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In this paper we provide a formal justification of the use of time—frequency reassignment techniques on time—
frequency transforms of discrete time signals. State of the art techniques indeed rely on formulae established in
the continuous case which are applied, in a somehow inaccurate manner, to discrete time signals. Here, we
formally derive a general framework for discrete time reassignment. To illustrate its applicability and generality,
this framework is applied to a specific transform: the Constant-Q Transform.

1. Introduction

Time—frequency reassignment has received great attention over the
last decades, especially for the task of sinusoidal parameter estimation
in noisy data. Numerous methods have been developed based on
Fourier analysis [6,1,7], on subspace decomposition [32,33] or on
more general models such as AM/FM models [2,8]. Time—frequency
reassignment methods aim at providing enhanced time—frequency
representations with an improved resolution in both time and fre-
quency. To this end, these methods propose to assign the energy
computed at some time—frequency point in the signal to a different
point in the time—frequency plane that depends on the window used for
the spectral computation.

Time—frequency reassignment methods emerge from the idea first
proposed by Kodera [22]. This original approach uses the phase
information of the time—frequency representation and remains difficult
to use in practice. Later on, Auger and Flandrin [6] proposed a new
closed-form solution to this problem which applies to a wide variety of
time—frequency representations and relies on much more straightfor-
ward computations of the reassigned indexes. This work has opened
the door to the use of time—frequency reassignment in numerous
domains such as physics [26], radar imaging [30] or audio [28]. It has
also led to the development of numerous extensions and adaptations of
the original method [21,5,27].

Another solution to the problem, named synchrosqueezing, has
been proposed by Daubechies and Maes in [13]. Notably because it
offers the ability to reconstruct the time signals, the technique has
drawn a lot of interest and has become the root of multiple applications
and enhancements [12,23,3]. Although synchrosqueezing was initially
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presented as a distinct technique from Auger and Flandrin's reassign-
ment method, the strong connection that exists between the two has
been clarified in [4].

Traditionally, reassignment calculations are carried out in the
context of continuous time signals (see [18] for a review) while most
applications involve discrete time signals. In practice, all results
obtained in the continuous time case are applied, without detailed
justification, to the discrete case.

In this work, we propose a formal framework for the computation of
the reassigned transforms which fully takes into account the discrete
time aspect. Our approach consists of expressing the magnitude of the
time—frequency transform of a discrete signal as a mass function in the
time—frequency plane and in assigning the energy to the centre of mass
of this representation. Interestingly, the obtained mathematical ex-
pressions are very similar to the classical expressions proved in the
continuous time case. The main advantage of our approach is that we
obtain exact expressions of the solution when discrete signals are
considered. This opens the door to the implementation of exact
solutions and, should the implementation require an approximate
solution, we are able to characterise the introduced error. To some
extent, this work also gives a formal justification of the common
approximation made when applying continuous time formulae to
discrete time signals.

The paper is organised as follows. The mathematical model and the
derivations of closed-form expressions for reassigned time and fre-
quency indexes are provided in Section 2. We then discuss in the
subsequent section the merit of the proposed solution. An application
of the framework to a specific time—frequency representation, the
Constant Q Transform (CQT), is finally proposed in Section 4.
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2. Mathematical model
2.1. Traditional time—frequency representations

As stated in the introduction, our aim is to derive the mathematical
formulation of the reassigned time—frequency representation of a
discrete numerical signal.

We thus consider a discrete time signal x. Such a signal maps any
discrete index n € Z to a complex value x, € C. Its frequency content
X (¢) is defined for any normalised frequency & € R/Z by the Discrete
Time Fourier Transform (we use the standard notation R/Z to indicate
that the normalised frequency is defined modulo 1).

The information that one reads in a time—frequency representation
of x is the amount of energy in x at time r € R and normalised
frequency v € [0; 1]. In order to evaluate this energy, the scalar product
between x and a kernel is computed. The kernel consists of a window-
ing sequence /", centred on t, multiplied by the harmonic function of
frequency v. Let us note that the (¢, v) exponent makes it explicit that
the windowing sequence depends on the time of interest and may also
depend on the frequency of interest. More precisely, the transforms of x
that fall within the scope of this paper can be written in the following
form:

1, —j
TR Yy = Z Y x, e 2w

nez

1)

The time—frequency representation at time t and frequency v is
finally obtained by considering the squared magnitude of the trans-
form:

s@t, v) = 1T @, v, 2

It is interesting here to recall the Heisenberg—Gabor limit [17] that
constrains the design of the windowing sequence /4"*. More precisely,
the Gabor limit states that there is a trade-off between the temporal
and spectral resolutions when representing a signal in the time—
frequency plane. In practice, adjusting the support of the windowing
sequence is a direct way to tune this trade-off. A wide support will
result in a precise frequency resolution with a poor temporal resolu-
tion. Conversely, a narrow support will provide a good temporal
resolution at the cost of the frequency resolution. In order to ensure
consistency, we consider that the windowing sequences are of finite
support and that they are normalised by the size of their supports. For
instance, with h being a continuous window function of finite temporal
support, the windowing sequence is defined by 4" = h(n — t) in the
case of a Short-Term Fourier Transform (STFT) or by
hb* = vh(v(n — 1)) in the case of a Constant-Q Transform (CQT) for a
set of frequencies v within [0; %] (see Section 4 for more details).

In addition to constraining the design of the window, the choice of a
given time—frequency transform also determines the set of time—
frequency points (7, v) at which the representation is evaluated.
Typically, a Short-Time Fourier Transform with a temporal hop size
A, and a spectral hop size 4, is obtained with the following set of
points:  {(to + k4,, vo + k'A,)) for (k, k') € N?)}. In contrast, the
Constant-Q Transform, whose spectral geometric progression is often
denoted by 2 (r being the number of bins per octave), is obtained with
the set {(fy + k4, 1/02%"/) for (k, k') € N?}. In these expressions, t,
naturally denotes the lowest time index of the representation and v,
the lowest frequency bin.

Let us make explicit here that in the following derivations we will be
using the notation z for the complex conjugate of z and the symbol * for
the discrete convolution operator.

2.2. Time—frequency representations as mass functions

Reassignment techniques rely on the idea that time—frequency
representations, at a given point (7, v), can be written as the sum of a
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mass function defined on the time—frequency plane (n, &). Given our
context, which involves a discrete time axis and a periodic frequency
axis, we have (n, &) € Z x (R/Z). We thus look for an expression of the
form:

s(t,v) = Z / . D (n, £)dE
2

nez f=v—y

1/+é
3)

where the function @' is real-valued.

Let us define W, a discrete version of Rihaczek's ambiguity function
[31], for any sequence ¢ € ¢(Z), time index n € Z and frequency
¢ € R/Z by:

Wy, &) = Y @y e e,

tel (4)
Proposition 1. The time—frequency representation s(t,v) of a
discrete time signal x € £'(Z), as defined in Eq. (2), can be written
as the sum of a mass function, as in Eq. (3), with:

D (n, £) = R{Wyrw(n, v = HWe(n, ) }.

Putting things together, this means that the time—frequency
representation of x at point (z, v) can be written in the following form:

s(t,v) = Z

nez

el
L R Wt - oW, £
by (5)

Proof. Let us evaluate the following expression:

1/+l
Eev= 3 [0 Wyt - W )z,
nez )
We have:
1/+l P
Et,v)= Y / 2N Rt hTe =0 3y e L,
nez =2 T1€Z €l

Knowing that #** is of finite support and that x is in #'(Z), Fubini's
theorem ensures that the summations can be permuted:

)y {h;:n
n,71,1206€Z
Knowing that, for any integer k, we have:

1 .
/b+2 e‘j2”5kd§ — 1 ifk=0
g=v-1

0 otherwise
the above expression can be rewritten with respect to a single shift
variable 7

1
_ . v+ .
E(t,v) = B [ e.fzfrfvzmdg}.

§=‘/*§

E(t.v)= Y hito bl x,  Te >,
nteZ

By the substitution 7 »m — n we get:

E(v) = X hithiPx,ge s

nmez
= Z h’;”xme—ﬁmm Z hé.bxne—ﬂmn
mezZ nez
L
=175 @, v)lP.

Altogether, we have proved that:
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1
o1
[T (1, V)2 = 2 W (n, v — E)W,(n, &)dE.
% fé% ' ©)

By applying the real part operator on both sides of the above equality,
using its linearity and knowing that I75/" (1, v)| is real, we get:

T R =Y f

nez _y_7

Wht.b (n,v—=8€W,(n, &)}dé. O

We have thus proved that the time—frequency representation of x at
a given time t and frequency v, which we have defined as the squared
magnitude of the transform, can be expressed as the sum of a real-
valued function in the time—frequency plane. In accordance with the
context of discrete time signals, we have a discrete time axis (leading to
a discrete summation over the time index) and a continuous and
periodic frequency axis (leading to a continuous and finite summation
over the frequency variable). It is also interesting to note that the
contributions of the window 4"* and the signal x are quite separated
and symmetric. They are induced through the same transform W that
applies separately on the window and on the signal. We may now
consider the function that is summed as a mass function and, as such,
look for its centre of mass in the time—frequency plane.

2.3. Reassigned time index

Given the formulation (3) of the time—frequency representation at
point (¢, v) as the two-dimensional sum of a mass function, it is possible
to evaluate the centre of mass of this distribution in the time—frequency
plane. By definition, the first coordinate of the centre of mass is given
by the following formula:

nEZ /

Znel -L':;,E%‘pt'b (n, f)df

! n®" (n, £)dé

ALY

@)

Proposition 2. The temporal coordinate of the centre of mass in the
time—frequency plane of the time—frequency representation evaluated
at point (t, v), defined in Eq. (7), can also be expressed as:

x,ritV
g t
AP S G
T, v) ®
where r* is the unit ramp centred on t: r! = n — t.

Proof. Let us evaluate the following quantity:

l

E'(t,v) = n®@" (n, £)dE.

nEZZ ff vy 9
We have:
E'(t v) =

u+l

! . .
m{z [ X i e reeon Bk, we ’2”5’2d§}.

nez Y5V 11€2Z €7

By using the same grouping and the same substitution as in the proof of
Proposition 1, the expression becomes:

E'(t,v) = SR{ Z h”h’”x X, e‘fz’“(’”‘”)}.

nmezZ

Expanding n as ¢ + n — ¢, we have:
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E/(t, l/) tfR{Z h Xp€ _]2”‘/"’ Z h”‘x e—]Q!{um}

nez mez
+ R (l’l _ t)ht.yx e—j2m/n hbvx e—j2m/m
n n m ‘m
nez mez

This can be more concisely written as:

E'(t, v) = 0T 5" (1, )2 + R{T I (1, YT (1, 1)} (10)

Given the definitions (7) and (9), we know that dividing E’'(z, v) by

ALY

1
Toez [, @ e yields |
(3) that:

. Besides, we know from Egs. (2) and

Y / D (n, E)dE = 1T (1, )P = T (1, )T (2, v).
nez V=g (1n

Thus, dividing Eq. (10) by ¥, _, f
X rtht
AP S N U] ,D(I’D) .O
E )

Let us recall that we are currently looking for the centre of mass of
the mass function @"* from which the time—frequency representation
s(t, v) stems. What we have done here is establishing a simple
expression of the time coordinate " of the centre of mass. The
original definition of the centre of mass, shown in Eq. (7), indeed leads
to quite complex computations while our calculations have showed that
the time coordinate of the centre of mass can be expressed mostly as
the division of two transforms. The benefits of this expression will be
further discussed in Section 3 but it is already remarkable that we could
express this coordinate in a nice and simple way.

<P’ Y (n, £)dé, we finally get:

2.4. Reassigned frequency

Similar to what has been done for the time coordinate, the
expression of the time—frequency representation at point (7, v) as the
sum of the mass function @"*, made explicit in Proposition 1, makes it
possible to determine the frequency coordinate of the centre of mass of
@', The latter is defined by:

s+ L
Tz fi? ) 600 (. )
2

Dy =

L+% 1v ’
Toez Jo, 2 @ (0 O 12)

Proposition 3. The frequency coordinate of the centre of mass in the
time—frequency plane of the time—frequency representation evaluated
at point (t, v), defined in Eq. (12), can also be expressed as:

o 17", v)
W=y - —Jd—pp——
2 T, v) (13)

where g is the differentiator filter, i.e. g, = %for n+#0andg,=0.

Proof. Let us evaluate the following expression:

E'(tv)= Y /__ EO™ (n, £)dg.

nez © ¢ 2 (14)
We have:
E'(t,v) = Z / 5 Z h,’;:ﬂh’veﬁz”(b &1y Z xn+12x—ne—j2n512d§ .
nez _b_7 T1EZ EZ

By the substitution £ —¢& + v we get:
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E"(t, v) = vT " (1, v) 12

1
+ m{Z [7 & X i,
nez <=

T1EZ

hnt.veﬂné'rl Z xnﬂzxnejh(é’ﬂ)rzdé/}.

1
2 el

Ej (1)

In the above expression, let us call the second operand E; (¢, v). We
now have:

E"(1, v) = UT " (1, 1) + EJ (1, v). (15)

Adequately reordering the summations in E; (¢, v), the latter can be
written as:

Ly Ly
Z hn+r1 hn xn+12xne

n,t1, 1262

1
E§ (1, u):m{ s [ lé/eﬂ"f’m-fz)df}.

&=

Let us define the sequence g in the following way:

L o [V
g, = /52_ 12jﬂ_§/e_]2ﬂ5nd§/:{ - ifn#0
2

0 ifn=0 (16)

The expression of E; (¢, v) consequently becomes:

E{(,v) = m{zi >

n,t,7206Z

h Ly

LU —a—j2nuT)
n+11hn Xn+79Xn© J grz—r]}‘

We can then use the substitution:

©
7

to get the following equation:

= l—n

= l—-n—-m

E (t, u>=%{i > h,’~”,nwxme-ﬂ””“-")gm}.

27[ nmleZ

As far as the terms in m are concerned, we observe that:

D hitg, = (" * )

mezZ

The whole expression can thus be rewritten:

—_— tw »
Z h,{'”xne‘-’z”’“” Z h" * gyxe _/anl}.

Qmm:m{’
27 iz lez

By identifying the transforms in the above expression of E; (¢, v) and
reinjecting in Eq. (15), we get:

Ewo,y)zzmT*”wu,yﬂz——ELJ{TTW”(LvyT“ﬁM*gO,yH.
T

Taking into account Eq. (11) and given the definition (14) of E” (¢, v), it
is only needed to divide the latter by I7*""“(z, )I* to obtain 0", as
defined in Eq. (12). This finally leads to:

x,h“‘*'
N AT
T, )

Similar to what we have done in Section 2.3 for the time coordinate,
we have obtained here a simple expression of the frequency coordinate
of the centre of mass of @' (n, £). Although the mathematical steps that
led to this expression are rather different from the ones performed in
the case of the first coordinate, the final result in Eq. (13) is quite
symmetric with the one in Eq. (8). In a similar fashion, the frequency
coordinate is expressed as a simple combination of two transforms.
This expression of 2* will be further discussed in the next section.

~ 1
=y — —

173

Signal Processing 132 (2017) 170-176

3. Discussion

In the previous section, we have obtained exact expressions of the
coordinates (?r’b, ') of the centre of mass of @"*. The latter is a mass
function whose summation in the time frequency plane gives s(z, v) i.e.
the value of the time—frequency representation of x at time t and
frequency v. The obtained expressions are valid for any time—frequency
representation of a discrete signal with any kind of windowing. Time—
frequency reassignment consists of building an enhanced time—fre-
quency representation of x simply by reassigning the value s (¢, v) to the
time—frequency point ", o).

3.1. Practical interest of the expressions

The major advantage of the presented formulae for 7 and 9" is
that they provide a way of computing the reassigned index with the
computation of only three transforms, one of which is the ‘original’ one
(7*""(t, v)). The presented reassignment tool is thus very powerful
since it only involves an increase of the computation time by a factor 3
compared to the original representation, which does not seem a very
high price to pay considering the tremendous gain of resolution.

In detail, in order to compute the reassigned time index as in Eq.
(8), one has to compute an additional transform of x with a window
function which consists of the original window function multiplied by
the unit ramp function. The real part of the division of this ramp-
windowed transform by the original transform provides the time shift.
In order to compute the reassigned frequency index as in Eq. (13), one
has to compute the transform of x with a window sequence which is the
original window convolved with some discrete filter g. Let us note that
this modified window can be pre-computed once so that calculating the
transform of x with this window has the same complexity as with the
original window. The frequency shift is proportional to the imaginary
part of the transform with the convolved window divided by the
original transform.

3.2. Comparison with previously established expressions

The transition from the mathematical proof of the time—frequency
reassignment formulae in the context of continuous time signals [6] to
the one for discrete time signals is not straightforward. The continuous
proof indeed relies on the rewriting of the spectrogram as a summed
product of Wigner—Ville transforms [37,36,11]. However, since the
Wigner—Ville transform involves non-integer shifts, it cannot be
directly applied to discrete-time signals. We have overcome the issue
by introducing in Eq. (4) the transform W, which can be seen as a
discrete version of Rihaczek's ambiguity function [31]. This transform
is fully applicable to discrete time signals but it lacks the symmetric
design of the Wigner—Ville transform. As a result, the transform is not
bounded to real values. Fortunately, we could still step back to the
expression of a real-valued mass function by applying the real operator
on Eq. (6). Another pitfall when switching to discrete time signals is the
choice of &s integration interval in Eq. (3). Given the spectral
periodicity of discrete signals, it is clear enough that the interval
should be of unit length. However, the localisation of the interval is not
obvious. It does not intervene in the calculation of the reassigned time
index but it has a meaningful impact when deriving the reassigned
frequency index. Our calculations have shown that, in a rather
expectable and logical way, the interval of integration should be
centred around v when studying the time—frequency representation
at point (z, v).

In spite of the meaningfully dissimilar calculations steps that led to
them, the formulae that we finally obtain for " and D™ are very
similar to the ones obtained in the continuous case by Auger and
Flandrin [6]. The expression of the reassigned time index is indeed the
same, with the same appearance in the calculation of the window
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multiplied by the ramp function. One meaningful contribution of our
work, though, is that our expressions have been derived in the context
of discrete time signals. There is thus no approximation when applying
it to real signals and we have formally proved that the expression is
valid. As far as the reassigned frequency index is concerned, the
continuous proof, which relies on an integration by parts, leads to an
expression that brings the derivative of the original window into play.
On the other hand, our calculations lead to a new window which is the
original one convolved with a filter g. For that matter, it is very
interesting to note that the filter g that we obtain is the ideal
differentiator filter. It is indeed clear in the definition of g, given in
Eq. (16), that it is the inverse Fourier Transform of 2jz¢” which is the
frequency response of the perfect differentiator. The similarity between
our expression and the one from Auger and Flandrin then becomes
clear. To some extent, we may indeed consider that the “derivative” of h
approximates the convolution of h by g. We however take full
advantage here of our discrete time approach. We indeed have an
exact formulation for the reassigned frequency index whereas Auger
and Flandrin propose to compute the “derivative” of h. The derivative is
quite an ill-defined concept for discrete time signals and applying their
formula raises the question of the best way to estimate it. Our work
brings an answer to this, until now, open question. The technically
correct way of using Auger and Flandrin formula is to estimate the
derivative with an ideal differentiator filtering.

3.3. From reassignment to synchrosqueezing

As stated in the introduction the pioneering approach of Kodera
[22] suggests to compute the reassigned time and frequency indexes by
using the partial derivatives of the phase of the time—frequency
representation. In a similar spirit, the synchrosqueezing method [13]
makes use of the partial derivatives of the phase to compute the
reassigned frequency index. A notable difference of synchrosqueezing,
however, is that only the frequency index is reassigned.

Our method, on the other hand, looks for the centre of mass of the
distribution @"* related to the time—frequency representation sz, v).
The equivalence between the computation of the reassigned indexes
thanks to the partial derivatives of the phase and the computation of
the same indexes through the centre of mass has however been proved
in [6].

As a result, as explained in [4], the synchrosqueezing method can
be computed within our framework in a straightforward way. First, the
reassigned frequency 0" is determined according to Eq. (13). Finally,
the complex value 7+'"*(s, v) is additively reassigned to the point
(t, 0"¥). The differences with the reassignment method that we detailed
in the first place are thus clear and limited: only the frequency index is
reassigned and the reassignment is operated on the complex value of
the transform instead of its squared magnitude.

4. Application: a reassigned Constant-Q Transform

As explained, the formal framework derived above is valid for a
wide variety of time—frequency transforms. To illustrate its applic-
ability, we propose to demonstrate the merit of the reassignment
strategy on the Constant-Q Transform. The interested reader will find a
Python implementation of this reassigned Constant-Q Transform on
the authors' homepages.’

4.1. Presentation of the transform
The Constant-Q Transform is a common tool in the field of audio

processing. Its numerous fields of application include main melody
extraction [16], audio-fingerprinting [14], and chords detection

1 http://sfenet.bitbucket.org/ressources.html
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[25,19]. It was first proposed in [9] by Brown, who aimed at designing
a time—frequency representation that mimics our perception of sound.
To this end, the Constant-Q Transform has frequency bins with
geometrically spaced centre frequencies. Moreover, their frequency
resolution is inversely proportional to the centre frequency. Its direct
calculation, however, is computationally heavy compared to the Short
Time Fourier Transform which can rely on the Fast Fourier Transform.
This laid the ground for the proposition by Brown and Puckette of a
faster implementation in [10] and a follow-up in [34] by Klapuri.
Another pitfall of the initial transform is its non-invertibility. As a
consequence, several authors have focused on designing an invertible
version of the Constant-Q Transform [35,15,20,24]. Very recently, the
concept of reassigned Constant-Q Transform has appeared in [29,21].
The point of view is however slightly different from the one adopted
here since both works present the Constant-Q Transform as an
application example of the theory derived in [21]. In the latter,
reassignment formulae are specifically derived for filter banks. Since
they rely on the work by Auger and Flandrin [6], the derivations are
only carried out for continuous-time signals.

More precisely, in the context of the Constant-Q spectrogram, one
evaluates the amount of energy in x at any time t for a set of frequencies
{vi}). The vi's are distributed according to the following law:

k
v = 2ryg

The parameter r specifies the resolution of the transform (the bigger r
is, the more numerous the frequency bins are) and vy is the centre of
the lowest frequency bin of the transform. A meaningful interest of the
Constant-Q Transform is that the v;'s can be aligned on the note
frequencies of the Western scale. The parameter r then corresponds to
the number of bins per octave, or equivalently, /12 to the number of
bins per note.

As far as the windowing functions are concerned, the Constant-Q
Transform scales them with respect to frequency:

hi' =vh(v(n — 1))

where h is a window function. The above relationship implies that the
temporal support of the window decreases as vi increases. This
equivalently means that the temporal resolution of the transform
increases with frequency, and, according to the Heisenberg—Gabor
principle [17], that its frequency resolution decreases.

The results presented thereafter have been obtained with the
following set of parameters:

r=36
vy = 245 x 1073

and 4" is a Hann window whose length is about 22,500 samples. The
analysed sound has a sampling rate of 44,100 Hz, which means that the
lowest frequency bin of the transform corresponds to the continuous
frequency 107.9 Hz and that the support of 4"*0 is half a second long.
With this setup the frequency bins of the transform are aligned on the
note frequencies of the Western scale, with a resolution of 3 bins per
note. More specifically, the three lowest bins of the transform are
centred on 110 Hz, which corresponds to the frequency of the musical
note As.

4.2. Considerations on the resolution

Fig. 1 shows the spectrogram of a piano sound obtained by means
of the traditional Constant-Q Transform. We can see that the frequency
resolution of the transform is well adapted to the musical sound since
every frequency of the sound is well resolved. As mentioned, this
transform has a better frequency resolution in low frequencies, where
the musical frequencies are closer to each other. Of course, the
counterpart of this better frequency resolution is a loss in temporal
resolution. As a result, in spite of the fact that all frequencies of the
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Fig. 1. Spectrogram of a piano sound, sampled at 44,100 Hz, obtained by means of the
traditional Constant-Q Transform. The X-axis is the time, it is labelled with the integer
indexes of the sampled signal. The Y-axis represents the frequency. It is noticeable that
the latter follows a logarithmic scale.
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Fig. 2. Spectrogram of the same piano sound as in Fig. 1 obtained by means of the
reassigned Constant-Q Transform.

piano sound have been played simultaneously, one can observe in the
spectrogram that the energy in low frequencies starts earlier than in the
higher frequencies. Similarly, the energy in low frequencies vanishes
later. This is a typical artifact of the Constant-Q Transform due to these
resolution considerations.

4.3. Application of the reassignment tool

It is quite straightforward to apply the reassignment formulae to the
Constant-Q Transform. When evaluating the energy in x at time ¢ and
frequency v, the process is the following. We first compute the
magnitude of the Constant-Q Transform at (7, v;). We then compute
the Constant-Q Transform with the ramp-multiplied windows. We
finally compute the Constant-Q Transform with the g-convolved
windows. Thanks to Egs. (8) and (13), we obtain the indexes " and
. In the end, the energy computed at point (z, v;) is additively
reassigned to the point (7", ") in the time—frequency plane.

Fig. 2 shows the reassigned Constant-Q Transform of the same
piano sound as in Fig. 1. One can see that the temporal resolution has
much improved in the second figure. The typical artifacts of the
widening energy bursts in low frequencies seem to be accurately
handled in the reassigned spectrogram. Besides, one can see that the
frequency resolution has also improved. Even if the original tool's
design ensures a suitable frequency resolution for sound applications,
we can observe that the reassigned transform has much more localised
(in terms of frequency) energy bursts.
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5. Conclusion

In this work we have derived a formal framework for the time—
frequency reassignment of discrete time signals. The principle of time—
frequency reassignment is to express the time—frequency transform of
interest as the summation of a real-valued mass function in the time—
frequency plane. The energy is then reassigned to the centre of mass of
this function. The first derivations carried out in this paper result in an
explicit expression of the mass function which is valid for a wide variety
of time—frequency transforms. Based upon the latter, an expression of
the coordinates of the centre of mass could be obtained. Interestingly, it
consists of very simple combinations of three time—frequency trans-
forms, each of them using a specific window. This result makes time—
frequency reassignment a rather generic, simple and easily computable
technique.

To illustrate the applicability of the derived framework as well as
the benefits of time—frequency reassignment, the obtained results have
then been applied to the Constant-Q Transform. This transform,
commonly used in audio processing, has geometrically spaced fre-
quency bins with a variable resolution. This makes it a well adapted
tool for the analysis of sound. This frequency setup, however, comes at
the cost of time resolution, which has the serious drawback of being
variable with frequency. Once reassigned though, the representation
provides a much better resolution, in time and frequency. A Python
implementation of this enhanced tool is available on the authors'
homepages.” It is our belief that the proposed reassigned Constant-Q
Transform has a strong potential for numerous audio processing
applications, including pitch/multipitch estimation, onset detection
and chords transcription.
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