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Abstract—The study of the associations between audio and video
content has numerous important applications in the fields of infor-
mation retrieval and multimedia content authoring. In this work,
we focus on music videos which exhibit a broad range of struc-
tural and semantic relationships between the music and the video
content. To identify such relationships, a two-level automatic struc-
turing of the music and the video is achieved separately. Note on-
sets are detected from the music signal, along with section changes.
The latter is achieved by a novel algorithm which makes use of fea-
ture selection and statistical novelty detection approaches based on
kernel methods. The video stream is independently segmented to
detect changes in motion activity, as well as shot boundaries. Based
on this two-level segmentation of both streams, four audio—visual
correlation measures are computed. The usefulness of these corre-
lation measures is illustrated by a query by video experiment on
a 100 music video database, which also exhibits interesting genre
dependencies.

Index Terms—Audio segmentation, cross-modal queries, infor-
mation retrieval, multimedia indexing, multimodal processing,
music videos, novelty detection.

I. INTRODUCTION

ULTIMEDIA document indexing refers to the process

by which high-level descriptors or semantic representa-
tions are automatically extracted from documents. For example,
such descriptors may take the form of a temporal structuring
of the document in shots, a transcription of all spoken words
or the detection of events of interest. Multimodal approaches
combining audio, video, and possibly text streams have been
successfully used for such tasks, for example to discover mul-
timedia patterns and concepts [1], classify television programs
[2] or identify interviewees in news broadcasts [3]. The multi-
modal dimension of multimedia documents is however not al-
ways straightforward to consider, and a large majority of studies
focuses on unimodal indexing approaches.

Music-related audio—visual content (television broadcasts of
concerts, operas or music videos) represents a specific class of
multimedia data which is particularly interesting. In the case of
music videos, a large palette of semantic relationships between
the audio and video streams is used by the artists and directors.
For instance, mainstream music videos show dancers or per-
formers, some videos have a narrative content based on higher
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level features of the song (such as structure or mood); while
others explore new forms of visual metaphors [4]-[6]. The in-
terest for music video automatic processing is fairly recent and
so far, mostly dedicated to automatic summarization (such sum-
marization systems are described by Agnihotri et al. in [7] and
[8] and Kankanhalli et al. in [9]).

In this work, which is an extension of a preliminary study
[10], we further investigate the correlations of the audio and
visual streams in music videos. For this purpose, four different
correlation measures between the temporal structures of both
streams are defined. Our main motivation is to describe how the
video illustrates the music using these correlation measures.
One of the main contributions of our work is to consider both
streams at a structural level rather than at the feature level as
it is traditionally done. An advantage of this approach is that
it requires no prior media aesthetics knowledge regarding po-
tential correlations between low level features of both streams.
Such a matching of the audio and video content at a structural
level opens the path for numerous applications, ranging from
temporal resynchronization of mismatched audio and video
streams to audio-driven video editing, or soundtrack retrieval
by video query. Several systems have been developed to tackle
such a retrieval problem. In [11], Foote et al. describe an
audio-driven home-video summarization system, in which the
highest quality segments of home videos are edited to match the
structure of a target musical accompaniment. A video-driven
system was developed by Dulhem et al. in [12]. Music pieces
were retrieved to serve as a soundtrack to home videos by
comparing the projections of global low-level audio and video
features into a common pivot space. In [13], the correlation
between tempo and motion activity is used to rank music pieces
according to a video query. Finally, Nayak et al. describe in
[14] a system generating MIDI background music constrained
by low-level hue and brightness video features.

This paper is organized as follows. First, a brief overview of
the structuring system is proposed in Section II. The next sec-
tion is dedicated to audio event detection and audio segmen-
tation. The video segmentation approaches selected are briefly
described in Section IV. Section V introduces the audio—visual
correlation measures derived from the automatic segmentations.
Experimental results on a music video database are given in Sec-
tion VI. Finally, Section VII suggests some conclusions and fu-
ture directions.

II. AUDIO-VISUAL CONTENT ANALYSIS SYSTEM

The aim of our system, whose overall architecture is given in
Fig. 1, is to separately structure both audio and video streams,

1051-8215/$25.00 © 2007 IEEE
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Fig. 1. Overview of the audio—visual content structuring system.

at two semantic levels, in order to measure the correlations be-
tween these structures. Hence, we try to characterize the syn-
chrony of significant events and changes in the music and the ac-
companying images. This section defines in detail which events
and changes are detected.

Some of the most salient events in music signals are note
or chord changes. Thus, an efficient mid-level temporal struc-
turing of a music piece can be achieved by detecting the onsets
of such events which coarsely capture the rhythmic properties of
the music. Since onset detection is a fundamental component of
automatic music transcription and beat tracking systems, many
approaches have been proposed to solve this problem (refer to
[15] for a tutorial on the topic).

Likewise, the events of interest to be extracted from the video
include rapid movements such as dance steps, movements of
musicians or any action sequence. Such events can be efficiently
detected by means of motion activity detectors [16].

At a higher level, a music piece can be temporally segmented
in sections, characterized by distinct dynamic, tonal or timbral
properties and corresponding to the musical structure of the
piece, i.e., choruses, verses, fill-ins, etc. This problem is tra-
ditionally solved by computing a self-similarity matrix of the
signal, and identifying large blocks within it, or by detecting
boundaries between adjacent signal frames (such approaches
are illustrated in [17], [18]). A very interesting alternative ap-
proach consists in using novelty detection methods which allow
for determining boundaries between homogenous temporal seg-
ments. In this paper, this approach is further developed and a
number of recent novelty detection methods are evaluated on
this task.

At a higher level, the video stream is segmented into shots. In
fact, shot changes events are semantically important in the sense
that they may be correlated with the rhythm or section changes
in the music. Shot detection is a topic that is widely studied. A
review of state-of-the-art methods which had been evaluated in
the latest TRECVID campaign, can be found in [19].

These four segmentation processes produce detection func-
tions (represented in Fig. 1) ideally exhibiting peaks whenever
an event or section change is detected. The detection functions
can be thresholded to obtain the temporal location of salient
events and segment boundaries, or directly considered to mea-
sure correlations.
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The following sections present the algorithms used to per-
form the aforementioned mid-level and high-level structuring,
for both the audio (Section III) and the video (Section IV)
content.

III. AUDIO PROCESSING

A. Audio Event Detection

Earlier methods for audio event detection in musical signals
were solely based on the amplitude envelope of the waveform. It
is now widely accepted that a more robust detection is achieved
when the signal is first split into several frequency channels.
However, there is no consensus on an optimal frequency de-
composition for onset detection even if in most of the earlier
studies a rather limited number of bands is used—for instance,
the systems described in [20] and [21] use, respectively, 6 and
21 bands.

The onset detector implemented in this work is described in
[22]. In order to accurately detect changes in the frequency con-
tent of the audio signal, a large number of frequency bands is
used, in combination with the spectral energy flux (SEF) intro-
duced in [23]. Firstly, the input signal z(n) (where n is dis-
crete time) is decomposed into 512 frequency channels using
short-term Fourier transform (STFT), resulting in the so-called
spectrogram X (m, k), m being a time frame index, and k €
[0...511] the frequency bin index. For each frequency bin &,
the real, positive signal | X (m, k)| is low-pass filtered and its
dynamic range is compressed, resulting in a perceptually plau-
sible power envelope. Then, its derivative is computed by ap-
plying an optimal finite impulse response (FIR) differentiation
filter, resulting in the spectral energy flux.

Finally, a detection function d,(m) is obtained by summing
the SEF from each channel. This detection function typically
exhibits sharp peaks at note onsets, chord changes or percussive
events, and can be thresholded to obtain note onset times. In
our case, we directly use d,(m) to investigate the correlations
between audio and visual segmentations (see Section V).

B. Audio Section Change Detection

Audio section changes are discovered using a novelty detec-
tion module, based on statistical approaches, which use an effi-
cient selection of audio features. We start by explaining how
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these features are obtained, then briefly describe the various
novelty detection techniques which we examined as well as the
common framework in which they are used.

1) Feature Extraction: 70 candidate features are considered
for this task. They are extracted over rather long windows of
a 2-s length. Using long windows allows us to compensate for
periodic and rhythmic variations of the features, hence model
long-term phenomena. High overlap is kept between succes-
sive windows, as 8 frames are computed per second, in order
to gather a large amount of data and increase the temporal ac-
curacy of the decisions. The resulting representation is noted
X ¢(m), where m is the frame index and f the feature index.

The features which were examined are briefly described here-
after. Interested readers are referred to [24] for a more detailed
description.

a) Spectral Features: The spectral features include the fol-
lowing.

* Pitch class features [25]. These features describe the dis-
tribution of energy in 12 frequency bins corresponding to
the 12 pitch classes of the equal-tempered scale.

* A subset of features is obtained from the statistical mo-
ments, namely the spectral centroid (from the first order
moment), the spectral width (from the second order mo-
ment), the spectral asymmetry defined from the spectral
skewness, and the spectral kurtosis describing the peaked-
ness of the spectrum.

¢ Octave band signal intensities (OBSI) are computed to cap-
ture in a rough manner the power distribution of the dif-
ferent harmonics of a musical sound without resorting to
pitch-detection techniques. Using a filterbank of overlap-
ping octave band filters, the log energy of each subband
(OBS]) and the logarithm of the energy ratio of each sub-
band sb to the previous subband sb — 1 (OBSIR) are mea-
sured [26].

b) Cepstral Features: Mel-frequency cepstral coefficients
(MFCC) are extracted [27] to serve as an estimate of the spectral
envelope of the signal.

c) Temporal Features:

» Zero crossing rates (ZCR) are extracted to help discrimi-
nating periodic signals (small ZCR values) from noisy sig-
nals (high ZCR values).

¢ The variance, skewness and kurtosis of the waveform over
each observation window are measured. The same mo-
ments, along with the average, are also computed from the
amplitude envelope of the waveform. To obtain the ampli-
tude envelope, we first compute the modulus of the com-
plex envelope of the signal, then filter it with a low-pass
filter (which is the decreasing half of a 20 ms Hanning
window). Such amplitude envelope features aim at mod-
eling the rhythmic content.

d) Perceptual Features: Three perceptual features are ex-
tracted: the relative specific loudness (Ld) which corresponds
to the loudness in each Bark band, the sharpness (Sh)—as a
perceptual alternative to the spectral centroid based on specific
loudness measures—and spread (Sp), which is the distance be-
tween the largest specific loudness and the total loudness [24].

2) Feature Selection: Feature selection arises from data
mining problems where a subset of d features are to be selected

from a larger set of D candidates, the selected subset being
required to include the most efficient features. This issue has
been extensively addressed in the statistical machine learning
community [28], [29] and used for various classification tasks.

Nonsupervised feature selection techniques such as [30]
simply aim at reducing the redundancy between features—effi-
cient features are in this case the minimal, nonredundant subset
that entirely describes the data. In supervised classification
problems, when the classes are initially well defined, the fea-
tures considered as efficient are generally the ones yielding the
best classification performance. In these problems the selection
criterion is hence related to the ability of the features to dis-
criminate the considered classes. While our novelty detection
problem is not a classification problem per se, this discrimina-
tive approach is still valid: we aim at extracting a set of features
that will discriminate frames from two distinct sections, but not
frames drawn from the same section. In other words, we can
consider that pairs of adjacent audio sections are two distinct
classes to discriminate.

Thus, we use the following semi-supervised approach.

* First, ahold-out set of music signals is manually segmented

according to their structure.

* Then, each segment boundary in every signal is considered
to define a biclass classification problem—considering the
“past data class” and the “future data class” related to each
boundary.

* For each biclass problem II; defined as above, we apply
a supervised feature selection procedure. We chose to use
a simple approach, based on Fisher’s linear discriminant
algorithm (LDA) [31], which computes the relevance of
each candidate feature using the weights estimated by the
LDA. In fact, extensive experimentation had been carried
out in previous work [32] comparing various feature selec-
tion techniques, which motivated this choice. Both “filter”
algorithms (which use the initial set of features intrinsi-
cally), and “wrapper” algorithms (which relate the selec-
tion procedure to the performance of the classifiers con-
sidered) had been envisaged. Hence, we worked out that
very simple filter algorithms, particularly LDA selection,
always produce appropriate subsets of features with the ad-
vantage of being computationally inexpensive.

» The previous step yields several possible subsets of se-
lected features (one subset per biclass problem II;). We
then rely on a voting procedure to produce a unique subset
of selected features to be used for segmenting all signals:
each time a given feature is found in the subset of selected
features for problem II;, it receives a vote, then features
are ranked again with respect to the number of votes they
received.

Thirty-two features have thus been kept from the original
set of 70 candidates. This target number of features has been
selected after testing on the hold-out set. For validation pur-
poses, we divided our music signal database in two parts (each
amounting to 50% of the total size of the database) and per-
formed the feature selection procedure described above on each
part—one part being considered as a hold-out set for the other
in the evaluation stage. The selected features in both hold-out
sets were the same, which suggests that the best feature set ob-
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TABLE 1
SELECTED FEATURES

Features group | Selected features | Total number of features
Pitch class | 0 12
Spectral moments | 2 4
OBSI | 7 7
MFCC | 3 13
ZCR | 1 1
Waveform moments | 2 3
Envelope moments | 2 4
Perceptual | 13 26

tained (and given in Table I) is quite stable. We, therefore, used
it in the evaluation of novelty detection algorithms, as described
hereafter.

3) Novelty Detection Techniques: The novelty detection
problem can be stated as follows: given a set of reference
examples, decide whether a set of observations is generated by
the same process as the one underlying the reference examples.
The segmentation of observation sequences is an instance of
this problem. In fact, deciding whether or not a section change
occurs at time tq is akin to deciding whether the observations
at time £ > 1o (future data set) are novel with respect to the
observations at time ¢ < %y (past data set). In practice, only
a limited number of observations are considered for the past
and future data sets. All the novelty detection approaches used
in this work are thus based on this same problem formula-
tion: a sliding window W (mg) of length 2L + 1 centered
at frame mg is observed. mg is considered as a good can-
didate for being a segment boundary if the content of the
future data set Sa(mg) = {X(m),m € [mo,mo + L]}
is novel relatively to the content of the past data set
Si(mo) = {X(m),m € [mo — L,myp]}, where X(m) is
the feature vector measured on frame m. To simplify notations,
the past and future windows, for a given value of mg will be
simply referred to as S; and So, the underlying probability
distributions as P; and P», the entire window as W, the feature
vector as X.

Solutions to the novelty detection problem typically differ
in the class of models used for estimating the distributions P;
and P,; and in the criterion used to compare them. The three
methods given here illustrate this variety of solutions.

a) Bayesian Information Criterion (BIC): Being a clas-
sical model or order selection criterion, the BIC has been widely
used in speech/music or speakers segmentation problems [33],
[34]. Hence, it will be considered here as a baseline algorithm.

We assume the elements of .S; to be distributed according to
P; if the considered value of mg is a segment boundary, oth-
erwise (if mg is not a segment boundary), the elements of the
entire observation window W are assumed to be distributed ac-
cording to a single distribution P.

In the case of Gaussian distributions, the BIC variation be-
tween the two models can be expressed as

ABIC =

DN | =

(2L + 1) log |X]| = L (log |X1]| — log [X2]) — k)

where the covariance matrices >; and X are, respectively, esti-
mated from S; and W. Since we are only interested in finding

local maxima of ABIC, the constant x does not need to be ex-
plicited here.

b) Novelty Detection With One-Class Support Vector Ma-
chines: One-class support vector machines (SVM) aim at iden-
tifying a region of the feature space in which most of the data
points lie. This is obtained by finding the hyperplane that sepa-
rates the data from the origin with maximum margin [35].

Two different novelty detection approaches based on one-
class SVM are considered in this work: the first is based on a
likelihood ratio test [36] and the second is the so-called kernel
change detection (KCD) approach [37]. We will only explain
how the novelty detection criteria are computed in each case.
For further details on these techniques, we refer the reader to
[35]-[37].

A likelihood ratio test can be defined as

_ ersl Pl(X) HXGSz P2(X) _ HXGSz P2(X)
HXGWP1(X) HXGSz P (X)
Hence, estimates of P; and P, are needed in order to perform

this test, which can be easily deduced from the SVM algorithm
solution {7;, ol }, according to

R > .

Pi(X) = exp <Z ol K (X, X' (m)) — m)

where n; is a threshold, ! are Lagrange multipliers,
(Xi(m)),, = S; are the vectors of the training set, and
K is a reproducing kernel.

The numerator of R indicates how well the 1-class SVM al-
gorithm fits its own training set, and is expected to be close to
one. Hence, the detection criterion can be simplified as

1

R=— " >t
[Ixes, P1(X)
Let K;; be the kernel matrix with elements
K(X%m),X7(l)) at the mth row and I[th column,

with (i,5) € {1,2} x {1,2} and X’(m) the mth training
vector of the set S;. The KCD approach is based on a
dissimilarity measure that can be seen as a ratio of inter-class
scatter to intra-class scatter in the transformed space induced
by the kernel. This dissimilarity is defined as follows:

—

C1C2
D= —, —
C1p1 + C2p2
where
T
_ a; Kpas
C1C2 = arccos = o
\/al Kual \/02 KQQQQ
and

— Ui
C;P; = arccos

/T
o; K“ai

It is worth mentioning that it is not necessary, for both
methods, to run the 1-class SVM algorithm entirely over each
new observation window. In fact, since S (myg) and S1(mg+1)
share L data points in common, one can merely remove the

), ie{1,2}.
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outgoing points from the set of support vectors (if necessary),
and perform the optimization starting with the existing set of
support vectors. Furthermore, both expressions D and R only
depend on the set of support vectors and the corresponding La-
grange multipliers. These two observations allow us to achieve
a substantial reduction of the computational load.

c) Probabilistic Distances: Another way of detecting seg-
ment boundaries is by using a relevant distance between the data
points in S; and S2. We expect these boundaries to be charac-
terized by a higher distance. For the sake of robustness we con-
sider probabilistic distances between the estimates of the dis-
tributions 151 and f’2. Many such distances can be considered
among which we chose the Bhattacharya distance and the Kull-
back-Leibler divergence (mainly due to the resulting simplifica-
tion in the following computations).

While these distances admit analytical expressions whenever
the probability densities are Gaussian, computing them can be
otherwise a difficult problem since it requires performing heavy
numerical integrations [38]. In fact, in the Gaussian case, the
distances can be expressed as functions of the means and covari-
ance matrices of the multivariate Gaussian densities describing,
respectively, class 1 and class 2 in R”. Nevertheless, it would
be highly suboptimal, in our case, to assume that the original
class observations follow Gaussian distributions since we deal
with data with a nonlinear structure. Fortunately, if this data is
mapped from the original space to a reproducing kernel Hilbert
space (RKHS) [35], it is reasonable to assume it to be Gaussian
in the RKHS [38].1 Thus, a robust estimation of the needed prob-
abilistic distances can be derived using analytical expressions
provided that a proper estimation of the means and covariance
matrices in the RKHS can be obtained. The strength of such an
approach resides in that there is no need for explicitly knowing
either the structure of the original probability densities or the
nonlinear mapping to be used. Interested readers are referred to
[38] for further details.

4) Normalization and Thresholding: Because of their large
dynamic range, the novelty detection functions d(m), output
of the BIC, 1-class SVM or probabilistic distance algorithms
need further processing to ease section change detection. Two
nonlinear filters are applied to them: firstly, the detection func-
tion d(m) is detrended by removing a median-filtered version
of itself. A window size of M, is used for this median filter.
Then, local variations in peaks amplitude are compensated by
dividing the resulting detrended detection function ds(m) by a
standard-deviation filtered version of itself

e = e Tda (=YY . da(m) - da(mt M=T)]

Local maxima above a given threshold 7 in the function
d.(m) indicate section changes. Such local maxima can be
easily identified by defining the following “top-hat” function
di(m) = max[d.(m — ((Ms—1)/2)),...,de.(m), ... d.(m+
((Ms — 1)/2)), 7] and by detecting a section boundary when-
ever d;(m) = d.(m). Practically, this detection process is such

I'This assumption is the basis of methods such as kernel-PCA or kernel-Fisher
discriminant analysis.

that the length of the detected sections lies within the range
[Mg, M;]. Therefore, we used in this work M = 40 frames (5
s); and M; = 360 frames (45 s), which correspond to minimum
and maximum section lengths observed in our database.

IV. VIDEO PROCESSING

A. Detection of Video Event Onsets

The mid-level structuring of the video stream consists in iden-
tifying the onset times of significant changes in motion. Such
changes can correspond, in the case of music videos, to musi-
cians movements to play notes, to dance moves, or to action se-
quences. While video tracking systems are available for specific
music related activities such as drumming [39] or dancing [40],
these systems only work in well-controlled environments, with
fixed cameras—which make them unsuitable for overall motion
analysis in generic music videos. Thus, lower-level general-pur-
pose motion features are used, based on the MPEG-7 motion
activity descriptor [16].

Motion vectors are available from the P- (predicted) frames of
MPEG video streams. Motion vectors associated with nontex-
tured blocks, on which motion estimation is inaccurate, are dis-
carded. The motion vector field is smoothed by a 3 x 3 median
filter. Then, we extract a motion activity feature, corresponding
to the standard deviation of the motion vectors’ magnitude. The
use of standard deviation increases the robustness of this feature
to continuous motion components induced by camera motions
(such as panning). Finally, changes in this motion feature are
detected by using a differentiating filter, resulting in a detection
function d,, (m).

B. Detection of Shot Boundaries

At a higher level, the video stream is segmented in shots.
State-of-the-art algorithms for this task are reviewed in the latest
(2005) annual TRECVid evaluation report [19].

In the case of music videos, the shot boundary detection is
greatly simplified by the fact that transitions between shots are
mostly cuts: we have observed in a 30 music videos subset of
our corpus that 91% of the transitions are cuts. Moreover, as
we ultimately aim at correlating the video and audio streams,
false positives in cut detection such as flashing lights and fast
lighting changes are tolerable, as these effects are often beat-
synchronous, and are thus worth being detected. By contrast,
dissolves and fades are less localized in time, and thus harder to
correlate with audio events.

Consequently, we use a simple cut detection system based on
the distance of color and luminosity features between adjacent
frames. Three 16-bins histograms are computed for each frame,
from the Y, U and V components. This results in a 48 features
vector X (m) for each frame. The shot boundary detection func-
tion is defined as

48
dy(m) =X (m) = X(m = )|l =) |X,(m) — Xy(m - 1)]
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V. AUDIO-VISUAL CORRELATION MEASURES

A. Overview

A possible procedure to correlate the structure of the video
and audio streams could be to match the corresponding segmen-
tations—for example by computing an edit distance between
them (possibly by counting the number of split or merge op-
erations), or by counting the number of changes occurring si-
multaneously in both streams. However, we did not follow this
approach for several reasons. Firstly, it requires the definition
of a decision threshold for each detection function, which can
suppress meaningful section changes. Secondly, it does not take
into account the salience of each event.

For these two reasons, we decided to directly correlate the
detection functions, rather than the structures extracted from
them. Thus, we consider the note onset detection function
d,(m), the detrended section change detection function d.(m),
the shot boundary detection function ds(m), and the motion
activity changes function d,,,(m). All these detection functions
are centered, normalized by their standard deviations and con-
verted to a common sampling rate (25 Hz, which corresponds
to the frame rate of the videos used in the experiments).

B. Time Warping

We aim at characterizing whether changes in the audio stream
and video stream—be it at a mid- or high-level—are perceived
as simultaneous. This problem is thus equivalent to verifying
whether peaks in the audio and video change detection func-
tions occur simultaneously. However, changes perceived as si-
multaneous are not necessarily perfectly synchronized, due to
the filters used in the computation of the detection functions; or
imprecisions in the editing. Thus, prior to the computation of the
correlation measures, the audio and video detection functions
are aligned by means of the classical dynamic time warping
(DTW) algorithm [41] to maximize the simultaneity of their
peaks. The DTW is constrained to only search for alignment
paths in the neighborhood of the diagonal (upper and lower di-
agonals). That is to say, only audio and video events differing
by less than 2 frames (80 ms) are matched and thus considered
as simultaneous.

C. Correlation Measures

Various statistical or information-theoretic measures can be
used to correlate two detection functions a(m) and b(m). We
can assume that a(m) and b(m) are sequences of independent
realizations of a random variable A and B, and consider:

¢ Pearson’s correlation, defined as

E[(A-E[A]) (B~ E[B])]

p(A,B) =
,\/[E [(A - [E[A])ﬂ E [(B - [E[B])Z]

where E is the statistical expectation.
e Mutual information, defined in the discrete case as

I(A,B) =YY P(A, B)log %

a b

To allow the computation of this quantity, the values of
a(m) and b(m) are discretized into 32 bins, using a stan-
dard histogram procedure.

Since both streams are segmented at two levels (onsets and
sections for audio, motion and shots for video), four correla-
tions can be defined. For each of them, out of the two possible
measures—Pearson’s correlation and mutual information—we
selected the one that maximized the performance of our system
for the retrieval experiment in Section VI-B.

Thus, the four audio—visual correlations measures used are
the following:

Consets/shots = p(do, ds) (1)
Osoctions/shots =p(de, dy) 2
Consets/rnotion = I(dm dm) 3

Csections/motion =p(de,dpm). 4

VI. EXPERIMENTAL RESULTS

A. Evaluation of the Audio Section Segmentation

As the audio segmentation system introduced in Section ITI-B
is novel, it is subjected in this section to an independent eval-
uation. A database of 100 full-length pop music signals, (60 of
them having been used in our previous work [10]) has been man-
ually segmented. This database is subsequently referred to as
Music-100.

Detection functions are computed for all the signals, with the
features set given in Section III-B1. The 100 detection functions
are thresholded as described in Section III-B4 with 70 different
values of T ranging from —2 to 5. Detected segment boundaries
are classified as correct if they occur within a 4-s time window
centered at each ground-truth segment boundary. Standard pre-
cision and recall scores are thus computed for each value of 7,
yielding the curves in Fig. 2

Number of correctly detected boundaries

Precision —
recision Total number of detected boundaries
Recall Number of correctly detected boundaries
ecall=
Number of boundaries to be detected
2 - precision - recall
F-measure =

precision + recall

Additionally, F-measure scores are computed with this last
expression for a fixed value of 7 = 1, and given in Table II. The
best results are obtained with the method based on Bhattacharya
distance in RKHS. The kernel change detection algorithm and
KL-divergence methods are less accurate for a given range of
recall rates. The results obtained with the BIC are significantly
worse. This can be explained by the fact that this criterion relies
on the hypothesis that the data is Gaussian, which is not valid in
our case. Using mixtures of Gaussians (GMM) to model the fu-
ture and past distributions could have overcome this limitation,
however, in our case, the lack of data from the observation win-
dows would not have allowed us to robustly train such models. A
more tractable approach adapted to the small observation win-
dows used in our work could consist in using GMM adapta-
tion of generic models—defined for example for each music
genre, or instrumentation. However, this would have reduced
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Fig. 2. Recall-Precision curves for the audio segmentation task on the
Music-100 database: comparison of the different novelty detection algorithms.

TABLE II
F-MEASURE SCORES FOR DIFFERENT NOVELTY DETECTION ALGORITHMS, ON
THE MUSIC-100 DATABASE

Algorithm | F-measure for 7 =1
Bhattacharya distance in RKHS | 0.74
KL Divergence in RKHS | 0.68
Kernel Change Detection | 0.72
1-class SVM, Likelihood ratio test | 0.67
Bayesian Information Criterion | 0.59

the ability of our algorithm to deal with unusual timbral tex-
tures or music genres. The failure of such generative approaches
highlights the robustness and relevance of kernel methods for
high-dimensional problems with scarce observations.

Precision and recall curves are also given in Fig. 3 for the best
method (Bhattacharya distance in RKHS), with different sets
of features: the whole features set computed in Section III-B1,
the 32 features obtained with the feature selection process, and
the previous parametrization described in [10]. The new fea-
tures set leads to better performance compared to our previous
parametrization. Moreover, there is no significant difference of
performance between the entire features set and the reduced set
obtained after feature selection. Feature selection can thus be
seen as a way of reducing the complexity of the novelty de-
tection process without causing performance degradations. It is
also important to mention that the 70 candidate features intro-
duced in III-B1 were preselected by the authors for this segmen-
tation application. An additional experiment employing a larger
and more diverse set of candidates may provide stronger argu-
ments to justify the importance of feature selection.

B. Audio Retrieval From Video

In this second experiment, we consider the problem of finding
the music corresponding to a given video, using the correlation
measures defined above. For this purpose, we gathered a data-
base of 100 music videos (Videos-100), from various sources:
25 music videos of high aesthetic and production value from
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Fig. 3. Recall-Precision curves for the audio segmentation task on the
Music-100 database: comparison of different features set.

[4]-[6], and 75 music videos aired on the MTV and MCM tele-
vision channels. All the videos are encoded in the MPEG-2
format, with a resolution of 320 x 240, at 25 fps.

Given a video sequence V;, ¢ € [1...100], taken from the
database, all the audio streams (A;);e(1...100] available in the
database are ranked according to one of the audio—visual corre-
lation measures defined above. A threshold # is used to define
the set R;(#) of audio tracks which are the most correlated with
the video query V;

Ri(6) = {j. C(4;,Vi) > }.

For this retrieval experiment using a video query, precision
and recall are defined as

Precision; (f) = { [R:(6)] lfz € I
0, if 2 Q Rl
1, ifie R
Recall;(6) = {07 ifi ¢ R,
where | - | denotes set cardinality. Global Precision and Re-

call scores, for a given value of 6, are obtained by averaging
Precision;(6) (resp. Recall;(6)), 7 € [1...100]. Recall-Preci-
sion curves are given in Fig. 4.

The fast decrease of precision, as recall increases, suggests
that the correlations are relevant for retrieval only on a subset of
the database. Among this subset, the best performance can be
achieved by considering the correlation between shot changes
and note onsets. Yang and Brown performed in [13] a related
retrieval experiment, by correlating a beat-tracking detection
function, and motion features. They obtained a perfect match
for each of their five test video queries. However, the nature of
the material used in their work and the size of their dataset does
not allow us to make a direct comparison.

It is worth noting that according to this evaluation protocol,
for a given video sequence, the only piece of music counted as
a correct result is the piece of music for which the video was
produced. Highly correlated pairs of video and audio segments
extracted from two distinct music videos are counted as errors.
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Fig. 4. Recall-Precision curves for the music retrieval with video query exper-
iment, on the Videos-100 database.

Nevertheless, some of these pairs can be meaningful and some-
times surprisingly interesting—suggesting that some results con-
sidered as incorrect could indeed be relevant to a human user.

C. Influence of Music Video Genre on Audio-Visual
Correlations

Prior to the following experiment, music videos were man-
ually classified into five categories, depending on their video
content and its relationship to the music.

* Narrative: The music video has a strong narrative content

and chronology.

* Musicians: The music video mostly features shots of the
band members performing the music.

* Dance: The music video mostly shows dancers (this can
include the singer) dancing to the music.

¢ Abstract visuals: The music video is a sequence of shots
with a high-level semantic relationship with the music. For
example shots are related to the song lyrics, mood or at-
mosphere.

* Video sampling, VJing: The music video is made of short
video clips edited or triggered to match the beat and sam-
ples used in the music.

When several categories could be used to label a music video,
the category describing the largest number of sequences was
used.

The aim of the experiment is to identify for which categories
the correlation measures previously defined are relevant and
useful for retrieval. For this purpose, for each video stream V;,
all the audio streams A; are ranked according to their correlation
with V;. Let r; be the rank assigned to the original audio stream
that accompanied the video V;. Low values of r; indicate that
the relationship between the music and visuals is strong enough
to allow the music to be easily retrieved from the video content.
Table III lists the average of r; in each of the five subsets pre-
sented above.

It can be seen that the audio—visual correlations are extremely
significant for the video sampling category. More generally,

TABLE III
INFLUENCE OF MUSIC VIDEO GENRE ON RETRIEVAL RESULTS

Category | Average rank of the original video
Narrative | 23
Abstract visuals | 19
Dance | 13
Musicians | 11
Video sampling | 6

these correlations are more efficient for the retrieval of music
videos emphasizing on music related activities (dance, perfor-
mances) than on narrative, or abstract visuals videos for which
the audio and video can only be matched efficiently at a higher
semantic level.

VII. CONCLUSION AND FUTURE WORK

Segmentation and event detection algorithms for music and
video content processing were presented. In particular, we intro-
duced a novel approach for music segmentation that makes use
of feature selection and statistical novelty detection algorithms
based on kernel methods. This novel approach was individually
evaluated on a database of pop music signals, and showed im-
provements over the baseline BIC algorithm.

Audio—visual correlation measures were derived from the
segmentations, allowing for the detection of co-occuring
changes in the audio and video content of music videos. These
correlations can be used to match audio and video content for
retrieval applications, especially audio retrieval from video
query. This was validated by an experimental evaluation on a
corpus of 100 music videos and gave promising results. The
results show that the performance depend on the music video
genre, hence suggesting genre classification applications.

Future work will address this genre classification problem,
by defining additional video and audio features, as well as new
forms of correlations. The matching of the audio and video
streams could also be enhanced by considering intermediate or
higher levels of segmentation—for example by detecting beats
(rather than note onsets) in the music, or by identifying sequence
changes in the video. Further applications and developments
of our work could also include automatic generation of music
videos, or query by video systems to assist audio mixing and
soundtrack composition.
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