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ABSTRACT

This paper addresses the usefulness of the segmentation of musical sounds into transient/non-transient parts
for the task of machine recognition of musical instruments. We put into light the discriminative power of the
attack-transient segments on the basis of objective criteria, consistent with the well-known psychoacoustics
findings. The sound database used is composed of real-world mono-instrument phrases. Moreover, we show
that, paradoxically, it is not always optimal to consider such a segmentation of the audio signal in a machine
recognition system for a given decision window. Our evaluation exploits efficient automatic segmentation
techniques, a wide variety of signal processing features as well as feature selection algorithms and support
vector machine classification.

1. INTRODUCTION

The attack and end transients of music notes carry
a significant part of the information for musical
instrument identification, as evidenced by music
cognition and music acoustics studies [1, 2]. It is
known that information about the production mode
of the sound is essentially located at the beginning
and at the end of the notes, like breath impulsions
for the wind instruments, bow strokes for the bowed

strings, or plucking or hammering for percussive
pitched instruments (for example piano and guitar).
Additionally, music cognition experiments have
shown that features related to the beginning of
music notes (for example attack-time [2]) can help
humans to discriminate different instrument notes.

For machine recognition tasks, signal processing
features extracted from the attack transients (such
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as crest factor, onset duration) have also proved
to be efficient for instrument family identification
in previous work on isolated notes [3]. However,
performing reliable extraction of such features on
mono-instrument phrases in real playing conditions
is not straightforward. In fact, the state-of-the-
art approaches of automatic music instrument
recognition on solo performances are based on a
cutting of the signal into short signal windows
(about 30ms), and they do not differentiate the
transient and steady-state windows. Therefore,
since non-transient segments are usually much
longer than transient ones, the information carried
by the transients gets diluted over the entire signal,
hence its impact on the final classification decision
becomes weak.

Our study considers a differentiated processing on
the transient and non-transient parts of the musical
phrases. It assumes that we have at hand at least
one algorithm that performs automatic segmen-
tation of the signal, with an estimated error rate.
Then, adapted features can be selected for each part.

We thus show, using class-separability criteria and
recognition accuracy measures, that attack transient
segments of the musical notes are more informative
than other segments for instrument classification .
Subsequently, we discuss the efficiency of such a seg-
mentation in the perspective of developing a realistic
machine recognition system.

2. SIGNAL SEGMENTATION

The signal analysis is based on 32-ms constant-
length windows, with a 50%-overlap. After segmen-
tation, each window is assigned to one of the follow-
ing two categories: transient or non-transient.

Two types of transient/non-transient segmentation
are performed. The first type is based on an onset
detector: when an onset is detected, a fixed num-
ber of windows including and following the onset
are considered as transient. The second type in-
volves a continuous transientness criterion: windows
for which this criterion exceeds a fixed threshold are
considered as transient. The next two sections (2.1
and 2.2) describe these two methods in detail.

2.1. Fixed-duration transient annotation based
on onset detection
2.1.1. Onset Detection Algorithm

The automatic onset detection is based on a detec-
tion function that uses a spectral difference, tak-
ing the phase increment into account. The origi-
nal method was introduced in [4]. It is based on
the computation of a prediction error. If the signal
is composed of stationary sinusoids, the first-order
prediction of the Discrete Fourier Transform (DFT)
Xk,n, of the signal x at frequency k and time n is:

X̂k,n = |Xk,n−1|e
j(2φk,n−1−φk,n−2)

where φk,n is the time-unwrapped phase of Xk,n.

When an onset occurs, there is a break in the pre-
dictability, and therefore a peak in the prediction
error. We thus define the function ρ:

ρ(n) = ΣK
k=1|X̂k,n − Xk,n|

that exhibits peaks at onset locations. However,
when evaluating this detection function on real
sounds, we find that these peaks occur sometimes
late with respect to the note onset times, because
of too long raising times of the function peaks. Al-
though the onset is detected, the peak is located at
the maximum spectral difference and not at the true
onset time. Thus, we perform an additional opera-
tion to sharpen the peaks of the detection function
ρ: a derivation (noted ∆) followed by a rectification:

γ(n) = max({∆(ρ(n)), 0})

Onsets are then extracted by peak-picking the new
detection function γ, called Delta Complex Spectral
Difference. A peak is selected if it is over a threshold
δ(n), computed dynamically:

δ(n) = δstatic + λ ∗median(γ(n−M)), ..., γ(n + M))

2.1.2. Onset Detection Evaluation
The above onset detection algorithm was compared
to other standard onset detection algorithms, such
as Spectral Difference (amplitude or complex do-
main) and Phase Deviation [5]. It has also been eval-
uated on a database of solo instrument recordings,
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manually annotated and cross-validated [6]. On the
Receiver Operating Characteristic curves1 (Figure
1), the Delta Complex Spectral Difference shows a
significant improvement in comparison to the other
ones (its ROC curve is constantly over all the other
ones).
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Fig. 1: ROC Curves of the detection functions.
(square): Complex Domain Spectral Difference,
(plus): Phase Deviation, (circle): Spectral Differ-
ence, (star): Delta Complex Spectral Difference

2.2. Transientness criterion
One of the main limitations of the system described
above is that it assumes that all transient regions
have the same length. Obviously, this is overly sim-
plified when the signals considered range from per-
cussive (that have very sharp attack transients) to
string or wind instruments (that can have very long
attack durations). Therefore, a more signal-adaptive
algorithm has been developed, based on the contin-
uous transientness criterion introduced by Goodwin
in [7]. Like most onset detection algorithms, it is
based on a spectral difference, with some adaption
to the signal level. Given f the spectral flux func-
tion:

f(n) = ΣK
k=1(|Xk,n| − |Xk,n−1|),

the following operation is performed:

1good detections as a function of false alarms

if(f [n] > βn−1)
βn = f [n]
else
βn = αβn−1withα < 1

α must be set close to 1, and β initialized to the
theoretical or empirical maximum of f . Figure 2
shows the adaption provided by this operation. The
windows for which the criterion β remains over a
fixed threshold are considered as transient windows.
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Fig. 2: Transientness Criterion. top: original signal
(trumpet sample), middle: transientness criterion,
bottom: normalized transientness criterion, circles
at 1 indicate transient windows

2.3. A priori comparison of the segmentation
methods
Once the two types of segmentation are performed,
coincidence between the segmentations can be eval-
uated. Since we lack a ground-truth for the tran-
sientness, we can only provide this indication on the
robustness of our segmentation with respect to the
employed method.

For a nearly equal numbers of transient windows de-
tected by both methods, we found that about 40% of
each set of transient windows were common. For a
random segmentation, the coincidence is about 7%.
These quantities show that, although significantly
correlated, the two methods are far from giving the
same results. This means that results obtained only
on transient windows may vary according to the cho-
sen segmentation method.
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3. FEATURE EXTRACTION AND SELECTION

3.1. Feature extraction
A wide selection of more than 300 signal processing
features is considered including some of the MPEG-
7 descriptors. They are briefly described hereafter.
Interested readers are referred to [8] for more de-
tailed description.

3.1.1. Temporal features

• Autocorrelation Coefficients were reported to
be useful in [9]; they represent the “signal spec-
tral distribution in the time domain”.

• Zero Crossing Rates (ZCR) are computed over
short windows and long windows; they can dis-
criminate periodic signals (small ZCR values)
from noisy signals (high ZCR values).

• Local temporal waveform moments are mea-
sured, including the four first statistical mo-
ments. The time first and second time deriva-
tives of these features were also taken to follow
their variation over successive windows. Also,
the same moments were computed from the
waveform amplitude envelope over long win-
dows. The amplitude envelope was obtained
using a low-pass filtering (10-ms half Hanning
window) of signal absolute complex envelopes.

• Amplitude Modulation features are meant to
describe the ”tremolo” when measured in the
frequency range 4-8 Hz, and the ”graininess”
or ”roughness” of the played notes if the focus
is put in the range 10-40 Hz [10]. A set of
six coefficients was extracted as described in
Eronen’s work [10], namely AM frequency, AM
strength and AM heuristic strength (for the
two frequency ranges). Two coefficients were
appended to the previous to cope with the fact
that an AM frequency is measured systemati-
cally (even when there is no actual modulation
in the signal); they were the product of tremolo
frequency and tremolo strength, as well as the
product of graininess frequency and graininess
strength.

3.1.2. Cepstral features

Mel-Frequency Cepstral Coefficients (MFCC) were
considered as well as their time first and second time
derivatives [11]. The first few MFCC give some es-
timate of the spectral envelope of the signal.

3.1.3. Spectral features

• The first two coefficients (except the constant
1) from an Auto-Regressive (AR) analysis of
the signal are examined as an alternative de-
scription of the spectral envelope (which can
be roughly approximated as the frequency re-
sponse of this AR filter).

• A subset of features is obtained from the sta-
tistical moments, namely the spectral centroid
(from the first order moment), the spectral
width (from the second order moment), the
spectral asymmetry defined from the spectral
skewness, and the spectral kurtosis describ-
ing the “peakedness/flatness” of the spectrum.
These features have proven to be successful for
drum loop transcription [12] and for musical in-
strument recognition [13]. Their time first and
second derivatives were also computed in order
to provide an insight into spectral shape varia-
tion over time.

• A precise description of the spectrum flatness is
fetched, namely MPEG-7 Audio Spectrum Flat-
ness (successfully used for instrument recogni-
tion [13]) and Spectral Crest Factors which are
processed over a number of frequency bands
[14].

• Spectral slope is obtained as the slope of a line
segment fit to the magnitude spectrum [8]; spec-
tral decrease is also measured, describing the
“decreasing of the spectral amplitude” [8], as
well as spectral variation representing the vari-
ation of the spectrum over time [8], frequency
cutoff (frequency roll-off in some studies [8])
computed as the frequency below which 99% of
the total spectrum energy is accounted, and an
alternative description of the spectrum flatness
computed over the hole frequency band [8].

• Frequency derivative of the constant-Q coeffi-
cients is extracted, describing spectral ”irregu-
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larity” or ”smoothness” and reported to be suc-
cessful by Brown [15].

• Octave Band Signal Intensities are exploited to
capture in a rough manner the power distri-
bution of the different harmonics of a musical
sound without recurring to pitch-detection
techniques. Using a filterbank of overlapping
octave band filters, the log energy of each
subband (OBSI) and also the logarithm of
the energy Ratio of each subband sb to the
previous sb − 1 (OBSIR) are measured [16].

3.1.4. Perceptual features

We consider relative specific loudness (Ld) rep-
resenting “a sort of equalization curve of the
sound”, sharpness (Sh)- as a perceptual alternative
to the spectral centroid based on specific loudness
measures- and spread (Sp), being the distance be-
tween the largest specific loudness and the total
loudness [8] and their variation over time.

3.2. Feature selection

Feature Selection (FS) arises from data mining
problems where a subset of d features are to be
selected from a larger set of D candidates. The
selected subset is required to include the most
relevant features, i.e. the combination yielding the
best classification performance. Feature selection
has been extensively addressed in the statistical
machine learning community [17, 18, 19] and
utilized for various classification tasks including
instrument recognition [20, 16, 21]. Several strate-
gies have been proposed to tackle the problem
that can be classified into 2 major categories: the
“filter” algorithms use the initial set of features
intrinsically, whereas the “wrapper” algorithms
relate the Feature Selection Algorithm (FSA) to
the performance of the classifiers to be used. The
latter are more efficient than the former, but more
complex.

We chose to use a simple filter approach based
on Fisher’s Linear Discriminant Algorithm (LDA)
[22]. This algorithm computes the relevance of each
candidate feature using the weights estimated by

the LDA. We merely used the spider for Matlab tool.

We perform feature selection class pairwise in the
sense that we fetch a different subset of relevant
features for every possible pair of classes. This
approach proved more successful than the classic
one where a single set of attributes is used for all
classes [16, 21].

In order to measure the efficiency of the features
selected xi, we use an average class separability cri-
terion S, obtained as the mean value of bi-class sep-
arabilities computed for each class-pair p according
to:

Sp = tr





(

2
∑

c=1

πcΣc

)−1

(

2
∑

c=1

(µc − M)′(µc − M))



 ,

where πc is the a priori probability of the class
c, Σc and µc are respectively the covariance ma-
trix and the mean of the class c observations and
M =

∑

i xi. The higher the measured value of S,
the better classes are discriminated.

4. CLASSIFICATION SCHEME

Classification is based on Support Vector Machines
(SVM). SVM are powerful classifiers arising from
Structural Risk Minimization Theory [23] that have
proven to be efficient for various classification tasks.
They are by essence binary classifiers which aim at
finding the hyperplane that separates the features
related to each class Ci with the maximum margin.
In order to enable non-linear decision surfaces,
SVM map the D-dimensional input feature space
into a higher dimension space where the two classes
become linearly separable, using a kernel function.
Interested readers are referred to [24, 25] for further
details.

We use SVM in a “one vs one” scheme. This means
that as many binary classifiers as possible class pairs
are trained and test segments are classified by every
binary classifier to arrive at a decision. After pos-
terior class probabilities have been fit to SVM out-
puts following Platt’s approach [26], we use the usual
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Maximum a posteriori Probability (MAP) decision
rule [22] .

5. EXPERIMENTAL STUDY

5.1. Experimental parameters

Ten instruments from all instrument families are
considered, namely, Alto Sax, Bassoon, Bb Clarinet,
Flute, Oboe, Trumpet, French Horn, Violin, Cello
and Piano. Solo sound samples were excerpted from
Compact Disc (CD) recordings mainly obtained
from personal collections. Table 1 sums up the
properties of the data used in the following exper-
iments. There is a complete separation between
sources2 used for training and sources used for
testing so as to assess the generalization capability
of the recognition system.

Audio signals were down-sampled to a 32-kHz sam-
pling rate, centered with respect to their long-term
temporal means and their amplitude normalized
with respect to their maximum values. All spec-
tra were computed with a Fast Fourier Transform
after Hamming windowing. Windows consisting of
silence signal were detected thanks to a heuristic ap-
proach based on power thresholding then discarded
from both train and test datasets.

Instruments Sources Train Test

AltoSax 9 5’29” 3’2”
Bassoon 7 3’0” 2’12”
BbClarinet 11 6’6” 5’50”
Flute 8 4’17” 3’2”
Oboe 9 6’54” 4’17”
French Horn 6 3’33” 2’46”
Trumpet 8 7’13” 5’17”
Cello 5 5’52” 4’38”
Violin 6 10’18” 7’39”
Piano 18 18’28” 12’30”

Table 1: Sound database used. “Sources” is the
number of different sources used, “Train” and “Test”
are respectively the total lengths (in seconds) of the
train and test sets.

2sound excerpts are from different sources if they come
from recordings of different artists

Segmentation of the whole sound database was per-
formed with the two methods described in section
2. For fixed-length segmentation, two lengths were
used: 2 windows (about 60 ms) and 4 windows
(about 120 ms). Each segmentation is used to gen-
erate two datasets: a transient-window dataset, and
the complementary one, the non-transient-window
dataset. On Figure 3, two examples of decision
frames are shown: the Cl(t,4) decision frame, tak-
ing 4 overlapping windows at the transient location,
and the Cl(nt, 2) taking 2 overlapping windows in a
non-transient part of the signal.
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Fig. 3: Examples of decision frames, dashed-line
rectangles represent overlapping analysis windows.

5.2. Efficiency of features selected over different
segments

Pairwise feature selection was performed on the fol-
lowing data sets to obtain the 40 most relevant ones
(for each pair):

• 3 datasets including observations from segments
labeled as transient (the related selected feature
sets will be referred to as FS(t,2), FS(t,4) and
FS(t,a)), where FS(t,2) (resp. FS(t,4)) is the se-
lected feature set on the transient segments for
segment of length 2 (resp. 4), and FS(t,a) the
selected feature set on the frames with adaptive
transient lengths).

• 3 datasets including observations from the
remaining segments labeled as non-transient
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by the same segmentation methods (FS(nt,2),
FS(nt,4) and FS(nt,a) sets, same notations as
above);

• the “baseline” dataset including all observa-
tions regardless of the transientness of the signal
(FS(b)).

Significant variability is observed on the subsets of
features selected for each pair of instruments over
the considered datasets. FSA outputs have been
posted on the web3 for interested readers to look
into it in depth.

FS(b)       FS(t,2)        FS(nt,2)     FS(nt,4)     FS(t,4)        FS(t,a)   FS(nt,a)
0

0.005

0.01

0.015
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0.025

S

Fig. 4: Mean class separability (over all class pairs)
with features selected on different segments.

Class separability measures (see section 3.2) result-
ing from all previous feature sets are depicted in fig-
ure 4 from which the following can be deduced:

• S values obtained with transient segment
data (FS(t,2), FS(t,4), FS(ta)) are greater
than values reached by non-transient (FS(nt,2),
FS(nt,4), FS(nta)) and FS(b), hence a better
class separability is achieved using descriptors
specifically selected for the transient segment
data (regardless of the segmentation method
used);

• among the segmentation methods, the adaptive
one (FS(t,a)) gives rise to observations which,

3see www.tsi.enst.fr/ẽssid/pub/pubAES118/

when processed with the adapted features, en-
ables the best discrimination between instru-
ments;

• data from the non-transient segments results
in poor class separability, smaller than the
one yielded by the undifferentiated processing
(FS(b)).

These results thus confirm the widespread assertion
that attack-transients are particularly relevant in in-
strument timbre discrimination.

5.3. Classification over different segments

Based on the different sets of selected features
(described in section 5.2) we proceed to SVM clas-
sification of the musical instruments exploiting only
the transient, only the steady-state or all the audio
segments. Recognition success is evaluated over a
number of decision frames. Each decision frame
combines elementary decisions taken over Lt, Lnt or
L consecutive analysis windows respectively for the
transient-based classifier, the non-transient-based
classifier and the generic classifier (exploiting all
audio segments).

Table 2 sums up the the recognition accuracies found
in the following situations:

• classification based on FS(t,Lt), FS(nt,Lnt) and
FS(b) with Lt = Lnt = L = 2;

• classification based on FS(t,Lt), FS(nt,Lnt) and
FS(b) with Lt = Lnt = L = 4.

The decision frame lengths were thus chosen in
order to enable a fair comparison of the classifica-
tion performance of the different schemes. Note
that these lengths are imposed by the lengths of
the transient segments which implies Lnt = Lt and
L = Lt.

On average better classification is achieved when
using the transient segments, this is true for the
two tested transient-segment lengths. Better results
are found, on average, with Lt = 4. It can be said
that transients are essential for proper machine
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% correct Cl(t,2) Cl(nt,2) Cl(b,2) Cl(t,4) Cl(nt,4) Cl(b,4)

Piano 94 93 92 95 93 93

AltoSax 76 77 83 79 77 85
Bassoon 75 53 59 77 54 61
BbClarinet 53 54 52 57 52 53
Flute 89 68 77 87 73 79
Oboe 24 42 39 24 42 39

FrenchHorn 58 44 49 58 45 50
Trumpet 52 54 52 54 55 53

Cello 98 89 93 98 90 95
Violin 74 78 81 77 77 82

Average 69 65 68 71 66 69

Table 2: Results of classification based on FS(t,Lt), FS(nt,Lt) and FS(b) with Lt = 2 and Lt = 4, respectively
Cl(t,2), Cl(nt,2), Cl(b,2), Cl(t,4), Cl(nt,4), Cl(b,4)

recognition of instruments as the worst results are
obtained when they are not taken into consideration.

Nevertheless, looking at individual accuracies, one
can note interesting exceptions. A glaring one is
the oboe’s which is clearly better classified when
the focus is put on its non-transient segments
(42% on non-transients against 24% on transients).
Since we consider that 1% differences are not
statistically consistent, this is the only case where
non-transient segments lead to better classification
performance. It can be noted that the recognition
accuracies of the alto sax and the violin found with
the generic classifier are better compared to the
transient-segment one. In fact, the undifferentiated
processing leads to more successful classification
in these cases. The confusion matrices reveal that
the alto sax is more frequently confused with the
violin when examined over the transient segments
while the violin is more often classified as cello, Bb
clarinet and alto sax (even though less confused
with trumpet).

Table 3 shows the recognition accuracies of a “more
realistic system”, where longer decision frames are
tolerated, using a generic classifier. Better overall
performance is achieved compared to a classifica-
tion scheme exploiting only transient-segment deci-
sion frames. It can be concluded that processing
only the information of the transient windows is not

sufficient to improve the results of generic classifiers,
when decision is taken in a fixed-length frame of re-
alistic size. According to the high scores obtained on
transient frames, developing a fusion system merging
both transient and non-transient windows informa-
tions contained in such a frame could be of interest.

% correct Cl(b,30) Cl(b,120)

Piano 97 99

AltoSax 90 95
Bassoon 64 74
BbClarinet 57 62
Flute 84 89
Oboe 37 60

FrenchHorn 57 72
Trumpet 60 63

Cello 99 100
Violin 85 87

Average 73 80

Table 3: Classification results with L = 30 and L =
120

6. CONCLUSIONS

In this paper we studied the pertinence of using a
differentiated transient/steady-state processing for
automatic classification of musical instruments on
solo performances. Transient windows tend to con-
centrate relevant information for music instrument
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identification. In fact, it has been shown that, in
most cases, transient-segment observations lead to
a better instrument discrimination (regardless of
the method used to perform the segmentation).

Nevertheless, in the perspective of developing a
realistic machine recognition system wherein a fixed
decision-frame length is imposed (typically 1 or 2s
for realtime systems), it is not straightforward to
optimally exploit such segmentations. Indeed, bet-
ter classification performance can then be achieved
when an undifferentiated processing is performed
on all signal windows compared to the case where
the decision is taken only on the transient-signal
windows within the decision frame.

Systems adequately merging expert classifiers based
on transient and steady-state segments should be de-
signed to enable a better overall performance. Fur-
thermore, to complete this study, specific transient
parameters could be developed.
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