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ABSTRACT

Acoustic scene classification is a difficult problem mostly due
to the high density of events concurrently occurring in audio
scenes. In order to capture the occurrences of these events
we propose to use the Subband Power Distribution (SPD) as
a feature. We extract it by computing the histogram of ampli-
tude values in each frequency band of a spectrogram image.
The SPD allows us to model the density of events in each fre-
quency band. Our method is evaluated on a large acoustic
scene dataset using support vector machines. We outperform
the previous methods when using the SPD in conjunction with
the histogram of gradients. To reach further improvement, we
also consider the use of an approximation of the earth mover’s
distance kernel to compare histograms in a more suitable way.
Using the so-called Sinkhorn kernel improves the results on
most of the feature configurations. Best performances reach a
92.8% F1 score.

Index Terms— Acoustic scene classification, subband
power distribution image, Sinkhorn distance, support vector
machine

1. INTRODUCTION

The main objective of acoustic scene classification (ASC) is
to identify the acoustic environment in which the sound was
recorded directly from the audio signal. The interest for ASC
has been increasing in the last few years and is becoming
an important challenge in the machine listening community.
Despite the somewhat limited performances of current ASC
methods, they already have numerous applications in real
life such as robotic navigation [1] or forensics [2]. As many
context aware devices only use visual information to adapt
to their current location, complementary information can be
given by analysing the surrounding audio environment.

Due to the large variety of sound events possibly occur-
ring in an audio scene, characterising an acoustical environ-
ment as a whole is known to be a difficult problem. Many
early works in ASC have tried to use various methods from
speech recognition or event classification methods. Moreover,
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the specificity and complexity of general acoustic scenes can-
not be well described by general purpose methods. Indeed,
it is now widely recognised that specific methods need to be
developed for ASC.

As mentioned above, early works in ASC were heavily
inspired by speech recognition systems, for instance features
like Mel Frequency Cepstral Coefficients (MFCC) [3] have
been widely explored, they are often used as a baseline sys-
tem for classifying audio scenes. Several other conventional
features have also been tested such as low level spectral fea-
tures (zero-crossing rate, spectral centroid, spectral roll-off)
[4], linear predictive coefficients [5] or auditory filter features
such as Gammatones [6]. Some other works focused more
on designing new features capable of describing the scene as
a whole. This leads to more complex features such as ex-
pansion coefficients based on a decomposition over a Gabor
dictionary [7] or even minimum statistics of a spectrogram
to describe the acoustical background of a scene [8]. Many
of these features are extracted locally frame by frame which
naturally leads to an effort on finding a proper temporal mod-
elling. The temporal information has often been taken into
account by using various statistical functions or by analysing
the features recurrent behaviours using recursive quantitative
analysis (RQA) [9]. In some cases features are extracted from
the time frequency representation of the full audio excerpt, for
instance features such as the histogram of gradients (HOG)
based on constant Q-transform of the complete signal [10].

In this paper we also follow the trend of using features
based on a long-term time-frequency representation. Our
work significantly improves the state of the art results on
a large ASC data set by combining different spectrogram
image features and using an adapted kernel for the classifi-
cation. Specifically, we propose to use the Subband Power
Distribution (SPD) as a feature for ASC. The SPD has pre-
viously been used to compute features for acoustic event
classification [11], it represents the distribution over time of
the time-frequency pixels in a spectrogram image in each fre-
quency band. In the ASC context, by computing a histogram
of the power spectrum amplitudes in each frequency band
we intend to capture the density and the energy of events in
a given band for each acoustic scene. The use of the SPD
complements the previous proposal of applying Histogram of
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Gradients to acoustic scene classification [10]. The HOG fea-
tures capture the directions of the variations in a spectrogram
image. In order to improve the classification we use the HOG
features and the SPD simultaneously to characterise both the
variations and the content of the scenes power spectrum. We
also explore the use of perceptual loudness as an alternative
time frequency representation for the extraction of the SPD
features. Finally, since a support vector machine (SVM) is
used to classify the audio scene classes, we focus on finding
a more suitable distance between the features. In order to
have a kernel adapted to the classification of histograms, we
choose to compute it based on the Sinkhorn distance which is
an approximation of the earth mover’s distance (EMD) [12].

The rest of the paper is organised as follows. Section 2
describes the SPD feature extraction. Section 3 details the
use of the earth mover’s distance to design the new kernel.
Section 4 describes the data set and our experiments, before
Section 5 concludes the work.

2. FEATURE EXTRACTION

2.1. Modelling the event density

The main difficulty in the acoustic scene classification field is
the high quantity of information an audio scene contains. In
only a few seconds of audio recorded in an urban environment
one can find an important number of different sound sources
that each contribute to the acoustic signature of the scene. The
first supposition made is that all these sound sources corre-
spond to events (such as a car horn) that are characteristic of
certain environments (such as a street). One can also suppose
that these events have a rather constant spectral distribution
and that having a way of identifying how often these spectral
distributions happen in a given example would help character-
ising the different environments. In order to capture the oc-
currences of these events, or at least of the repeating spectral
content, we propose to use the Subband Power distribution
image. The SPD image approximates the distribution of the
spectrogram amplitudes in each subband using histograms.
The SPD will allow us to approximate for a given scene: in
what frequency bands the sounds events are, how often they
occur and finally how loud they are. Moreover, for scenes that
contain constant background sounds across the whole exam-
ple (such as a car engine), the SPD will also be able to capture
this information by having a high value in the bin correspond-
ing to the background sound’s amplitude interval.

While we expect the SPD features will provide crucial in-
formation for characterising the scenes we suppose they may
not be sufficient. Even if the HOG features already give the
best results on a few ASC data sets [10], they capture differ-
ent aspects of the spectrogram image. Because they model
the directions of the variations in the time frequency image,
having a way of describing the content of the time frequency
representation before looking at its variations can aid the clas-

Fig. 1: Flowchart of the proposed acoustic scene classification
method

Fig. 2: (Left) Loudness spectrogram of a ”kidgame” sample
(right) SPD image

sification. The SPD features are not meant to outperform the
HOG features alone but rather give complementary informa-
tion by the concatenation of the two different features. Using
the SPD in conjunction with the HOG will prove to achieve
a better characterisation of the spectrogram images and will
consequently lead to improved classification results.

2.2. The SPD extraction

The SPD as well as the HOG are extracted from a spectrogram
image. A constant Q-transform (CQT) is used in [10] to com-
pute the HOG features. The CQT has log-scaled frequency
bands which usually provides an appropriate representation
for analysing sounds. Instead, we propose to use the percep-
tual loudness time frequency representation in order to better
mimic the human auditory system. The Loudness allows us
to have a more similar frequency scale to the human auditory
system to model the human understanding of sounds. The
loudness coefficients correspond to the energy in each Bark
band normalized by its overall sum. Because the choice of
using the SPD was motivated by the human comprehension
of audio scenes, we believe that using a spectrogram based on
the Bark bands will improve the description of the acoustic
scenes. Figure 2 shows an example of a SPD image extracted
from a loudness spectrogram.

The extraction of the SPD features is similar to the proce-
dure for extracting the HOG as the two descriptors are meant
to be combined for the classification. In order to get the SPD
we start by computing a spectrogram image of each full au-
dio example in the data set. The SPD features are extracted by
computing a histogram of the pixel values in each frequency
band of the spectrogram image. We split the pixel value range
of the image into a fixed number of amplitude intervals and
simply count the number of pixels that are in each amplitude
interval for every frequency band. We finally obtain as many
histograms as frequency bands initially in the spectrogram,
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the concatenation of all the histograms (one per band) will
form the feature used a for the classification.

3. USING THE SINKHORN KERNEL FOR SVM
CLASSIFICATION

3.1. Changing the kernel

The experiments we run to evaluate the spectrogram features
use a support vector machine for the classification. It is com-
mon to change the feature space by using a SVM with a non
linear kernel when dealing with complex data. For instance,

the Gaussian kernel e−
‖x−y‖2

2σ2 is a widely used kernel in many
applications including ASC methods. Instead, we propose to
use the earth mover’s distance (EMD) [12]. The EMD kernel
is known to compare histograms and distributions in a more
suitable way than other classic distances. Actually, to avoid
the overwhelming complexity of EMD algorithms we use an
approximation of the EMD called the Sinkhorn distance [12].

3.2. A distance for histograms

The earth mover’s distance (EMD) is a formulation of the op-
timal transport distances widely used in computer vision. The
EMD and the optimal transport distances have proven to be a
powerful geometry to compare probability distributions. By
fixing a cost function representing the cost of moving infor-
mation from a histogram bin to another, one can define a new
distance between features as the solution of an optimal trans-
port problem. The principal advantage of using the EMD for
our application is that we can incorporate prior knowledge
about our features by means of the cost function. In fact one
can adjust the cost of moving information from an amplitude
interval at a fixed frequency to another one. The importance
of the frequency position or the amplitude range can be tuned
in order to obtain a better discrimination of the classes than
with the Gaussian kernel. If we consider M amplitude inter-
vals andN frequency bands the SPD featureH can be written
as:

H = (hf1a1
, ..., hf1aM , ..., hfNa1

, ..., hfNaM ) ; (1)

where fi is the index of the corresponding frequency band
and aj the index of the amplitude intervals. We then propose
to use the following cost function

c(hf1a1
, hf1a1

) = |fk − fi|p + |al − aj |q ; (2)

where p and q are positive parameters that can adjust the im-
pact of the frequency and the amplitudes when comparing his-
togram bins. This adjustment can be useful if we feel the data
used for classification is better characterized by the presence
of information in a frequency band or by the general ampli-
tude distribution of the spectral content in the time frequency
image. In our case, the data set described in the following sec-
tion contains many different acoustic environments each very

dense in audio events. The cost function will be kept rather
general to allow it to penalise distant frequencies and distant
amplitudes.

Finally, we need to compute the cost matrix C necessary
to solve the optimal transport problem, the matrix C contains
the pairwise costs for each histogram bin couple. When using
the feature concatenation we do not want to allow any trans-
fers from the HOG to the SPD. To do so, the cost between a
bin from the HOG and a bin from the SPD feature is set to
an arbitrarily high value. In this case, the bin couples coming
from the same feature type still follow the cost function (2).

3.3. The Sinkhorn kernel for classification

The major downside of using the earth mover’s distance is
its complexity, even the best implementation is not meant to
be used with histogram dimensions over a few hundreds. To
avoid such a restriction, we exploit a recent work on optimal
transport that offers huge improvement in computation time
by adding an entropic constraint to the problem controlled
by a regularisation parameter λ [12]. The optimum obtained
is also a distance called the Sinkhorn distance which corre-
sponds to an upper bound to the earth mover’s distance. Us-
ing this faster computation of optimal transport, one is able
to solve the optimal transport on the proposed features in a
reasonable time. Giving the algorithm the cost matrix C and
a regularisation parameter λ for the entropic constraint, the
Sinkhorn distances between each feature vector are obtained.
The Sinkhorn distances are used to approximate the EMD ker-
nel for the support vector machine classification. Finally, the
kernel function k used to define the Sinkhorn kernel can be
written as:

k(x, y) = e−
S(x,y)

σ2 . (3)

Where S(x, y) is the Sinkhorn distance between the two fea-
ture vectors x and y.

4. EXPERIMENTAL EVALUATION

4.1. The Dataset

We evaluate the spectrogram features and the Sinkhorn ker-
nel on the LITIS Rouen data set for acoustic scene classifica-
tion [10]. To our knowledge it is by far the largest publicly
available data set for ASC. This data set contains 1500 min-
utes of urban audio scenes recorded with a smartphone, split
into 3026 examples of 30 seconds without overlapping and
forming 19 different classes. Each class corresponds to a spe-
cific location such as in a train station, in an airplane or at
the market. Since this data set has been released recently, the
only published results were obtained using the HOG features
compared to various methods based on MFCC.
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Precision Recall F1 Score Accuracy

Gaussian Kernel with CQT

[10] 91.7 - - -
HOG 91.2 90.2 90.5 91.2
SPD 90.8 89.2 89.7 90.2
HOG+SPD 93.3 92.5 92.8 93.4

Gaussian Kernel with Loudness

HOG 90.4 88.4 89.1 89.4
SPD 88.5 87.2 87.5 87.5
HOG+SPD 92.4 91.5 91.7 92.0

Sinkhorn Kernel with CQT

HOG 91.4 90.3 90.7 91.3
SPD 88.7 86.9 87.4 88.6
HOG+SPD 92.3 90.6 91.4 92.3

Sinkhorn Kernel with Loudness

HOG 92.2 92.0 92.0 92.0
SPD 90.1 89.0 89.2 89.6
HOG+SPD 93.2 92.4 92.6 93.0

Table 1: Summary of the different experiments comparing the
features, the time frequency representation and the kernel for
the SVM. The results all have a 0.1 standard deviation.

4.2. Classification protocol

All the experiments use the same training-testing splits sug-
gested by the creators of the LITIS data set to ensure com-
parable results. All the features and distances we use will
follow the same classification scheme using a support vector
machine. The Sinkhorn kernel for the SVM is compared to
the Gaussian kernel. The results are averaged over 20 train-
test splits of the data. In each split 80% of the examples are
kept for training and the rest are for testing. In order to esti-
mate the best regularisation parameter and the best σ for the
Gaussian kernel we perform a grid search on these parameters
for each cross-validation iteration. To do so, we split evenly
the training set 5 times into a learning and validation set and
we keep the parameters giving the best average result on the
5 validation subsets.

4.3. Comparing the addition of SPD features

In the first part of our evaluation we look into the benefits of
using the concatenation of HOG and the SPD as the features
for the classification. The HOG features are extracted from
a time frequency representation image of the whole scene re-
sized to 512 × 512 by bicubic interpolation. Signed orienta-
tions as well as a frequency pooling are used to compute the
HOG. More details about the HOG possible settings are given
in [10]. To compute the SPD we do not re-size the time fre-
quency representation as the samples in the data set are all of
equal length. The best results have been found using 20 bins

Fig. 3: F1 score on 4 scene classes obtained with the loudness
and the Sinkhorn kernel

corresponding to 20 linearly spaced amplitude intervals in the
pixel value range. All the features have been preprocessed in
order to have zero mean and unit variance.

Table 1 summarises the results obtained and shows that
the performances depend on the time frequency representa-
tion and on the kernel used for classification. Most impor-
tantly, the best F1 score on all the proposed settings is ob-
tained with the feature concatenation. This supports the as-
sumption that the SPD features generally give complementary
information to the classifier as they do not describe the same
phenomena as the HOG. The best result obtained so far is a
92.8% F1 score using the concatenation of the two features.
Previous state of the art on this data set was of 91.7% preci-
sion using only the HOG features with different settings while
a 93.3% precision is reached with the feature concatenation.
The difference between the best precision results obtained
with concatenation and the previous best precision score is
statistically significant at 5%. In order to understand the dif-
ferences between the two features we show the F1 score ob-
tained on a few of the classes in Figure 3. HOG features have
good performances on classes such as bus or car (and all other
public transports). These locations often do not have a located
frequency signature because of the presence of acceleration
sounds in the examples. Because the HOG are designed to
capture evolutions in the spectrogram, they are expected to
work well on classes containing acceleration sounds. On the
other hand, the SPD features outperform the HOG on classes
such as shop or student hall. Both of these classes have mostly
a stable frequency signature over time due the high density of
events occurring during the recorded examples.

4.4. Using the Sinkhorn kernel

The EMD kernel for the classification has been computed us-
ing the light-speed implementation of the Sinkhorn distance
using the cost function described in (2). The cost matrix has
been divided by its median value and the regularisation pa-
rameter λ is set to 11 as it consistently gives better results.
We tested different values of the parameters p and q in (2)
for each feature set, the results in Table 1 are obtained with
the best parameters we found so far. First, we see that the
Sinkhorn distance gives similar results to the Gaussian kernel
on the concatenated features. The way the concatenation is
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taken into account in the cost function could explain the lack
of improvement. Having two different kernels corresponding
to the HOG and the SPD could lead to better results using
multiple kernel learning but would bring even more parame-
ters to tune.

Using the Sinkhorn kernel improves the F1 score for four
out of the six feature configurations tested in Table 1 but it
does not help improving the overall best result on the data
set. The results are not yet worth the increased complexity
compared to the Gaussian kernel. Although we could possibly
increase the performance by focusing more on the parameter
tuning it would still be hard to use on much larger data sets
despite using the lightspeed implementation.

4.5. The Loudness spectrogram instead of the CQT

The previous experiments were tested with two different time
frequency representations, the constant Q-transform, initially
used to compute the HOG and the loudness power spectrum
as discussed in Section 2. The CQT is extracted using a fre-
quency range from 1Hz to 10kHz using 8 bins per octave. The
perceptual loudness power spectrum has 24 frequency bands
and is extracted using the YAAFE implementation [13]. The
results show that using the loudness slightly improves the F1
scores compared to the CQT for all the features tested with the
Sinkhorn distance kernel. On the other hand, it does not help
the Gaussian kernel SVM exept for the HOG feature. The
loudness power spectrum also leads to features with lower di-
mension (because of the reduced amount of frequency bans)
which helps lowering the computation time of the Sinkhorn
distance algorithm and of the classification in general.

5. CONCLUSION

In this paper we proposed to use the Subband Power Distribu-
tion image as a feature for acoustic scene classification lead-
ing to a more robust representation of the scene when used
jointly with the HOG features. An experiment run on the
largest available data set proved that adding the SPD to the
HOG significantly improves the state of the art results. We
also discussed the interest of using the earth mover’s distance
to provide a more suitable distance between our features. The
Sinkhorn kernel does not offer a consistant increase in perfor-
mance compared to the Gaussian kernel. Finally we looked
into using a loudness spectrogram instead of a constant Q-
transform in order to model the human auditory system. The
loudness does provide slightly better results when used with
the Sinkhorn kernel.
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