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ABSTRACT

Video is now one of the major sources of information for fcuies.
However, video documents can be originating from variogend-
ing devices (CCTV, mobile devices, etc.) with inconsistguality
and can sometimes be recorded in challenging light or mation
ditions. Therefore, the amount of information that can biasted
relying solely on video image can vary to a great extent. Mbghe
videos however generally include audio recording as welicMne
listening can then become a valuable complement to videgéma
analysis in challenging scenarios. In this paper, the asth@sent a
brief overview of some machine listening techniques anit #ppli-
cation to the analysis of video documents for forensics. djyai-
cability of these techniques to forensics problems is thisougsed
in the light of machine listening system performances.

Index Terms— Machine listening, source localisation, event
detection, speaker identification, acoustic scene asalgstomatic
speech recognition

1. INTRODUCTION

Video has recently become an increasingly important resofor
forensics. Video captured by CCTV systems or video recofided
mobile devices (and possibly shared on multimedia plat§)roan
provide essential clues in solving criminal cases. For gptarwhen
considering an investigation about a missing person, viitsu-
ments can help to localise the missing person or a suspeeidprg
crucial information about their whereabouts. The analgéigdeos
linked with a missing person or her/his social network cao &lelp
to understand the conditions of the disappearance (wasidra-
ping, a runaway, etc.) and largely influence the investigati

techniques for video analysis applications. The main targee to
briefly present a few machine listening techniques, to exglaw
they can extract information that is complementary to tHerma-
tion extracted with video analysis techniques and to dsbasv the
state-of-the-art approaches for machine listening carlesant for
forensics applications.

The paper is organised as follows. Section 2 introduces a few
machine listening techniques: ASC, AED, acoustic sourcalisa-
tion, speaker identification and ASR, and present theirmizieap-
plications to the analysis of video documents for forensRasults
recently obtained by the authors on ASC and speaker idettdit
are recalled in Section 3 as an illustration of machine tisig per-
formance on selected tasks. The application of machireniisg to
video analysis in forensics in the light of the performantstate-
of-the-art machine listening systems is discussed in @&eetiand
conclusions are exposed in Section 5.

2. MACHINE LISTENING TECHNIQUES FOR VIDEO
ANALYSIS

2.1. Acoustic scene classification
2.1.1. Description

ASC is the task of identifying in which acoustic environmenge-
guence was recorded based only on the audio signal (indatioar,
street, train station, restaurant, office, etc.). The egefor ASC has
been increasing in the last few years and is becoming an anor
challenge in the machine listening community [1]. ASC hagdv
ety of real life applications such as robotic navigationdRlorensics
[3]. Whilst many context aware devices only use visual infation
to adapt to their current location, complementary infoioratan be

However important they might be, video documents are generdiven by analysing the surrounding audio environment. Magmds

ally recorded with various devices of unequal quality, imditions
that are often sub-optimal and with people or objects paiyt
masking the subject of interest. In such cases, the desiferdia-
tion might be difficult to retrieve based on visual contentyoryet
most videos are recorded with audio and machine listenindbeaa
valuable complement to video analysis in challenging sées.a
Machine listening is a discipline at the interface of audip s
nal processing and machine learning that aims at autorligtica
analysing and classifying audio recordings. Machine tistg can
include techniques relying purely on acoustic content sigcacous-
tic scene classification (ASC), acoustic event detectioB¥Aor
acoustic source localisation. It can also encompass to some
tent speech analysis techniques such as speaker ideitificatd
automatic speech recognition (ASR). This paper intendsetab
general introduction to machine listening as a set of complgary

This work was partly funded by the European Union under th&-FP
LASIE project (grant 607480).

in ASC are to use various methods from speech recognitionente
classification methods [4, 5, 6] or to use hand-crafted featde-
signed to characterize acoustic environments [7, 8, 9]. &dently
proposed to learn features for ASC in an unsupervised matiner
rectly from time-frequency images and compared the petdioca
of different approaches to learn these features [10].

2.1.2. Application on audio-visual recordings

Classifying video documents based on the type of scene wtheye
were recorded is an essential step to perform video indexiag
properly indexed video database will allow faster inforimatre-
trieval for forensics application on large scale data. Sones the
visual information present in a video document may not beceift
(recording angle is too narrow and centred, for example, person
not on the surrounding) or might not be usable (poor lightidtions,
camera moving too fast) to perform accurate scene recognitn
such challenging cases, the audio recorded by the devida iméga



valuable complement to the video image analysis. ASC tHewsl
to identify the type of scene where the video has been redadd
to index the video accordingly.

2.2. Acoustic event detection
2.2.1. Description

The target of AED is to detect specific events that occur inuatica
recording and to identify the class of these events. Thets\ane
localised in time so the problem can be considered as twofigd
tect the correct timing and the correct class. The AED hagiatya
of applications [11, 12] and can be strongly affected by yipe tof
environment considered. For example indoor environmesitsfa
fices [13] are usually considered as less challenging thagoou
real-life environments [14].

Event detection systems generally use standard acousticés
in a pattern recognition framework. Two different appreestex-
ist. In a first approach, the events are detected indepdypdeit
their class and are classified afterwards. The classifiardbes not

need to model time dependencies and can be for example a Gal

sian mixture model (GMM) [15, 16]. In an alternative apptoac
detection and classification are performed jointly. Thesiféer then

has to model time dependencies and a hidden Markov model (HMM.

based classifier is commonly used [17, 18]. Recent appredmsed
on wavelets [19], bag of aural words [20] or Gabor filter-b&e-
tures [21] have allowed to reach higher performance.

2.2.2. Application on audio-visual recordings

An investigator looking for a video in a large dataset may wan
retrieve information not only based on the type of scene wiiee
video was recorded but also, at a finer granularity levektas spe-
cific events that occurred during the recording. These sv@uich
as whistle blowing, glass smashing, gunshot, cry, etc.)Joaadised
in time but they are often also localised in space. This méaais
the chances are high that they will not clearly appear in ibdeos
document. AED then allows to detect these events even if doey
not appear visually or to confirm that an event that was ontiadly
visible actually occurred.

In addition, the detection of specific events can help to canfi
(or deny) the fact that a video was recorded in a particulansc
Some events are indeed representative of particular stemesam-
ple train noise in all probability indicates the scene tgilese in a
train station or plates and cutlery noises indicate thees¢eproba-
bly taking place in a restaurant. On the other hand, some®eea
unlikely to happen in particular scenes. AED can then helpking
anomalies to detect abnormal events (gunshots, crowd,pnig or
to identify a recording scene where information has volyntgeen
concealed. This is the case, for example, when a kidnappesse
ransom video recorded from inside a building but a church doel
a train passing nearby can be heard during the video. Thesdfp
information that is not present visually can help to loaalise place
where the video was recorded.

2.3. Acoustic source localisation

2.3.1. Description

The target in acoustic source localisation is to estimatesitatial
position of one or several sources that are present in thestico
scene recorded. There are two main classes of techniquesus-a
tic source localisation. The so-called "direct techni¢sm at es-

timating the direction of arrival (DOA) of a sound [22, 23,]24n
intuitive way to estimate the DOA of a sound is to steer a beam-
former at different potential directions and compare trsulits to

the target signal to localise. In the second category ofriiectes

the source localisation is estimated by proxy through time tdif-
ference of arrival (TDOA) of a sound at several microphomeari
array with known geometry [25, 26]. Based on models aboutg:co
tic propagation, these TDOA then allow one to estimate thecso
localisation.

2.3.2. Application on audio-visual recordings

When several recordings from different spatial points ia ame
scene are available it is possible to consider localisimcasources
spatially. This approach is used, for example, in gunfireatoc
systems. Acoustic source localisation can help to locaiperson
speaking in a scene. If the face of the person is not cleasiplei
on the video, it might be difficult to localise a speaker omtynfi vi-
sual information. In this case machine listening provideslaable
l5:Qmplement to video analysis. Acoustic source localisatem also
aliow one to localise specific events and by proxy to refinddbal-
isation of a person that was near a particular event wherpjideed
but that is not present visually in the video document (oeast not
in a way that allows for identification).

2.4. Speaker identification
2.4.1. Description

The main target of speaker identification is to assert wheihaot
the speaker of a test segment is known and if he/she is knawn, t
find his/her identity [27]. Applications of speaker idertiftion are
numerous, among which speaker dependent automatic spes: r
nition and subject identification based on biometric infation. The
sentence pronounced by the subject is not necessarily kandithe
recordings can be of variable quality. The speaker ideatifia then
becomes a highly challenging problem.

Since their emergence almost five years ago, the I-vect8is [2
have become the state-of-the-art approach for speaketifidan
tion [29]. A typical speaker identification system is compaf
I-vector extraction, normalisation [30] and classificatigith prob-
abilistic linear discriminant analysis (PLDA) [31]. Redestudies
have shown that approaches such as nonnegative matrixifacto
sation (NMF) [32] can be successfully applied to retrieveaer
identity [33, 34]. Capitalising on these promising resuite have
recently presented an approach deriving from the group-NB&f
that intends to account for speaker variability and recaydies-
sion variability by imposing constraints relatively to thgeakers or
recording sessions [36].

2.4.2. Application on audio-visual recordings

The identification of the persons present in a video is ofteruaial
aspect of video analysis for forensics. It can be useful &mtidy
suspects, offenders, potential victims, hostages or nggsérsons.
The problem is that the face of the persons involved in therdieg
cannot always be recognised visually. The poor quality oide,
the masking of the faces (intentionally or not) or simply fhet that
the person of interest is the one recording the video arewsrb-
stacles to face recognition. When the persons involvedervitieo
are speaking, speaker identification can help to confirmdaastity

of a person when the face recognition confidence is too lone Th



joint analysis of video and audio can allow one to performiviiad Method F1-score
ual identification with higher accuracy. Speaker identtfaa can Previous state-of-the-art [48] 92.8%
also provide indication about the identity of a person whizse Method F1-score| Method F1-score
is concealed or who is not present visually in the video bubseh PCA 89.9% | NMF 90.7%
speech has been recorded. Sparse PCA| 90.0 Sparse NMF 94.1%
Kernel PCA| 95.6% | Kernel NMF 84.1%
Convolutive NMF | 94.5%

2.5. Automatic speech recognition
Table 1. Weighted F1-scores obtained for a classification with imult

2.5.1. Description nomial logistic regression [10].

The role of ASR is, given an audio recording, to automatycptb-
vide a transcription of what is said in the recording. Higtalty
ASR systems used acoustic models based on HMM which appeared
as a natural model for the sequential nature of speech. Tiesiem
probabilities of the HMM were then modelled from the acauta-
ture vectors using GMM.

Recent advances in terms of training algorithms [37, 38] and
computing power have lead to the generalisation of the usieep 31.2 Results
neural networks (DNN) acoustic modelling and they are nowv th = ="
norm is ASR [39]. Consequently, the accuracy of the ASR syste In our recent paper [10] different popular matrix factotisa tech-
have reached a point that makes them a credible technolobg to niques are compared when used to perform unsupervisedrdeatu
used in mass market products [40, 41] and possibly in focereg)-  learning for acoustic scene classification. Experimentspane

NMF
70.7%

I-vector
76.1%

Features
F1-score

Group-NMF
80.2%

Table 2. Weighted F1-scores obtained for a classification with imult
nomial logistic regression [36].

plications. Two different paradigms compete for DNN-baaedus-
tic modelling. In the first paradigm DNN are used to extrastdim-
inative features that are to be used as input to the ASR [42]T4&

idea behind the second paradigm is to use DNN to extract picone
units from audio. The sequences of phonetic units that campo

words are then modelled with HMM [39, 44].

2.5.2. Application on audio-video recordings

Speech is a structured and explicitly informative mean oficm-

nication. Speech in video can therefore carry a tremendoasiat
of information that can be difficult to recover relying only @i-

sual content. Depending on the quality of the recording aedar-
get application, ASR can allow to extract keywords from arded
conversation or even in the best case to obtain its full mapison.

Based on that information, it is possible to refine a summéathe
video and to consider semantic indexing of video documeased
on a set of selected keywords.

3. PERFORMANCE FOR SELECTED TASKS

To illustrate the performance that can be achieved on typieahine
listening tasks, results recently obtained on ASC [10] guebker
identification [36] are reminded here. In both cases theimolnial
logistic regression is used for classification and F1-spBgis used
as evaluation metric.

3.1. Acoustic scene classification
3.1.1. Evaluation corpus

The acoustic scene classification was evaluated on the IRBLEN
data set [46]. It contains 25h of urban audio scenes recaxitach
smart-phone, split into 3026 examples of 30s without opeftam-
ing 19 different classes. Each class corresponds to a splecidition
such adn a train station in an air-planeor at the market The ex-
periment protocol is the same as defined in Bedail.[10].

the use of extensions of the regular principal componenlysisa
(PCA) [47] and NMF [32] such as sparsity, kernels and convolu
tion. The classification scores are presented in Table 1 how s
that these different variants of matrix factorization detently im-
prove the results over the standard approaches. The aumlamage

to outperform the previous state of the art results on thel&IT
Rouen dataset [48] with Sparse NMF (94.1% F1-score), Kernel
PCA (94.3% F1-score) and convolutive NMF (94.5% F1-score).

3.2. Speaker identification
3.2.1. Evaluation corpus

The speaker identification is evaluated on a subset of th&eREDr-
pus. ESTER is a corpus for automatic speech recognition oseatp
of data recorded on broadcast radio [49]. The subset of ESJEER
for evaluation is composed of 6 hours and 11 minutes of tngini
data and 3 hours 40 minutes of test data both distributed grébn
speakers. The amount of training data per speaker rangas1foo
seconds to 6 minutes [36].

3.2.2. Results

In our recent paper [36] a state-of-the-art I-vector bagsehker
identification system is trained on the subset of ESTER whith t
LIUM speaker diarisation toolkit [50]. Its performance isnepared

to NMF-based systems: standard NMF and group-NMF. The sys-
tems parameters and evaluation protocol are similar toethies
scribed in Serizekt al. [36]. Fl-scores are presented in Table 2.
Variations in identification performance are validatechgsihe Mc-
Nemar test [51]. The first remark is that all systems perfoear r
sonably well even if standard NMF is clearly behind the other
proachesg < .001). The group-NMF, by imposing constraints on
both the speaker bases and the session bases, improvéisaiglyi
the performance compared to the I-vector approach (01).

4. DISCUSSION

Performances presented in this paper are obtained on eorpor
recorded in very specific conditions. Tests in real-life ditions



are difficult to set up and time consuming. It is therefore am@nt

to understand how these experiments can provide indicatibout
the applicability of machine listening techniques in rifa-video

analysis for forensics. We consider here two main categarfe
recording devices: CCTV with audio and mobile devices (ideig

smart-phones, tablets, cameras, etc.).

formation about the scene that was captured by the recoddivige.
To illustrate the performance of state-of-the art systeamsachine
listening the performance recently obtained for selectadhime lis-
tening tasks were presented. In the light of this perforreaiiap-
pears that CCTV with audio could benefit from techniques agh
AED and source localisation whereas ASC, speaker ideritdita

ASC achieves good performance on data recorded in realistifSR and to some extent AED could be helpful in the analysis of

conditions, this would tend to indicate that ASC is maturbeap-
plied to the analysis of documents recorded with mobile aiesi A
minor limitation however: recordings in the databases usexVal-

videos recorded from mobile devices. Machine listeningdtien
be considered as an ideal companion to video processingllyide
machine listening should even be used jointly with videogmanal-

uate ASC usually include only the scene to be recognised éno p ysis for optimal performance.

turbations) or at least the portions of the recordings wherstene
is present alone are usually longer than what can be expé&octed
real-life recordings. ASC will most likely become more deabging

on short recordings or if another signal is dominating theording

(for example when performing ASC to classify the backgroend
vironment of a recorded conversation).

AED can be related to ASC to some extent but is generally ob-
served to be a more challenging task, especially when théeuof
classes increases or when events are overlapping in tinaessigj-
ing very distinctive audio events (cries, gun shot, etcrei@ble as
long as the events are in the foreground of the scene but tferpe
mance decreases drastically when the events are in therbackh
of the recording [21, 52]. This latter scenario can occurexam-
ple when trying to detect events happening in the backgradral
recorded conversation. Having multiple recordings from shme
scene could help to solve problems with events overlappirngrie
as the AED would then take advantage of the spatial loc@isat
The localisation itself can be quite robust when there is rarob
over the placement of the microphones (this could be thewhsa
implanting new CCTV with audio).

Speaker identification has reached a high accuracy undgr ver
controlled conditions. It is therefore a credible techeigjfior docu-
ments recorded with close-up microphones. Indeed, mokeafur-
rent techniques require to have at least a certain amoutgar ¢no
noise) and dry (no reverberation) speech to achieve relialeinti-
fication. Performing recognition on distant speech withkigacund
noise, reverberation and possibly concurrent speakerbeamme
really challenging. This can be seen as an obstacle to tHgsésa
of video documents recorded with mobile devices but thearese
in speaker identification is moving towards more robust apphes
that should allow this application [33]. However, speakdeniti-
fication on video captured with CCTV with audio is by far more
challenging and does not seem to be a viable option at the mome

State-of-the-art ASR systems can achieve high performance
speech recorded with a close-up microphone and continymmexh
transcription is then credible. Recent progress have besferin
the domain of distant speech recognition [53] and ASR is d-cre
ible technique to analyse videos recorded with mobile devidn
more challenging scenarios (for example with lower signatoise-
ratio), considering keywords spotting instead of contimispeech
transcription generally provides more robust systemsdtiaallow [12]
semantic indexing of the videos. Yet, performing ASR on CCTV
with audio does not seem to be a realistic option at the mament
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