
1328 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 14, NO. 4, JULY 2006

A New Quantization Optimization Algorithm for the
MPEG Advanced Audio Coder Using a Statistical

Subband Model of the Quantization Noise
Olivier Derrien, Pierre Duhamel, Fellow, IEEE, Maurice Charbit, and Gaël Richard, Member, IEEE

Abstract—In this paper, an improvement of the quantization op-
timization algorithm for the MPEG Advanced Audio Coder (AAC)
is presented. This algorithm, given a bit-rate constraint, minimizes
the perceived distortion generated by the signal compression. The
distortion can be related to the quantization error level over fre-
quency subbands through an auditory model. Thus, optimizing the
quantization requires knowledge of the rate-distortion function for
each subband. When this function can be modeled in a simple way,
the algorithm can take a one-loop recursive structure. However,
in the MPEG AAC, the rate-distortion function is hard to charac-
terize, since AAC makes use of nonlinear quantizers and variable
length entropy coders. As a result, the standard algorithm makes
use of two nested loops with a local decoder, in order to measure
the error level rather than predicting its value. We first describe
a partial subband modeling of the rate-distortion function of in-
terest in the MPEG AAC. Then, using a statistical approach, we
find a relationship between the error level and the so-called quanti-
zation “scale-factor” and propose a new algorithm that is basically
similar to a classical one loop “bit allocation” process. Finally, we
describe the complete algorithm and show that it is more efficient
than the standard one.

Index Terms—Bit-rate constraint, distortion constraint, op-
timization algorithm, perceptual audio coding, scale-factor,
statistical model, subband quantization.

I. INTRODUCTION

Aperceptual audio coder is a frequency domain coder which
aims, under a bit-rate constraint, to minimize a measure

of distortion significantly related to auditory perception [1].
The quantization error (or quantization noise) introduced by the
coding process is properly shaped along frequency subbands
in such a way that the error is totally or partially masked by the
signal itself. Thus, coding the audio signal on each time-window
requires: 1) an estimation of the error shaping that is compatible
with the required bit rate and 2) a tuning of the quantization stage
insuchawaythat thiserrorshapingismetaspreciselyaspossible.
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A. Error Shaping

According to advanced hearing models for audio coding [2],
[3], the perceived distortion is directly related to the spectrum
of the coding error. More precisely, one usually considers the
error level over specific frequency subbands, called perceptual
subbands. The definition of these subbands is based on psy-
choacoustic measurements. Furthermore, no audible distortion
is detected provided that, in each subband, the error level re-
mains below a so-called masking threshold, which is strongly
signal-dependent. For these reasons, the ratio between the noise
level and the masking threshold, or noise-to-mask ratio (NMR),
is generally considered a relevant subband distortion measure
in the context of audio coding. To evaluate the quality of a
wide-band signal, a combination of NMR per subband can be
used [4], although it is not totally significant.

A noise-shaping which would generate an error level lower
than the masking threshold would result in a transparent coding
and would require a minimum number of coding bits. This crit-
ical number of bits is generally referred to as the perceptual
entropy (expressed in bits per sample) [5], noted here as .
The corresponding bit rate , where is the
sample rate, can be considered the optimal working point for
a perceptual audio coder. Its mean value for a 16-kHz band-
width monophonic signal seems to be about 96 kbits/s [6] which
is often too much for many audio applications. However, the
transparency is not always the ultimate goal of audio coding:
the ITU-R [7] specifies that, for diffusion, degradations may be
“perceptible, but not annoying”. Then, a satisfying rate-distor-
tion trade-off can be reached with an optimization algorithm.
Now, the MPEG-2/4 Advanced Audio Coder (AAC), considered
as the most efficient state-of-the-art audio coder [8], meets the
ITU-R quality specifications at 64 kbits/s per channel [9], [10].

B. Tuning the Encoder

Audio coders of the previous generation (MPEG-1 Layer I
and II [11]) make use of uniform scalar quantizers. In this case,
a simple approximation of the subband rate-distortion func-
tion, that relates the signal-to-noise ratio (SNR) to the required
number of coding bits, is available. In the optimization process,
setting a noise level in one subband is then equivalent to a bit
allocation. In what follows, choosing a quantizer in a pre-defined
set for a particular subband is denoted as a bit-allocation pro-
cedure. Coders of the new generation (MPEG-1 Layer III [11],
MPEG-2/4 AAC [12], [13]) use nonuniform scalar quantizers
associated with a noiseless coding module (Huffman). Thus,
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characterizing the subband rate-distortion function is a much
more difficult task. Even though global variations are obvious (a
large amount of coding bits generates a low SNR), small varia-
tions seem unpredictable. In practice, the problem is bypassed
with the use of full iterative algorithms, including a local decoder.

Some studies have shown that the computational complexity
of the optimization algorithm is critical for an MPEG encoder:
in an MPEG-1 Layer III, which has the same quantization stage
and optimization algorithm as the MPEG AAC, the predicted
complexity for the quantization optimization is 70 MIPS, while
the predicted complexity for the total coding process is 190
MIPS [14]. In other words, the optimization algorithm takes ap-
proximately half of the total encoder complexity. Then, in the
context of real-time systems, a full-iterative optimization algo-
rithm is a serious drawback. Recent solutions to this problem
propose advanced techniques in order to accelerate the opti-
mization process [14]–[16], but this generally requires complex
recursive structures.

In this paper, we propose a novel way to improve the efficiency
of the optimization algorithm, both in terms of signal quality and
complexity: we characterize the quantization process in a simple
and reliable way, using a statistical model. We show that one can
take advantage of these results to build a new optimization algo-
rithm based on classical bit-allocation techniques. Compared to
the standard algorithm proposed by MPEG [12], a noticeable
performance improvement is observed.

II. FORMULATION OF THE CODING PROBLEM

A. Notations

We assume an audio transform coder and note the block of
spectral coefficients over the current time-window as ,
where is a frequency index and is the
transform length. We also assume that each coefficient-block is
split into variable-width frequency subbands. We note the limits
of subband as and . The level of the audio
signal (i.e., the estimation of the signal power) over subband is

(1)

Spectral coefficients , are
coded with a quantizer , using bits. We note the decoded
coefficients as . The quantization noise is defined by

(2)

and the noise level by

(3)

B. Optimal Coding With a Fixed Bit Rate

With a fixed output bit rate, the bit-rate constraint is

(4)

Recalling the definition of perceptual entropy, if is greater
than , transparent coding can be performed theoretically

and the coding error can be maintained below the masking
threshold in each subband

(5)

where is the masking threshold, computed by the psy-
choacoustic model on the current time-window. However, as
noted in Section I, the typical working point of perceptual coders
in practical situations corresponds to bit rates smaller than the
perceptual entropy, which means . Thus, there is
a need for an optimization algorithm which would distribute the
available binary resources among subbands in a way that would
disturb the listener the least. Classically, the NMR is used as a
subband distortion measure

(6)

Thus, the perceived distortion is directly related to .
In the case of simple quantizers, and are related

by some simple relationship. For example, with a uniform scalar
quantizer working in high resolution, we get

(7)

where is a constant (overload factor). In this case, a simple
bit-allocation procedure can easily control the noise level by set-
ting the number of coding bits . N.S. Jayant et al. [17] have
shown that, when quantizers work in high resolution mode (i.e.,

), the optimal solution is obtained when the
spectrum of the coding error is parallel to the masking threshold.
This principle has been implemented in real coding systems,
with satisfying results at a medium bit rate [5], [18]. However
this approach does not apply to low bit rates. In this case, popular
strategies for efficient iterative bit allocation can be summarized
as follows.

• Give bits first to the subband with the highest NMR [19],
[20]. This solution tends to give the same value of NMR
to all subbands.

• Retrieve bits first to the subband with the lowest signal
level (called “water-filling technique”) [8]. This solution
reduces the distortion on high-energy subbands.

• Give bits first to the subband where the potential gain in
NMR is the most important [16]. This solution gives the
lowest global NMR over all subbands.

C. Quantization and Coding in the MPEG-AAC

A simplified synopsis of an MPEG AAC codec is presented in
Fig. 1. The audio signal is transformed to a frequency domain by
a 50% overlap modified discrete cosine transform (MDCT) [21].
The effective signal compression is realized in the quantization
module. The quantization parameter, called scale-factor, can be
set independently for each subband. The final bit-stream is ob-
tained through a lossless coding module (Huffman coding). The
decoder has a dual structure. The decoder modules are defined
in the MPEG standard to provide full-compatibility between
coders and decoders. The coder also requires control modules
that are not defined in the MPEG standard in order to allow
for future advances in technology that will improve the coding
efficiency while remaining compatible. These control modules
are the psychoacoustic model and the optimization algorithm.
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Fig. 1. Synopsis of an MPEG AAC codec.

Based on the psychoacoustic module, the optimization algo-
rithm tunes the quantization parameters by setting scale-factors,
the value of which determines the quantization error and the bit
rate.

In the coder, the quantization module generates the quanti-
zation indexes , corresponding to the spectral coefficients

. The MPEG standard defines the decoding function as

(8)

To simplify notations, we note when is not
an integer. is a scaling parameter, depending on the integer
scale-factor

(9)

The decoding function (8) can be split into a subband dependent
compression function

(10)

and a very simple subband independent decoding function
whose reconstruction values are signed integers. The corre-
sponding quantizer is called the rounding function. The
quantization process can thus be written as

(11)

where is not explicitly defined in the standard. The choice of
this function is discussed in Section III-A.

Scale-factors are coded through a single differential
Huffman codebook, while quantization indexes are coded
with a set of 12 Huffman codebooks. For a given dynamic
range of quantization indexes, either one or two codebooks
are possible. The choice is not normalized, and can be made
independently for each subband. is the number of bits used
for coding the set of scale-factors. The total number of bits
required for coding the current MDCT spectra is

(12)

We can see that this expression is not separable along subbands.
However, does not vary much with the scale-factor values

. From now on, to simplify the coding problem, we consider
that is a constant in the optimization.

D. Standard Optimization Algorithm for the MPEG-AAC

In an MPEG-AAC coder, no direct form is available a priori
for the relation between the error level and the number of
coding bits in each subband. Only a parametric expression
is available:

• The distortion function relates the scale-factor to the
error level , through the quantization stage.

• The rate function relates the scaling parameter to the
number of coding bits , through the lossless coding
module.

Then, all the classical bit-allocation strategies previously de-
scribed do not strictly apply in this case. The standard algo-
rithm seeks a suboptimal solution with a two-nested-loop itera-
tive procedure and a local decoder. The inner-loop changes the
scale-factor value, independently over frequency subbands, in
order to meet the masking constraint (5). The outer-loop per-
forms a global translation of the scale-factor values to meet
the total bit-rate constraint. To guarantee the convergence, the
scale-factor step is decreased at each iteration.

E. Basics for a New Algorithm

We propose a new way to solve the coding problem in the
MPEG AAC coder, the motivation for which is as follows: if it
were possible to invert the distortion function, this would result
in a direct relationship between and (as with a uni-
form scalar quantizer). Thus, an optimization technique, similar
to a single-loop iterative bit-allocation process, could be used.

Inverting the distortion function does not seem to be fea-
sible. Therefore, we use the following procedure: given an error
threshold , we search for the scale-factor value that
minimizes under the distortion constraint

(13)

This so-called secondary optimization problem can be quickly
solved thanks to an accurate quantization noise model applied
in each subband.

Thus, a solution to the main coding problem can be reached
with the following algorithm: is initialized at the masking
threshold . The secondary problem is solved indepen-
dently over each subband . If the resulting bit rate (see (12))
is greater than , the thresholds are increased and so
on until .
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The global optimization is now separated into two distinct
steps: 1) a perceptual model provides the set of iso-quality error
thresholds among subbands and 2) given these thresholds, a
quantization error model provides the scale-factors resulting in
the smallest bit rate.

This procedure relies more on the auditory model than
the standard one: given an arbitrary noise level (similar to a
“masking” constraint), the quantization error model provides the
scale-factors which meet the masking constraint with the lowest
bit rate. Thus, the task of finding the adequate thresholds so that
the perceptual quality is maximized is left to a perceptual model.

III. SUBBAND MODEL OF THE QUANTIZATION NOISE

In this section, we look for simple solutions to the secondary
coding problem: can we find scale-factor values , (or equiva-
lently scaling parameter values ), that minimize under the
distortion constraint (13)? Assuming that is a constant in (12),
this problem can be solved subband by subband by minimizing

.Weomit thesubband index in the remainder of this section.

A. Setting the Rounding Function

A rounding function has to be defined to achieve the exact
expression of . The MPEG standard [12] proposes

(14)

Inside each subband, the optimal quantizer should minimize the
NMR, i.e., minimize . This criterion is equivalent to the
minimum mean square error (MMSE) criterion, and the problem
can be solved by a Lloyd-Max procedure [22].

We note and respectively as the -th
quantization intervals of quantizers and . The corre-
sponding reconstruction points are respectively and .
According to (8), we have

(15)

The limits of quantization intervals are related through the com-
pression function defined by (10)

(16)

If the reconstruction values are set, the MMSE of quantizer
is obtained when the nearest neighbor condition is verified [23]

(17)

The optimum quantization intervals for are then

(18)

We can note that

• and . The optimal
quantizer and the one proposed in the MPEG document
have the same central interval;

• when . In high resolution, the
optimal quantizer behaves like the “Round” function.

We now assume that the basic quantizer is the one defined
by (18).

B. Deterministic Approach

A first approach consists of choosing the quantization param-
eters in such a way that the error level never exceeds the given
threshold, for any subband and any time-window, on any audio
signal. When the error threshold equals the masking threshold,
if the masking threshold were an absolute measure, this con-
straint would be the transparency limit.

The exact expression of the quantization error is obtained by
combining (8), (11), and (2)

(19)

and the distortion is obtained with (3). Solving inequality (13)
in a formal way given only (19) is almost impossible. How-
ever, under a high-resolution hypothesis, a simplification can be
found. We note as the error introduced by quantizer .
We have

(20)

When works in high-resolution mode, it can be reasonably
assumed that

With a first-order development around zero, we obtain the
asymptotic expression of :

(21)

and the asymptotic expression of the distortion

(22)

In high resolution, the optimal quantizer is equivalent to the
“Round” function, which means . This leads to
an over-estimation of the distortion

(23)

Then, a sufficient condition for the distortion constraint to be
true is

(24)

Fig. 2 represents the exact value of and the over-estima-
tion function for different values of , with a real signal over
an 8-coefficient subband. Fig. 3 represents the corresponding
values of . is a globally increasing function of , and a
decreasing function. Thus, a suboptimal solution to the problem
is the highest value of which verifies condition (24), i.e.,

(25)
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Fig. 2. Example of the distortion function.

Fig. 3. Example of the rate function, corresponding to the distortion function
shown in Fig. 2.

We compare this solution to the optimum (reached with an
exhaustive search) in terms of bit rate. We take 300 long win-
dows of audio signal “d” (see Table I), for and ,
and for different values of the error threshold , set by the SNR
defined by

(26)

This solution meets the distortion constraint but, as we can see
in Fig. 7, it requires a much higher number of coding bits than
the optimum.

This is due to the fact that we set the scale-factors in such
a way that the upper bound on the quantization noise, for any
signal, is smaller than the masking threshold. Even if this upper
bound is attainable, such requirements seem unrealistic in prac-
tical situations.

C. Statistical Approach

In what follows, we propose another solution, which solves a
more realistic problem by relaxing the distortion constraint: we

now allow the quantization noise level to exceed the threshold
for a given percentage of the time.

1) Statistical Distortion Constraint: In this new situation,
is a random variable. A confidence interval criterion has pre-

viously been introduced by L. Karray et al. for image coding
[24]. We adapt this criterion to our problem and replace con-
straint (13) by

(27)

where is a confidence parameter. It means that we
allow the distortion to exceed the threshold, but we control the
probability of such occurrences.

2) The Gaussian Model: , , are now
random variables. The probability density function (pdf) of

must be known to solve inequality (27). Its exact expres-
sion would be far too complex, so we chose a simple model.
Equation (3) shows that, if are independent and equally
distributed and if is large enough,
according to the Central-Limit theorem [25], will follow a
Gaussian law

(28)

with

(29)

We note as the variance of . The distortion constraint
(27) is equivalent to

(30)

with

(31)

is the inverse standard error function (see [26, Sec. 26.2]
for details). Equation (28) leads to

(32)

We have also considered a nonasymptotic model using a
Gamma-law. This finer model is equivalent to the Gaussian one
on large subbands. We expected similar performances on large
subbands and an improvement on narrow subbands. However,
we observed no significant improvement, and we finally chose
to present only the Gaussian model.

3) High-Resolution Solution: Under the Gaussian assump-
tion, we only need to estimate the first and second moments
of quantization error . Under a high resolution hypothesis,
we assume that and are independent variables [27]. The
asymptotic expression (21) leads to

(33)

When the quantizer works in high-resolution mode, can
be modeled by a uniform random variable on
[27]. Then, we have

(34)
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TABLE I
AUDIO MATERIAL FOR THE VALIDATION OF THE MODEL

Fig. 4. Gaussian model and histograms of the error level over 300 long windows of signal “d”. P is normalized to 90 dB. SNR = 18 dB.

and

(35)

with

(36)

(37)

Equation (32) can now be written as

(38)

Fig. 4 shows histograms of (for and ) over
300 long windows of signal “d”. was normalized to 90 dB,
and the scale-factor value is 52, which corresponds to a 18-dB
SNR. Our model seems to fit the data accurately, even on the
narrow subband .

Finally, we obtain an explicit expression of the distortion con-
straint (30) for large values of in high-resolution mode

(39)

As the rate function is globally decreasing (see Section III-B),
a suboptimal solution of the secondary coding problem is

(40)

To evaluate this solution, we quantize each audio signal from
the material provided in Table I, with a scaling parameter deter-
mined according to (40) (for details of implementation, see Sec-
tion IV-B) and estimate for different values of

. This is called the threshold verification level (TVL). Fig. 5
represents the TVL for and . The error threshold
for each subband is still set by the specification of the SNR.
First, we can observe that the distortion constraint (27) is al-
ways met, which confirms that our solution is valid. Second,
the TVL increases as the SNR decreases, which means that this
solution resembles the deterministic over-estimation in low res-
olution conditions. Unfortunately, this procedure would also re-
sult in a bit-rate waste for low SNR values (the percentage of
time when the error level exceeds the given threshold is overes-
timated). This is attributed to the use of a high-resolution model.

4) Improved Solution: The previous solution was based on
high resolution approximations to obtain analytic expressions
of . Now, we reject this hypothesis, but still keep the
Gaussian model. The exact expression of is given by (19).
A priori, depends on and on the PDF of MDCT
coefficients . We assume that follows a centered law
(not necessarily Gaussian) of variance . The corresponding
normalized variable (of variance 1) verifies .
Thus, if we note

(41)

we have

(42)



1334 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 14, NO. 4, JULY 2006

Fig. 5. Threshold verification level for different values of SNR, measured on 2400 long windows (300 windows for each signal).

with

(43)

This expression is similar to (19). It means that only the quanti-
zation error , obtained with a normalized signal , has to be
studied. According to (29), (32), and (42), the moments of are

(44)

Then, the distortion constraint (30) is equivalent to

(45)

A suboptimal solution is the highest value of which veri-
fies inequality (45). Finding this solution requires that and

can be evaluated as functions of . Since a general ana-
lytic expression is difficult to find, we measure these moments
on a corpus made with real audio signals. We split the audio ma-
terial described in Table I in two parts: the first one, composed of
audio signals from “a” to “d”, is used for measures (see Fig. 6).
An iterative process, describing the measurement curves, is used
to seek the suboptimal solution (see Section IV-B).

The second part, composed of audio signals from “e” to “h”,
is used for verifications. The protocol is similar to the one used
for the high-resolution solution. We can see in Fig. 5 that the
TVL is significantly more precise at low SNR on the large sub-
band. This result is consistent with our hypothesis: we rejected
the high-resolution approximation, but we kept the Gaussian
asymptotic model .

D. Bit-Rate Evaluation

In previous sections, we have proposed three simple subop-
timal solutions to the second coding problem. Now, we evaluate
how far these solutions are from the optimal one, in terms of bit
rate.

We still consider a single subband , and measure the required
number of coding bits . The optimal solution is obtained

Fig. 6. [~" ] and [~" ] as a function of ~A, measured over 1200 long windows
(300 windows for each signal from “a” to “d”).

with an exhaustive search. This technique gives a bit-rate ref-
erence, but cannot be used for coding as it is extremely slow.
Fig. 7 shows the results for and , and .

We can conclude the following.

1) The deterministic solution generates a greater bit rate than
the others, especially at low SNR.

2) The high-resolution statistical model reduces the bit rate
significantly. This effect is greater on large subbands.

3) The improved statistical model reduces the bit rate at low
SNR.

It appears that both statistical models are better than the deter-
ministic solution.

Setting the parameter is a tradeoff between the TVL and
the bit rate. It also denotes the confidence we have in the au-
ditory model. The better tradeoff for solving the second coding
problem, as defined in Section II-E, seems to be reached with a
high confidence parameter, typically . This value will
be used in Section IV. If the algorithmic complexity is critical,
the high-resolution approximation is better. If not, the improved
solution can be used.



DERRIEN et al.: NEW QUANTIZATION OPTIMIZATION ALGORITHM FOR THE MPEG ADVANCED AUDIO CODER 1335

Fig. 7. Bit rate as a function of the SNR, measured on 2400 long windows (300 windows for each signal). �b = (b � b )=b . b is the absolute optimal
bit rate, i.e., the minimum bit rate under a strict distortion constraint.

IV. DESCRIPTION OF THE ALLOCATION ALGORITHM

We have described a subband model for the quantization
noise. Given an error threshold , we can find the sub-
band parameter , hence the scale-factor value , that
minimizes the number of coding bits under a distortion
constraint (13).

This section now considers the main coding problem, and
aims at minimizing the perceived distortion under a bit-rate con-
straint. Our model performs a spectral noise shaping by set-
ting the error threshold for each subband. Then, the op-
timum solution to the main coding problem can be reached with
a single-loop iterative process as described in Section II-E. The
progressive degradation of the perceived distortion level (i.e.,
the calculation of the error thresholds ) will be discussed
in the next section.

A. Progressive Degradation of the Perceived Distortion

For a given wide-band MDCT spectrum and a set of
masking thresholds , computed by the psychoacoustic
model, we look for a set of iso-quality distortion thresholds

for which the perceived distortion increases with index
. This problem is similar to the one treated in many bit-allo-

cation algorithms and the same techniques should apply here.
The solution we propose is based on a combination of several
popular techniques: constant NMR for high SNR (first phase),
water-filling for medium to low SNR (second phase), with a pro-
tection factor to avoid large distortion levels at low frequencies.
And finally, a constant SNR degradation for very low SNR (third
phase).

On masked subbands, the signal is irrelevant because it is
imperceptible to the listener and therefore does not have to be
coded . We set

(46)

where is defined in (1). Over unmasked subbands (i.e.,
when ), should satisfy

(47)

From now on, we assume that all variables are in dB. For un-
masked subbands, we first determine a protection threshold:

TABLE II
PROTECTION FACTOR FOR A 48-kHz SAMPLE RATE

. depends on the window size and on
the sampling frequency (see Table II). The initialization is made
with: .

Each threshold is obtained from , with three
different rules, depending on .

• First phase, until

• Second phase, until for at least one sub-
band

• Third phase

with . and are step constants set,
respectively, to 1 and 0.25 dB.

B. Implementation of the Subband Model

The moments of MDCT coefficients are measured with
the following classical estimator:

(48)
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and the nearest integer scale-factor value is obtained from the
scaling parameter value with

(49)

To implement the improved statistical solution, and
have to be measured as a function of on test signals of unity
variance, and stored. As we can see in Fig. 6, these functions are
regular so only a small number of points have to be measured
(we took 40 points). The intermediate values are obtained with a
log-linear interpolation. We can also notice that the exact values
of and are always lower than their high-resolution
approximations. This means that the suboptimal value of the
scaling parameter is greater than the one obtained with the
high-resolution model, and quite close to it.

As a result, our iterative algorithm is summarized as follows.

1) Initialize at the high-resolution value defined by (40)
and obtain the normalized scaling parameter:

2) Interpolate and .
3) Estimate the left part of the distortion constraint (45). In-

crease and iterate steps 2 and 3 until

If the step size for is small enough (we chose 0.5 dB), the
previous value is close to the suboptimal solution. We finally get
the nearest scale-factor value with

(50)

As the initialization value is close to the optimal, this search
requires very few iterations.

V. PERFORMANCE EVALUATION

The four main performance criteria for an audio coder, ac-
cording to N. Jayant [1], are: signal quality, efficiency (bit rate),
complexity (computation time) and delay. The delay is fixed by
the MPEG standard and the bit rate depends on the application.
For a monophonic signal, we consider a 64 kbits/s bit rate, which
should generate near perfect quality or perceptible, but not an-
noying, degradations for some signals, and a 48 kbits/s bit rate
for subjective evaluations, which should generate slightly an-
noying degradations for some signals.

To simplify the evaluation procedures, we evaluated signal
quality and complexity for the standard algorithm and only one
of our two model-based algorithms. We chose to implement the
one based on the high-resolution statistical model, as it seems to
provide a good trade-off between complexity and signal quality.

Both optimization algorithms (standard and model-based) are
used in the same AAC main profile codec. The sample rate
is 48 kHz. The psychoacoustic model is the one proposed in
the MPEG standard. The MDCT window is derived from the
Kaiser-Bessel function. The switch between long and short win-
dows is enabled.

TABLE III
ITU-R FIVE POINT IMPAIRMENT SCALE

A. Signal Quality

The signal quality can be assessed using objective quality
measures (see [28] for a selection of six different methods).
However, as mentioned in [29], the ultimate test of any audio
product is the human listener. A number of subjective test
methods have been proposed, amongst which a few have led to
ITU recommendations [30]–[32]. In this work, we refer largely
to the ITU recommendation BS.1116 [31], which is especially
designed for subjective assessment of small impairments in
audio systems. The subjective evaluation was carried out at a
bit rate of 48 kbits/s since near transparent quality is obtained
for both codecs at 64 kbits/s or higher bit rates.

1) Test Procedure: The test followed the common “triple
stimulus/hidden reference/double blind” approach. This method
consists of presenting three versions of an audio signal: “Refer-
ence”, “A” and “B”, where “Reference” is the reference signal
(unprocessed), and where one of the other two versions is a
hidden reference (unprocessed)—for example “A”—and the
other is the coded version—for example “B”. For each trial, the
hidden reference (“A” or “B”) is randomly chosen. The sub-
ject is free to listen to each signal as many times as necessary.
Then, the quality of the signals “A” and “B” are assessed using a
nearly continuous grading scale (steps of 0.1) between 1.0 (very
annoying impairment) and 5.0 (imperceptible impairment), see
Table III. Since the listener knows in advance that either “A”
or “B” is a hidden reference, at least one grade of 5.0 must
be given. Each subject carried out the test individually over a
single session. The average duration of a session was 25 min.
As advised in [29], listeners are strongly encouraged to guess
which signal is the hidden reference even if the impairment is
imperceptible (a typical grade of 4.8 or 4.9 is then given in this
case). The tests were conducted in a quiet environment using
high-quality headphones (Sennheiser eh2270).

2) Test Material: It is widely acknowledged that critical
audio test items should be chosen in order to reveal differences
among systems. Critical audio material refers to audio excerpts
that stress the systems under test. In our case, the selection was
done by choosing a subset of excerpts where audio impairments
of both coding schemes were the most audible and by favoring
the widest variety of musical content and style. All excerpts
are monophonic and were played at a sample rate of 48 kHz.
Table IV gives the list of the selected test material.

3) Listeners: A total of 16 subjects participated to the lis-
tening test. All subjects were familiar with audio systems and
two of them were familiar with audio coding evaluation. It is im-
portant to note that the authors directly involved in the coder op-
timization were not included in the test. All subjects underwent a
training phase which allowed them to become more experienced
listeners in identifying coding artefacts. This training phase was
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TABLE IV
AUDIO MATERIAL FOR SUBJECTIVE EVALUATION. ITEMS 2, 5, AND 7–10 ARE EXTRACTED FROM RWC DATABASE [35]

Fig. 8. (Left) Mean diffgrade results over all reliable listeners for each item. (Right) Mean diffgrade results over all listeners and all items for each codec (circles
correspond to the new algorithm and squares to the standard codec).

Fig. 9. Mean execution time necessary for coding one time-window, for the audio material provided in Table IV and for bit rates of 64 and 48 kbits/s. The modified
bit-allocation procedure uses the high-resolution model-based algorithm.

always guided by a test supervisor. A post-screening of all lis-
teners was carried out to only keep “reliable” listeners. More
precisely, this post-screening meant excluding all listeners who
failed to recognize the hidden reference in a significant way,
i.e., those listeners who gave a grade below 4.5 to at least one
hidden reference. After the post-screening stage, ten listeners
were judged reliable.

4) Results: The results of the subjective test for the ten re-
liable subjects are given in Fig. 8. Similarly to [33], the results
are given as “diffgrades”, which means the grades awarded to

the coded version minus the grades awarded to the hidden ref-
erence. For example, an impairment grade of 3.0 awarded to
the coded version results in a diffgrade of 2.0. Fig. 8 displays
the results as mean scores with 95% confidence interval which
are determined as follows [34]: first, for each codec , the mean
score for each item , is given by

(51)
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where is the number of subjects and is the diffgrade
scores given by subject . The overall mean scores are then the
mean of the values. The 95% confidence intervals are com-
puted as

(52)

where is the standard deviation of the scores over all
subjects.

From these results, it can be clearly seen that our proposed al-
gorithm provides a significantly better quality for all but two test
items, for which the diffgrade scores of both codecs are within
the 95% confidence intervals. On average (right of Fig. 8), the
proposed codec significantly surpasses the standard codec.

B. Complexity

To evaluate the complexity, we measured the mean computa-
tion time necessary for coding one time-window, for the mate-
rial provided in Table IV and for bit rates of 64 and 48 kbits/s.

We characterized both the computation time of the optimiza-
tion algorithm and the total computation time. We precise that
the implementation was made on a MATLAB 6 platform, and
that we did not use a fast scheme (FFT based) for the imple-
mentation of the filter-bank (MDCT). Thus, the results might
slightly differ with a compiled coder (for example from a source
code in C), and the total computation time would be lower with
a fast MDCT scheme. The results are presented in Fig. 9: bar
lengths give the execution time of the entire coding process.
The white part represents the execution time of the standard al-
gorithm and the grey part the execution time of the high-res-
olution model-based algorithm. The black part represents the
remaining computation time (window-switching, MDCT and
psycho-acoustic model), which is common to both implemen-
tations.

From these results, we can conclude the following.

1) With the standard algorithm, the optimization and quan-
tization module takes 48% of the computation time at 48
kbits/s and 44% at 64 kbits/s, which fits the predicted re-
sults (see Section I).

2) For the optimization and quantization module alone, the
computation time is reduced by 38% at 48 kbits/s and 56%
at 64 kbits/s with our algorithm.

3) For the whole coding process, the computation time is
reduced by 20% at 48 kbits/s and 31% at 64 kbits/s.

VI. CONCLUSION

This paper proposes a slight change in perspective towards
high-quality audio coding: classically, the masking threshold is
assumed to define transparency, and lower quality encoded sig-
nals are obtained by reference to this transparency threshold. As
a result, the control of the actual quantization error level in all
subbands is usually quite loose for these lower quality signals.
In our approach, we first begin by defining as precisely as pos-
sible an error threshold providing the required quality. Then, the
quantization stage is tuned in such a way that the corresponding
distortion constraint is met with a specific criterion: the error
threshold should not be exceeded by more than a percentage of

time . This percentage is introduced because, as expected, the
threshold is not an absolute value, but is rather loosely defined.
Parameter thus represents the confidence we have in the per-
ceptual model. Clearly, the perceptual model used in this paper
for obtaining iso-quality masking profiles is very simple, and
can be improved.

It appears that our new algorithm is more efficient than the
standard one proposed in the MPEG standard: according to a
normalized subjective listening test, our coding algorithm in-
creases the signal quality, while the computation time is signif-
icantly reduced.

In the long term, the main advantage of our optimization
scheme is its flexibility toward psychoacoustics: our models for
the quantization noise can be used with many models of per-
ceived quality degradation. Then, improved perceptual models
should directly result in improved coding efficiency.
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