noiseless EDS model defines the discrete signalx(t) as

x(t) =

r∑
m=1

αmzt
m

wherer is the order of the model,αm ∈ C∗ are the complex
amplitudes, andzm ∈ C∗ denote the complex poles. The vector
x(t) = [x(t − n + 1), . . . , x(t)]T (with n ≥ r) belongs to the
r-dimensional subspace spanned by the Vandermonde matrix

V =


1 . . . 1
z1 . . . zr

...
. . .

...
zn−1
1 . . . zn−1

r

 .

The poles can be calculated by exploiting the rotational invari-
ance property of this subspace, referred to as the signal subspace.
The classical way of obtaining an × r matrix U which spans the
signal subspace consists in computing the singular value decom-
position (SVD) of a data matrix, or the eigenvalue decomposition
(EVD) of a covariance matrix, which requiresO(n3) operations.

Let U↓ be the matrix extracted fromU by deleting the last
row. Similarly, letU↑ be the matrix extracted fromU by deleting
the first row. Then consider ther × r matrix Φ = (U↓)

† U↑
(where the symbol† denotes the Moore-Penrose pseudo-inverse).
It can be shown that the eigenvalues ofΦ are exactly the complex
poles of the signal. Therefore, the ESPRIT algorithm [2] consists
in:

• computingΦ (which requiresO(nr2) operations),

• extracting the estimated poleŝzm as the eigenvalues ofΦ
(which can be achieved inO(r3) operations).

3. PROJECTION APPROXIMATION SUBSPACE
TRACKING

The PAST algorithm for signal subspace tracking [10] requires
only O(nr) operations at each time step (instead ofO(n3) for
a full EVD).



Table 1. PAST algorithm

PAST initialization

U(0) =

 Ir

0(n−r)×r

 , Z(0) = Ir

for each time step do

PAST main section

input vector : x(t)

y(t) = U(t− 1)Hx(t)

h(t) = Z(t− 1) y(t)

γ(t) = 1
β+h(t)Hy(t)

g(t) = γ(t) h(t)

Z(t) = 1
β

(
Z(t− 1)− g(t) h(t)H

)
e(t) = x(t)−U(t− 1) y(t)

U(t) = U(t− 1) + e(t) g(t)H

The dominant subspace estimation consists in minimizing the
approximated scalar cost function

J ′(U(t)) =

t∑
i=1

βt−i‖x(i)−U(t) y(i)‖2

where{x(i)} is a sequence ofn× 1 data vectors,β is the forget-
ting factor, andy(i) = U(i − 1)Hx(i) (where the superscriptH

denotes the transpose conjugate of a matrix).
B. Yang showed that the solutionU(t) ∈ Cn×r (with r <

n) could be updated with few computations (see table 1)2,3. The
update ofU(t) is just a rank-1 modification:

U(t) = U(t− 1) + e(t) g(t)H (1)

wheree(t) andg(t) are respectivelyn andr dimensional vectors.

4. ADAPTIVE ESPRIT ALGORITHM

The EDS model relies on the assumption of non varying signal pa-
rameters within the observation window. However, slow variations
of these parameters can be taken into account in the analysis pro-
cess. The main idea of this paper consists in tracking these time
variations by applying the ESPRIT algorithm to the matrixU(t)
estimated by the PAST algorithm (instead of a classical EVD or
SVD). Thus, at each time step, the matrixΦ(t) is given by the
equation

Φ(t) = U↓(t)
† U↑(t). (2)

The complexity of this semi-adaptive ESPRIT algorithm is
O(nr2) because of the complete computation of the matrixΦ(t).
In fact, this time-consuming operation can be avoided by recur-
sively updatingΦ(t). This fast update can be obtained after a few
mathematical derivations. First, equation (1) yields

U↓(t) = U↓(t− 1) + e↓(t) g(t)H (3)

2Ir denotes ther × r identity matrix.
3Note thatβ > 0 andh(t)Hy(t) ≥ 0, so thatγ(t) is always defined.

and
U↑(t) = U↑(t− 1) + e↑(t) g(t)H . (4)

Consider ther × r hermitian matrix

C(t) = U↓(t)
HU↓(t). (5)

From now on, suppose thatU↓(t) is always full rank (the rank
deficiency case will be discussed later). Since in this caseC(t) is
non-singular, consider ther × r hermitian matrix

W (t) = C(t)−1 (6)

so that
U↓(t)

† = W (t) U↓(t)
H . (7)

Substituting equation (3) into equation (5) yields

C(t) = C(t− 1) + F (t) J(t) F (t)H (8)

whereF (t) is ther × 2 matrix

F (t) =
[

U↓(t− 1)He↓(t) g(t)
]

(9)

andJ(t) is the2× 2 non-singular matrix

J(t) =

[
0 1
1 ‖e↓(t)‖2

]
. (10)

Then the following matrix inversion lemma [11, pp. 18-19]
will transform equation (8) into a recursion involvingW (t).

Lemma 1 Let A be ar × r non-singular complex matrix. Con-
sider ther× r matrixB = A+X J Y , whereX is r×m, Y is
m×r, andJ is m×m and non-singular. ThenB is non-singular
if and only ifJ−1 + Y A−1 X is non-singular, and in this case

B−1 = A−1 −A−1 X
(
J−1 + Y A−1 X

)−1
Y A−1.

Lemma 1 applied to equation (8) shows thatW (t) satisfies

W (t) = W (t− 1)− S(t)Λ(t) S(t)H (11)

whereS(t) is ther × 2 matrix

S(t) = W (t− 1) F (t) (12)

andΛ(t) is the2× 2 matrix

Λ(t) =
(
J(t)−1 + S(t)HF (t)

)−1

. (13)

Note that lemma 1 also proves thatC(t) is non-singular if and
only if the 2 × 2 matrix J(t)−1 + S(t)HF (t) is non-singular.
Therefore, detecting the non inversibility ofJ(t)−1 +S(t)HF (t)
is a fast way of detecting the rank deficiency ofU↓(t). In the
following developments, the full-rank case will be presented first.
After some calculations (see the appendix), the following lemma
can be derived:

Lemma 2 The matrixU↓(t)
† satisfies the recursion

U↓(t)
† = U↓(t− 1)† + R(t) T (t)H (14)

whereR(t) is ther × 2 matrix

R(t) = S(t)Λ(t) (15)

andT (t) is the(n− 1)× 2 matrix

T (t) = e↓(t)
[

1 0
]
−U↓(t− 1) S(t). (16)



Now, substituting equations (14) and (4) into equation (2) yields

Φ(t) = Φ(t− 1) + P (t) Q(t)H (17)

whereP (t) is ther × 3 matrix

P (t) =
[

U↓(t− 1)† e↑(t) R(t)
]

(18)

andQ(t) is ther × 3 matrix

Q(t) =
[

g(t) U↑(t)
HT (t)

]
. (19)

Note that equation (17) shows that the update of the matrixΦ is
a rank-3 modification. The whole processing requires onlyO(nr)
operations. Finally, the complete pseudo-code for the adaptive ES-
PRIT algorithm is given in table 2.

Table 2. Adaptive ESPRIT algorithm

PAST initialization (cf. table 1)

ESPRIT initialization

W (0) = Ir,Φ(0) = U↓(0)†U↑(0)

for each time step do

PAST main section (cf. table 1)

ESPRIT main section

F (t) =
[

U↓(t− 1)He↓(t) g(t)
]

(9)

S(t) = W (t− 1) F (t) (12)

J(t)−1 =

 −‖e↓(t)‖2 1

1 0

 from (10)

Λ(t) =
(
J(t)−1 + S(t)HF (t)

)−1 (13)

R(t) = S(t)Λ(t) (15)

W (t) = W (t− 1)−R(t) S(t)H from (11)

T (t) = e↓(t)
[

1 0
]
−U↓(t− 1) S(t) (16)

P (t) =
[

U↓(t− 1)† e↑(t) R(t)
]

(18)

Q(t) =
[

g(t) U↑(t)
HT (t)

]
(19)

U↓(t)
† = U↓(t− 1)† + R(t) T (t)H (14)

Φ(t) = Φ(t− 1) + P (t) Q(t)H (17)

{ẑm}1≤m≤r = eig (Φ(t))

If U↓(t) is rank deficient,Φ(t) can no longer be updated with
equation (17), sinceC(t) is singular. In this case, the pseudo-
inverse ofU↓(t) must be explicitly computed. In equation (7),
W (t) is now defined as the pseudo-inverse ofC(t):

W (t) = C(t)†.

This pseudo-inverse is obtained by computing the EVD of
C(t), which can be achieved inO(r3) operations. ThenΦ(t)
is given by equation (2), which requiresO(nr2) operations. In the
following time steps,W (t) andΦ(t) are computed in the same
way, whileC(t) remains singular (note thatC(t) can be updated
using equation (8)). WhenC(t) becomes full rank again, the al-
gorithm can switch back to the fully adaptive processing.

5. SIMULATION RESULTS

The test signal of Figure 1-a is a sum ofr = 4 complex sinu-
soidal sources plus a complex white gaussian noise (the SNR is
5.7 dB). The frequencies of the sinusoids vary according to a jump
scenario originally proposed by P. Strobach in the context of Di-
rection Of Arrival estimation [7]: their values abruptly change at
different time instants, between which they remain constant. Their
variations are represented on Figure 1-b.

Figure 2-a shows the frequency tracking result, with param-
etersn = 80 andβ = 0.99. The dotted line indicates the true
frequency parameters, while the solid line indicates the estimated
frequencies. Here, an orthonormal version of PAST [12] was used
instead of the classical PAST algorithm. Indeed, OPAST outper-
forms PAST without increasing the computational cost, and it can
be used without modifying the ESPRIT main section.

The performance of the subspace estimation is also analyzed
in figure 2-b in terms of the maximum principal angle between
the true dominant subspace of the data matrix (obtained via an
exact singular value decomposition), and the estimated dominant
subspace of the same data matrix (obtained with the tracker). This
criterion was originally proposed by P. Comon and G.H. Golub
as a measure of the distance between equidimensional subspaces
[13].

It can be noticed that the adaptive ESPRIT algorithm robustly
tracks the abrupt frequency variations. The time delay before con-
vergence in transient regions is mainly due to the exponential for-
getting nature of the analysis window and could be strongly short-
ened with a sliding window (as shown in [10]).

Finally, these results can be compared to that shown in fig-
ure 3, obtained with theO(nr2) adaptive ESPRIT algorithm [7]
associated to theO(nr2) Bi-SVD1 subspace tracker [9] with the
same parametersn andβ. It can be seen that the performance is
very similar to that shown in figure 2. However, the computational
cost is an order of magnitude higher, and the fasterO(nr) adap-
tive ESPRIT algorithm proposed in [7], associated to theO(nr)
Bi-SVD3 subspace tracker [9], proved to be unstable on this test
signal.

Fig. 1. (a): Test signal; (b): Normalized frequencies of the sinu-
soids.



Fig. 2. OPAST / ESPRIT tracking: (a): Frequency tracking; (b):
Maximum principal angle trajectory.

Fig. 3. Bi-SVD1 / ESPRIT tracking: (a): Frequency tracking; (b):
Maximum principal angle trajectory.

6. CONCLUSIONS

In this paper, an adaptive implementation of the ESPRIT algorithm
for frequency estimation and tracking has been derived, relying on
the PAST subspace tracker. This fast algorithm reaches the linear
complexityO(nr) (or O(nr2) in the rank deficiency case, which
is seldom encountered in practice), except for the final extraction
of the parameters, which requires the eigenvalue decomposition of
a small matrix (O(r3) operations). The technique proved to ro-
bustly track abrupt frequency variations. The time delay before
convergence in transient regions can be strongly reduced by us-
ing a sliding window version of the PAST algorithm (which was
not presented here because of a lack of space). Future work will
include a fast tracking of the eigenvalues of the small matrix, in
order to make the overall complexity linear.

7. APPENDIX: PROOF OF LEMMA 2

Substituting equations (11) and (3) into equation (7) yields

U↓(t)
† = U↓(t− 1)† − S(t)Λ(t) (U↓(t− 1) S(t))H

+
(
W (t− 1)− S(t)Λ(t) S(t)H

)
g(t) e↓(t)

H .
(20)

Note that equation (9) yieldsg(t) = F (t)

[
0
1

]
. Therefore,

equation (20) becomes

U↓(t)
† = U↓(t− 1)† − S(t)Λ(t) (U↓(t− 1) S(t))H

+ S(t)
(
I2 −Λ(t) S(t)H F (t)

) [
0
1

]
e↓(t)

H .

(21)
In the second member of (21), note that equation (13) yields

I2 −Λ(t) SH(t) F (t) = Λ(t) J(t)−1. (22)

Then, it can be seen that equation (10) yields

J(t)−1

[
0
1

]
=

[
1
0

]
. (23)

By substituting equations (22) and (23) into equation (21), equa-
tion (14) is finally derived.
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