
INDEXING AND QUERYING DRUM LOOPS DATABASES

Olivier Gillet and Gaël Richard

GET-TELECOM Paris
37, rue Darreau

75015 Paris, France
[olivier.gillet, gael.richard]@enst.fr

ABSTRACT

Large databases of short drums signals, known as drum
loops, are widely used for the composition of modern mu-
sic. This paper presents a complete and integrated system
to index and query such databases. The transcription task
necessary to index the database can be performed with a
range of different classifiers such as Hidden Markov Models
(HMM) or Support Vector Machines (SVM) and achieves a
89.9% correct recognition rate on a simplified taxonomy.
Queries can be formulated on this indexed database with
spoken onomatopoeia - short meaningless words imitating
the different sounds of the drum kit. The syllables of spo-
ken queries are recognized and a relevant statistical model
allows the comparison and alignement of the query with
the rhythmic sequences stored in the database. This same
model can be used to provide a distance measure and al-
lows queries by example. Query results can be graphically
displayed and grouped by similarity.

1. INTRODUCTION

Pre-recorded audio databases of drum loops are widely used
in the production of modern music, especially in genres
such as hip-hop, r’n’b, house, drum’n’bass or techno. These
databases, available as collections of CDs or CD-ROMs,
gather a large number of short drum signals which are used
as a raw material for composition: Either individual notes
are extracted and rearranged with music software such as
ReCycle, or the whole signal is repeated to build an entire
drum track - hence the name, loop. Most of the drum-loops
collections do not provide any other information than the
tempo and style of each loop. As a result, the musician has
no other alternative than browsing the entire CD and listen-
ing to each individual file. There is therefore a need for
more elaborated retrieval and indexing tools that will pro-
vide content-based methods in a user-friendly interface, to
efficiently search these databases.

An important aspect of such a tool is the necessity to
obtain an automatic transcription of the drum loop signals -

the indexing stage. Most of the work in the domain of audio
transcription is dedicated to melodic instruments (see for in-
stance [8] for a review on instrument recognition), however
the transcription of percussive signals (such as drum sig-
nals for example) has gained much interest in the past few
years. Gouyon & al. [9] evaluated several classifiers and
feature sets for natural and electronic drum signals recog-
nition: these approaches proved to be successful but were
limited to isolated sounds. A specifity of drum loops signals
is that each event can be produced by simultaneous strokes
on different instruments (for example bass drum and hi-hat).
Another specifity of drum loops is that they contain a suc-
cession of events (or strokes). As a consequence, drum loop
signals or drum tracks often exhibit a temporal structure.

Similarly to audio indexing, most of the works in mu-
sic retrieval focus on melody and on query by example. A
very popular approach called ”Query by humming”, aims
at retrieving music files from a sung melody. Various sys-
tems are already implemented and show promising results
([3], [13]). However, most of them require a high-level
representation of the whole searched database, for exam-
ple as a collection of MIDI files, and only take into account
melodic information. In the context of percussive signals
where melody is hardly present, a different approach needs
to be followed. One of the most natural ways of describing a
pure rhythmic content is by means of spoken onomatopoeia
- short meaningless words imitating the different sounds of
the percussive instruments (drums in this context). The use
of spoken onomatopoeia is a rather new approach to drum
pattern retrieval which was presented in [5], independently
of the works by Nakana & al. [14] and Kapur & al. [10].

This paper details and extends our first works presented
in [5]. It is organized as follows. Section 2 presents the
overall system architecture of our drum loop retrieval sys-
tem and describes the new database used in this study. The
next section details the different steps of the automatic tran-
scription of drum loops (features extraction, classification)
and evaluates the transcription performance. Then, section
3 is dedicated to the spoken onomatopoeia recognition, us-
ing a new speaker-independent system. Section 4 describes

 ISBN: 952-15-1364-0

Fig. 1. System architecture

in details the approach followed to align the query with the
loops contained in the database, and provides some evalua-
tion results. Following a section dedicated to implementa-
tion and applications issues, section 6 suggests some con-
clusions.

2. SYSTEM ARCHITECTURE, DATABASE AND
TAXONOMY

2.1. Components

The overall architecture of the system is depicted in figure 1.
The first important component is the automatic drum loops
transcription (indexing) module. Each drum loop is individ-
ually indexed by segmenting it in successive strokes and by
recognizing the instrument or combination of instruments
played for each of these strokes. The second important
component is the retrieval system: the spoken queries are
recognized into a sequence of onomatopoeia, each of them
associated to a target drum sound. The indexed database
is searched for the drum loops that best correspond to the
query.

The rest of this section will focus on the different im-
provements and extensions of our first transcription system
presented in [4] and in [5].

2.2. Drum loops database

Our previous work used a database, B1 consisting in 315
loops (5327 strokes). We gathered a new collection of loops

B2, containing 128 loops (2685 strokes). This new set in-
cludes loops downloaded from the web or extracted from
drum solos occuring in songs from the RWC Popular Music
Database [6]. The loops from B1 and B2 are representative
of different styles including rock, funk, jazz, hip-hop, drum
and bass and techno and of different recording conditions
or production techniques commonly encountered in mod-
ern recordings: use of acoustic or electronic drum kits, re-
verberation or distorsion effects, equalization and compres-
sion. The loop duration ranges from two to fifty seconds.

B1 was manually annotated using eight basic categories:
bd for bass drum, sd for snare drum, hh for hi-hat, clap for
hands clap, cym for cymbal, rs for rim shot, tom for toms-
toms and perc for all other percussive instruments. When
two or more instruments are played at the same time, the
event is labelled by all the corresponding categories (for ex-
ample if bass drum and cymbal are hit simultaneously, both
labels are attached to the corresponding stroke). Combi-
nations of up to four simultaneous instruments exist in the
database (although they are not frequent). B2 was semi-
automatically annotated by using a SVM classifier trained
on B1 (see [5] for more details about this classifier) - and
then by manually correcting the recognition errors.

B1 and B2 were finally merged to build up the database
used in this work.

2.3. Taxonomy

In theory, 2n − 1 combinations are possible by playing si-
multaneously the instruments from the n = 8 basic cate-
gories. In our database, after having discarded the combi-
nations occuring less than 40 times, only 18 out of the 255
combinations were observed. The first taxonomy (detailed
taxonomy) is defined when each stroke is characterized by
a distinct label, among the 18 possible combinations. For
a better analysis of the results, a simplified taxonomy is
also defined: Each segment is annotated with only the most
salient instrument, or the two most salient instruments. It
is worth precising that the simplified taxonomy is only used
to provide an additional interpretation of the results: practi-
cally, results for this simplified taxonomy are computed by
grouping blocks from the confusion matrix obtained with
the detailed taxonomy.

2.4. Segmentation and tempo extraction

The segmentation is obtained by applying an onset detection
algorithm based on sub-band decomposition [11]. Concur-
rently, the overall tempo of the loop is estimated using the
algorithm described in [1].

2.5. Features set

The features extracted from the audio signal include:

• Mean of 13 MFCC The mean of the Mel Frequency
Cepstral Coefficients (MFCC) including c0, calculated
on 20 ms frames with an overlap of 50 % and aver-
aged the coefficients over the stroke duration.

• 4 Spectral shape parameters defined from the first
four order moments.

• 6 Band-wise Frequency content parameters These
parameters correspond to the log-energy in six pre-
defined bands (in Hertz: [10-70] Hz, [70-130] Hz,
[130-300] Hz, [300-800] Hz, [800-1500] Hz, [1500-
5000] Hz).

To eliminate correlations between some of these 23 pa-
rameters, a Principal Component Analysis is performed on
the data set. The feature vector used as an input for the
classifiers is thus a linear transformation of the features set
mentioned above.

2.6. Classifiers

Our first paper [4] presented two classifiers: Hidden Markov
Models (HMM) and Support Vector Machines (SVM). HMM
took advantage of the short-term time dependencies of drum
signals. Considering that the sequence of feature vectors
observed is the output of a Hidden markov Model, the tran-
scription task is equivalent to searching the most likely states
(strokes) sequence, carried out using the traditional Viterbi
algorithm. SVM basically does not take into account time
dependencies, but provide very interesting generalization
properties. Our article [5] introduced a new model in which
time dependencies were taken into account in the SVM model.
It consisted practically in replacing the feature vector of one
stroke (f1,n, f2,n, ..., f23,n) (see section 2.5) by a combined
vector containing also the features of the previous stroke
(f1,n−1, f2,n−1, ..., f23,n−1, f1,n, f2,n, ..., f23,n).

We propose several new improvements to these approaches.

2.6.1. SVM with probabilistic outputs and coupling

Support Vector Machines (see [16] for a detailed presenta-
tion) are typically used for discriminating two classes. How-
ever, our problem is a multi-class problem, each class being
a combination of strokes (for example bass drum + hi-hat
is one class). A classical implementation of SVM for such
multiclass problems uses a one versus one approach also
known as pairwise classification ([12]). Following this ap-
proach, n(n−1)

2 binary classifiers are trained, each of them
discriminating a pair of class. If x is the input vector, (i, j)
a pair of classes, (xijk) (resp. (vijk)) the support vectors
(resp. the weights), cij the parameter of the binary SVM
classifier trained to discriminate the classes i and j, the de-
cision function commonly used is:

fij(x) =
∑

k

wijkK(x, xijk) + cij (1)

Ωij(x) =

{
i if fij(x) > 0,

j otherwise
(2)

To classify a stroke, the decisions of the n(n−1)
2 clas-

sifiers are aggregated by a simple vote counting (each Ωij

being a vote).
This approach is not fully satisfying for two reasons.

Firstly, vote-counting does not take into account the amount
of confidence of each individual decision of the pairwise
classifications. Secondly, this method does not provide any
kind of probabilistic output: thus, it does not enable post-
processing - for example, language modeling, or decision
fusion.

Our first improvement consists in replacing the ”hard”
decision function Ωij(x) by a probabilistic one, which can
be interpreted as a posterior probability Pij(class = i|x).
Platt describes in [15] a method to obtain such posterior
probabilities. The output of the SVM fij(x) is mapped
to the interval]0, 1[with a sigmoid function: D′

ij(x) =
1

1+eAfij(x)+B . The parameters A,B are fit using maximum
likelihood estimation on a subset of the training data.

The final decision is taken by coupling the pairwise prob-
abilities given by each classifier, in order to compute a global
probability for each class. This coupling is performed with
the iterative algorithm presented by Hastie and Tibshirani in
[7].

As a result, we obtain a posterior probability P (class =
i|x) which can be used for an additional post-processing
stage, or for direct classification - in this case, the class that
maximizes P (class = i|x) is selected.

2.6.2. SVM with language modeling

N-grams Markov models provide an efficient way of model-
ing context (short-term) dependencies in drum playing ([4]).
In these models, a succession of strokes Sk−m, ..Sk is as-
sociated to each state qt. Intuitively, the state qt repre-
sents the stroke Sk in the context of Sk−m..Sk−1 at time
t. The model is thus clearly context dependent. The transi-
tion probabilities from state i to state j are given by (in the
case of 3-grams):

aij = p(qt = j|qt−1 = i)
= p(st = S3|st−1 = S2, st−2 = S1)

The transition probabilities aij can be estimated by count-
ing occurrences of each N-gram in the training database.

Traditionally, such models use mixtures of Gaussian dis-
tributions to model the observation probability associated

Taxonomy Detailed Simplified
HMM, 3-grams, 2 mixtures 60.5% (4.3%) 79.3%
HMM, 4-grams, 2 mixtures 59.5% (3.5%) 77.7%
SVM 70.6% (2.5%) 86.5%
SVM prob 70.7% (2.6%) 86.4%
SVM ctxt 72.4% (2.7%) 89.1%
SVM ctxt prob 72.6% (2.4%) 89.9%
SVM prob lang 75.5% (2.8%) 88.0%

Tab. 1. Drum loop transcription results

to each state. Employing such distributions results in over-
fitting when a large number of mixtures is used; while a
smaller number of mixtures cannot efficiently represent the
complex decision surface between classes.

An alternative approach is to use the probabilistic out-
put of our SVM classifier to estimate the probability that
a stroke performed at time t corresponds to a given state
of the model. The probabilistic information given by the
recognition of each individual stroke with the SVM classi-
fier, and the context information obtained with the language
model are both taken into account to choose the most likely
sequence of strokes. This is done using the classical Viterbi
algorithm.

2.7. Results

A 10-fold cross-validation approach was followed. It con-
sists in splitting the whole database in 10 subsets, training
the classifier on nine of them, and keeping the last subset
for evaluation. The procedure is then iterated by rotating
the 10 subsets used for training and testing. The results are
summarized in table 1. Standard deviations were computed
using the cross-validation variance estimator θ̂3 presented
in [2] and are given in the table. Modified SVM models
have the following labels: ctxt when contextual features
are used, prob when probabilistic outputs and coupling are
used, lang for language modeling (trigrams).

It can be seen that the best results are obtained with the
SVM classifiers. The use of probabilistic outputs and cou-
pling does not significantly improve the performances. It
can be explained by the fact that our problem involves a
rather large number of classes N = 18, allowing a good
level of accuracy even with a simple voting scheme. Thus,
it seems that the use of SVM with probabilistic outputs and
coupling is relevant only when the number of classes is
smaller, or when the results need to be post-processed.

The use of SVM with a language-modeling stage in-
creases the recognition performances for the detailed tax-
onomy; but does not give the best results for the simplified
taxonomy. A further analysis of recognition errors shows
that language modeling allows a more accurate discrimina-

Instrument Onomatopoeia
Bass drum [pum] / [bum]
Cymbal, hi hat [ti] / [ts]
Snare drum, [tSa]
Snare drum + Bass drum mixture [ta]
Tom, other percussive instrument [do] / [dOm] / [tOm]

Tab. 2. Language used for spoken queries

tion of simple and compound strokes (especially the pres-
ence or absence of hi-hats), but fails to recognize unusual or
rare combinations of strokes. For example, bass drum and
bass drum + hi-hat are less likely to be confused, since the
language modeling incorporates information about whether
or not a hi-hat is played in the sequence; while rim shot +
hi-hat, which is much less common than snare drum + hi-
hat, is very likely to be classified as this first stroke.

3. RECOGNITION OF ONOMATOPOEIA IN
SPOKEN QUERIES

3.1. Onomatopeia set

While several rhythmic instruments such as North Indian
Tabla have a well-defined set of onomatopoeia (known as
bols in the case of Tabla) denoting each stroke of the instru-
ment, there is no commonly accepted set of vocables to de-
note the instruments of the drum kit. This can be explained
by the fact that notation plays a more important role than
oral tradition in the transmission and teaching of Western
popular music.

A possible approach, used by Kapur et al. in their Bionic
BeatBox Voice Processor [10], is to let the users freely use
their own set of onomatopoeia, after having trained the sys-
tem by providing a few examples of each vocable.

We followed a different approach in which we imposed
a set of onomatopoeia to the user. The set chosen for our
work is given in the table 2. It has been validated by a per-
ception experiment ([5]) which consisted in randomly play-
ing a drum stroke, and in asking the subjects to pick the
onomatopoeia that best described it.

3.2. Recognition of spoken onomatopoeia

In order to train and evaluate the recognition of spoken ono-
matopoeia in a speaker-independent way, a new database
was recorded from 13 speakers, 11 males and 2 females.
Most of these speakers practice music regularly, 2 of them
practicing electronic music and DJing. The database was
recorded according to the following protocol: During an in-
troductory stage, the subject was presented the different in-
struments of the drum kit and the vocabulary used. During a

first recording stage, a computer animation displayed a ran-
dom sequence of onomatopoeia, and the subject was asked
to pronounce each onomatopoeia as soon as it flashed on
the screen. During a second stage, the subject was asked to
”perform” or ”beatbox” four simple sequences. The voices
were recorded using a Shure WH20 headworn directional
microphone on an Edirol UA-5 soundcard, at 44.1 kHz.

This corpus was manually segmented and annotated. The
annotation includes onomatopoeia ([pum], [ta]...), silences,
and a last category for miscellaneous events such as breathes
or pops. The entire database contains 1057 utterances.

Training, recognition and evaluation was performed us-
ing the HTK Speech Recognition Toolkit. The features used
for the recognition are the 13 MFCC + 13 ∆MFCC + 13
∆∆MFCC. Each onomatopoeia is represented by a Bakis
(left-right) HMM model with 3 states, at the exception of
the silence model which uses 4 states and a different topol-
ogy. The probability distribution associated to each state is a
mixture of 3 gaussians - using a higher number of mixtures
resulted in overfitting. These HMM models are trained for
each onomatopoeia using the EM algorithm. Given a simple
”task grammar” to model the succession of silences and vo-
cal activity (onomatopoeia), all the models were connected
to form a network, on which the recognition is performed
with the Viterbi algorithm. The output of this query tran-
scription system is a sequence of pairs (ti, Si), where Si

is the stroke (or compound stroke, like bass drum + snare
drum) played at time ti. This output is post-processed by
removing the silence labels, the onomatopoeia shorter than
100ms, and by replacing the recognized onomatopoeia by
the rythmic instrument it represents - for example [pum] is
replaced by bass drum.

3.3. Evaluation

This query recognition system was evaluated using a leave-
one-speaker-out validation protocol. This protocol consists
in dividing the anotated corpus in K = 13 subsets, each
subset containing the utterances of a given speaker. The
recognition model is trained on K − 1 of them, and the last
subset is used for evaluation. By rotating each subset, the
data recorded for each speaker is used K−1 times for train-
ing, and once for evaluation.

Once a transcription output was obtained for each of the
original utterances, these transcriptions were analyzed and
compared to the reference transcriptions. More precisely,
the original and output transcriptions were matched using a
dynamic programming algorithm. A label insertion or dele-
tion carry a score of 3.3, a label substitution carries a score
of 4. The label alignement with the lowest score is found,
and the number of substitution (S), insertion (I), deletion
(D) errors is counted. Then, the accuracy of the transcrip-
tion for a total of N onomatopoeia is given by:

Accuracy =
N − S − I − D

N

The accuracy of our speaker independent system is 84.4%.

4. QUERY SCORING AND ALIGNING

4.1. Statistical modeling of interpretation errors

Query by humming systems often use approaches based on
string matching. These approaches are not suitable for the
scoring of drum queries, for two reason. Firstly, the notion
of melody and melodic contour is not relevant when deal-
ing with drum loops. Secondly, most of these approaches
are ignoring the rythmic information and only focus on the
intervals between notes - a criterion which cannot be de-
fined for drum sounds. On the other hand, tempo or beat
histogram features are not sufficient to accurately represent
the rythmic information - for example the way snare drums
and bass drums are played on downbeats and upbeats.

We consequently chose a novel approach based on a
generative statistical model of the loop interpretations. As
such, the query task can be reformulated as ”find the loop(s)
in the database that is (are) most likely a performance with
real drums instruments of the interpretation given by the
spoken onomatopoeia”. This model takes into account the
various editing operations likely to occur when a complex
rhythmic phrase is interpreted with onomatopoeia: the non-
formulation of a stroke contained in the loop (deletion), the
formulation of a stroke which is not contained in the searched
loop (insertion), and the approximative formulation (substi-
tutions) of a note contained in the searched loop, possibly
with timing errors (alignment). It allows the computation of
the probability that a query is actually a good formulation of
one of the loops contained in the database, in other words
the likelihood of the interpretation q knowing the loop l.
The sequence of editing operations e made by the user when
performing the searched loop is considered as a hidden vari-
able:

P (q|l) =
∑

e

P (q, e|l)

Our model is described in details in [5]. It is parametrized
by the likelihood of the interpretation of each drum sound b,
knowing that it is not present in the loop P ({b}|∅) (insertion
of strokes not present in the original loop), the likelihood of
the deletion of each drum sound a, knowing that it is present
in the loop P (∅|{a}) (non-formulation), a probability distri-
bution for the timing errors Pa(t) from which can be derived
the likelihood of a timing error of t between a stroke and its
interpretation, and a distribution for the duration of deleted
(resp. inserted) strokes Pd(t) (resp. Pi(t)). These parame-
ters can be empirically chosen to reflect common mistakes
made when vocally performing a rhythm (such as ignoring

Fig. 2. Interpretation of a loop

ei eLi(l, q) eQi(l, q)
align. ({bd}, 0) ({bd}, 0)
deletion ({hh}, 100) ∅
align. ({hh}, 200) ({hh}, 220)
align. ({sd}, 400) ({sd}, 390)
align. ({hh}, 600) ({hh}, 600)
insertion ∅ ({bd}, 800)

Tab. 3. Corresponding editing operations

hi-hats, or snare drum flams), or learned by gathering statis-
tics from original drumloops and their vocal interpretations.

We define P ((t, B)|(u, A)) as the likelihood that a com-
bination of strokes B at time t is the interpretation of a com-
bination of strokes A occuring at time u. If we consider that
time-aligning errors are independent of the confusions be-
tween strokes, it can be expressed as: P ((t, B)|(u, A)) =
P (B|A)Pa(|t − u|), where Pa(|t − u|) is the likelihood of
a timing error equal to |t − u| between two events. Using
the same notations, P ((t, B)|∅) is the likelihood of an in-
sertion of a stroke B, and P (∅|(u, A)) is the likelihood of
the deletion of a stroke of duration d.

Finally:

P (q, e|l) =
∏

i

P (eQi|eLi)

where the sequences (eQi)i∈[1,E] and (eLi)i∈[1,E] de-
scribe the alignment resulting from the editing operations e
on the loop L and the vocal query Q (refer to figure 2 for an
example of interpretation, and the corresponding values of
e in 4.1).

The aim of the alignment between the loop and the inter-
pretation is to find the sequence of edit operations e∗ max-
imizing the likelihood of P (q, e∗|l). The search of such
an optimal alignment is possible with dynamic program-
ming, and can be efficiently implemented by computing log-
likelihoods rather than likelihoods.

4.2. Tempo and loop start alignment

In the maximization computed previously, we assumed that
the query was an interpretation of the whole loop. However,
it is likely that the query is just an interpretation of a short
fragment located at any time offset within the loop. This
problem is solved by searching the optimal alignement for
a range of time offset and loop durations.

Finally, it is also necessary to deal with the fact that
the query is not always formulated at the same tempo as
the searched loop. In our previous approach, an optimal
alignement was searched for a discreet set of tempo scal-
ing factors, and it resulted in a tempo independent distance.
The distance used in this article is slightly different since it
also incorporates a penalty on the tempo difference: D =
Dtempo independent + C| log tempo scaling|. The parameter C
can be modified to find a trade-off between a tempo inde-
pendent search based only on the contents of the loop, and a
tempo-dependent search that will emphasize on the absolute
time structure of the rhythm rather than on its contents.

4.3. Query and comparison

For a query d, given a threshold τ , the matching candidates
are:

C(τ, q) = {L,D(q, L) < τ}

A model similar to this one can be used to compare
two loops from the database. The likelihoods P (l1|l2) ex-
pressing the substitution cost between two strokes have been
symmetrised so that the measure D provided by the recur-
sion can be interpreted as a distance. Not only this allows
the grouping of results by similarity, by it also allows query
by example - in the case, the example playing the role of the
vocal query.

4.4. Evaluation

In order to evalute the query system, the following proce-
dure was iterated N = 500 times:

1. A loop li was randomly selected from the database.

2. A segment qi was randomly extracted from this loop;
its length varying from 3 to 8 seconds.

3. A query was synthesized by concatenating onomatopoeia
contained in a test database (compound of 80 instances
of each of the onomatopoeia). This query contains
time alignment mistakes, substitutions, deletions and
insertions.

4. This query was transcribed by the onomatopoeia recog-
nition system.

5. The loops giving the best score were searched and
selected, using a given threshold τ .

Fig. 3. Precision / Recall curves

We used the traditional information retrieval performance
measures: precision and recall. For each value of the thresh-
old τ , a pair of precision/recall values can be computed by
averaging the precision/recall ratios of each single query.
Since in our case only one loop is to be retrieved, the re-
call of a single query is 0 if the loop searched is not present
in the set of matches; 1 if it is present. The precision of a
single query is 0 if the loop searched is not present in the
matches; 1/N where N is the number of matches otherwise.

Recall(τ) =
1
N

N∑
i=1

1C(qi,τ)(li)

Precision(τ) =
1
N

N∑
i=1

1C(qi,τ)(li)
|C(qi, τ)|

Several sets of results were obtained, from which pre-
cision/recall curves were plotted (figure 3). A first set was
obtained using a simple string matching algorithm, that is to
say, only the contents of the loop was considered, without
regard to the temporal information (label matching). Re-
versely, the second set was obtained using a distance D
taking into account only relative temporal information (on-
set matching). The third set was obtained with the dis-
tance used in our previous work (interpretation model). The
fourth set was obtained with a distance taking into account
both the rhythmic contents and the tempo information. Fi-
nally, the fifth set was obtained using the same protocol
and distance as previously, except that the queries were per-
formed at exactly the same tempo as the searched loop.

It can be clearly observed that our interpretation model
outperforms label or onset matching approaches. Incorpo-
rating tempo information can also improve the overall per-
formance of the retrieval system, provided the queries are

Fig. 4. User interface of the LoopQ application

formulated at the exact tempo - a condition that can be rea-
sonably satisfied if a click track is played in the background
when the user records a query.

5. IMPLEMENTATION

All the modules presented in this paper are integrated in a
graphical application, LoopQ, developed in C++ with the
Qt library. Users can submit vocal queries by clicking the
record button. The vocal input is subsequently recognized,
displayed in the bottom of the screen with tags correspond-
ing to the recognized onomatopoeia, and submitted as a
query. At this stage, it is also possible to generate a syn-
thetic drum loop by replacing each onomatopoeia by the
corresponding drum sample.

The loops matching the queries are displayed on the left
pane, sorted by similarity. The right pane displays the 25
best candidates in a 2D plane. Several axis can be selected
to visually group the results: tempo, complexity (number of
drum events per second), density (number of drum events
per bar), and the 3 first axis obtained by multi-dimensional
scaling (MDS) of the resulting data set - using the similarity
measure. By default, the first axis obtained by MDS are
selected, allowing a visual grouping of similar loops. Each
loop is represented by a box containing its name.

Different kind of interactions are possible with this rep-
resentation. Moving the mouse cursor on a box zooms it,
and displays additional information about the loop, such as
its tempo and a transcription of its first bar. Clicking on a
box plays the corresponding loop. Right-clicking performs
a query, using the pointed loop as an example. This allows
the user to perform incremental searches and navigate in
the database the same way one would follow hyperlinks on

the World Wide Web. An additional interaction mode, the
Jam mode, specific to DJing uses, allows a continual sound
feedback: whenever the mouse cursor hovers over a box,
the corresponding loop is continuously played, until another
loop is pointed.

6. CONCLUSION AND FUTURE WORK

Content-based indexing and querying systems are neces-
sary to assist composers and DJs, who use large collec-
tions of sound files daily. This paper presented an inno-
vative system for indexing and querying drum loops, and
its recent improvements. New SVM classifiers, and hybrid
approaches using HMM and SVM were experimented, on a
larger database, resulting in a 75.5% correct recognition rate
for the drum loop transcription task with a detailed taxon-
omy. Better results could be achieved by using more com-
plex language models than the trigram Markov models pre-
sented here - for example by taking into account the cyclic
and repetitive characteristics of rhythmic sequences, or by
making a better use of time and duration information.

A speaker-independent onomatopoeia recognition front-
end has been successfully integrated and gives a 84.4% ac-
curacy. At this stage, further usability experiments should
be conducted with drummers and DJs, to evaluate how this
recognition front-end deals with the different onomatopoeia
used. It is very likely that each drummer or DJ uses his
own vocabulary. However, this does not invalidate our intu-
ition that vocal input is one of the most efficient modality to
specify rhythmic queries.

Finally, further works will focus on the detection on
drum events in polyphonic music signals - our goal being
to index not only drum loops, but also the drum tracks of
entire songs.

7. REFERENCES

[1] M. Alonso, B. David, and G. Richard. A study of
tempo tracking algorithms from polyphonic music sig-
nals. In Proceddings of 4th COST276 Workshop, Bor-
deaux, France, march 2003.

[2] Y. Bengio and Y. Grandvalet. No unbiased estimator
of the variance of k-fold cross-validation. CIRANO
Working Papers 2003s-22, CIRANO, May 2003.
available at http://ideas.repec.org/p/cir/cirwor/2003s-
22.html.

[3] A. Ghias, J.Logan, D. Chamberlin, and B.C. Smith.
Query by humming: Musical information retrieval in
au audio database. In Proceedings of ACM Multime-
dia’95, 1995.

[4] O. Gillet and G. Richard. Automatic transcription of
drum loops. In Proceedings of the IEEE ICASSP 2004
Conference, May 2004.

[5] O. Gillet and G. Richard. Drum loops retrieval from
spoken queries. In Journal of Intelligent Information
Systems, To be published 2005.

[6] M. Goto, H. Hashiguchi, T. Nishimura, and R. Oka.
Rwc music database: Popular, classical, and jazz mu-
sic databases. In Proceedings of the 3rd International
Conference on Music Information Retrieval (ISMIR
2002), pages 287–288, October 2002.

[7] T. Hastie and R. Tibshirani. Classification by pairwise
coupling. In Advances in Neural Information Process-
ing Systems, volume 10, 1998.

[8] P. Herrera, X. Amatriain, E. Battle, and X. Serra. To-
wards instrument segmentation for music content de-
scription: a critical review of instrument classification
techniques. In Proceedings of ISMIR2000, 2000.

[9] P. Herrera, A. Dehamel, and F. Gouyon. Automatic
labeling of unpitched percussion sounds. In Proceed-
ings of the 114th AES convention, March 2003.

[10] A. Kapur, M. Benning, and G. Tzanetakis. Query by
beatboxing: Music information retrieval for the dj. In
Proceedings of the 5th International Conference on
Music Information Retrieval (ISMIR 2004), October
2004.

[11] A. Klapuri. Sound onset detection by applying psy-
choacoustic knowledge. In IEEE International Con-
ference on Acoustics, Speech and Signal Processing,
1999.

[12] U. H.-G. Kressel. Pairwise classification and sup-
port vector machines. In Advances in kernel methods:
support vector learning, pages 255–268. MIT Press,
1999.

[13] R.J. McNab, L.A. Smith, D. Bainbridge, and I.H. Wit-
ten. The new zealand digital library melody index. In
D-Lib Magazine, 1997.

[14] T. Nakano, J. Ogata, M. Goto, and Y. Hiraga. A drum
pattern retrieval method by voice percussion. In Pro-
ceedings of the 5th International Conference on Music
Information Retrieval (ISMIR 2004), October 2004.

[15] J. Platt. Probabilistic outputs for support vector ma-
chines and comparison to regularized likelihood meth-
ods. In Advances in Large Margin Classiers, pages
61–74, 2000.

[16] V. Vapnik. The Nature of Statistical Learning Theory.
Springer-Verlag, 1995.

	Index
	CBMI2005

	Conference Info
	Welcome Message
	Committees
	Welcome to Riga
	Sponsors

	Sessions
	Tuesday, 21st of June, 2005
	TueAmPS1-Invited Talk
	TueAmSS1-MUSCLE Special Session, Part I
	TueAmSS2-MUSCLE Special Session, Part II
	TuePmOR1-Music Analysis and Indexing
	TuePmPO1-Poster Session I

	Wednesday, 22nd of June, 2005
	WedAmPS1-Invited Talk
	WedAmSS1-COST 292 Special Session, Part I
	WedAmSS2-COST 292 Special Session, Part II
	WedPmOR1-Audio and Speech analysis and indexing
	WedPmPO1-Poster Session II

	Thursday, 23rd of June, 2005
	ThuAmPS1-Invited Talk
	ThuAmOR1-Applications
	ThuAmOR2-Video analysis for indexing

	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	V
	W
	X
	Y
	Z

	Papers
	Papers by Session
	All papers
	Papers by Topic
	Table of Contents

	Topics
	Multimedia indexing and retrieval (image, audio, video, ...
	Multimedia content extraction
	Matching and similarity search
	Construction of high level indices
	Multi-modal and cross-modal indexing
	Representation models
	Content-based search techniques
	Multimedia data mining
	Presentation tools
	Meta-data compression and transformation
	Organisation, summarisation and browsing of multimedia ...
	Applications

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using the Acrobat Reader
	Configuration and Limitations

	About
	Current paper
	Presentation session
	Abstract
	Authors
	Gaël Richard
	Olivier Gillet

