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Blind Denoising with Random Greedy Pursuits
Manuel Moussallam, Alexandre Gramfort, Laurent Daudet, and Gaël Richard

Abstract—Denoising methods require some assumptions about
the signal of interest and the noise. While most denoising proce-
dures require some knowledge about the noise level, which may be
unknown in practice, here we assume that the signal expansion in a
givendictionaryhasadistribution that ismoreheavy-tailed than the
noise.We show how this hypothesis leads to a stopping criterion for
greedypursuit algorithmswhich is independent fromthenoise level.
Inspired by the success of ensemble methods in machine learning,
we propose a strategy to reduce the variance of greedy estimates
by averaging pursuits obtained from randomly subsampled dic-
tionaries. We call this denoising procedure Blind Random Pursuit
Denoising (BIRD). We offer a generalization to multidimensional
signals, with a structured sparse model (S-BIRD). The relevance of
this approach is demonstrated on synthetic and experimentalMEG
signals where, without any parameter tuning, BIRD outperforms
state-of-the-art algorithms even when they are informed by the
noise level. Code is available to reproduce all experiments.

Index Terms— Please add index terms.

I. INTRODUCTION

T IME series obtained from experimental measurements are
always contaminated by noise. Separating the informative

signal from the noise in such raw data is called denoising and re-
quires some assumptions on the signals and/or noise, for instance
imposing a sparsemodel on the discrete signal , offinite size :

where is a (usually overcomplete) dictionary of
elementary objects called atoms and assumed normal-

ized (i.e. ), is a sparse vector (i.e.
), and is the additive noise to be removed. This model

thus expresses the informative part of the signal as a sparse ex-
pansion in and implicitly states that the noise component has
no such expansion. Under this assumption, a denoised estimate

of can be obtained by solving:

subject to (1)

The value must be chosen according to the noise level (i.e.
the norm of ). As problem (1) is NP hard, it is approximately
solved using greedy algorithms [1]–[5], or via convex relax-
ations (e.g. Basis Pursuit Denoising [6]). A greedy algorithm,
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such as Matching Pursuit (MP) [1] and variants, will iteratively
build an estimate by selecting atoms in and updating a
residual signal accordingly. This latter class of methods suffers
from twomain limitations: (i) choosing a good value for , i.e. in
practice a stopping rule for the algorithm, requires some knowl-
edge on the noise variance, and (ii) the obtained approximation
strongly depends on the dictionary design.
The contributions of this paper are threefold. First, we

derive a data-driven stopping criterion for greedy pursuits
based on order statistics. This technique allows denoising
without knowledge of the noise variance. Second, we show
how randomized greedy pursuits can be combined to improve
the performance and reduce the dependency on the dictionary
choice. This new algorithm, called BIRD, can be generalized to
the case of multidimensional signals (S-BIRD). Third, we use
popular synthetic signals to compare the performance of the
proposed method with state-of-the-art techniques (soft and hard
thresholding using cycle spinning [7], stochastic MP [8] and
randomized MP [9]). Results on experimental data obtained
with magnetoencephalography (MEG) are presented.

II. BLIND DENOISING WITH RANDOMIZED PURSUIT

A. Stopping Criterion for Greedy Denoising Methods

Greedy algorithms require a stopping criterion to control
model complexity, and avoid under- or over-fitting. For de-
noising purposes, this stop ideally occurs when the residual
equals the noise and all atoms selected so far only explain the
signal. In practice, a clear distinction between signal atoms
and noise atoms is not always available. In this context, an
interesting measure with greedy approaches is the normalized
coherence of a signal in as defined in [1]:

(2)

Let be the residual signal at iteration , it’s energy decay can
be expressed in terms of the normalized coherence by:

(3)

This relation is essentially used to bound from above the con-
vergence of the algorithm using the coherence of the dictionary

. This value is useful to describe the
worst case convergence scenario, i.e. the convergence rate for
the signal that is least correlated with . Considering the noise
signal as a realization of a stochastic process, one may be also
interested in the value:

(4)

Denoising can then be achieved by selecting only atoms whose
normalized coherence is significantly higher than this value [1],
[3]. Estimating (4) is however uneasy, and is typically learned
from a training set [3].
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The novelty of our approach is to propose a closed form es-
timate of based on a stochastic argument and order sta-
tistics. Let us consider the projections of over as real-
izations of a random variable (RV) :

(5)

In most cases, is greater than . It implies that the are
not independent: their joint distribution is intricate. However,
for analytical simplifications, we will assume they are i.i.d. This
simplification will allow us to derive a new bound that turns
out to be near-optimal in the proposed experimental framework.
When run on (i.e. pure noise), a greedy algorithm such as MP,
or Orthogonal MP (OMP [10]), will typically select the atom
that maximizes (5). Let us denote by the RV describing
the maximum projection value among samples of . It is
also known as the last order statistic of , and its cumulative
density function writes (see for instance [11]):

(6)

where (respectively ) is the probability (respectively
cumulative) density function, PDF (respectively CDF) of .
Given an assumed i.i.d. distribution of the noise projections in
a dictionary of size , (6) gives a closed form formula for the
CDF of the maximum.
The intuition behind this work writes as follows: the value

is the probability that themaximum correlation
between a dictionary element and a pure noise is to be greater
than . Thus we need to design a dictionary such that unlikely
observations indicate the presence of a signal.
Let us now make the assumption that the dictionary is de-

signed such that: (i) the projections of the noise on its atoms are
distributed according to a zero mean Gaussian distribution (GD)
and (ii) the distribution of the projections of the informative part
has a heavier tail than the GD. The GD model fits well a variety
of practical situations (e.g. white noise in a windowed-Fourier
dictionary) and is more general than the standard Gaussian noise
hypothesis. A reasonable model for is thus a half-normal
RV, for which (6) is easily computed. This allows us to replace
the value in (4) by:

(7)

where is the inverse error function.
The parameter expresses the confidence in the model and

thus controls how much an approximation shall fit the data.
Large values of can lead to overfitting while small values can
be too conservative. In this sense, this parameter plays a similar
role to the more classical approximation error in [1]. However,
it is important to emphasize that is set for a given dictionary
independently of the noise level. Experimental results testing
the sensibility of the method with respect to are given in sup-
plementary material.

B. Double Randomization

The underlying assumption of (1) is that the sparsest repre-
sentation is the optimal choice. However, as shown by Elad et al.
[9], a better strategy (in the sense of the mean squared error) is
to sample a set of random sparse approximations

and average them. Such an approach would be named ensemble
method in the statistical learning literature (see e.g. [12] chap.
16). The randomized greedy decompositions are run in par-
allel with the following probabilistic selection procedure. Let

be the residual signal at iteration . The -th element index
to be selected is chosen at random among the columns
of with greater probabilities, i.e. with large inner prod-

ucts .
Our strategy, based on the work in [13], extends this idea with

a Random Forest -like approach [14]. At each iteration, the most
correlated element from a random subset is selected.
Here, will be about 50 times smaller than . This spares us
the computation of the inner products, while proper random-
ization scheme allows us to browse the whole dictionary across
iterations, a strategy particularly interesting when dictionary el-
ements are finely located in time and frequency (see [13]). Run-
ning instances of this pursuit on a random sequence of sub-
dictionaries (i.e. the equivalent of random trees) yields a set

of sparse approximations. They can then be aver-
aged in order to obtain the denoised signal: . The
complete algorithm is detailed in Algorithm 1.

Algorithm 1: Blind Random Pursuit Denoising (BIRD)

Input: , , ,
Output:
for do
initialization: , ;
while condition do

;
Draw at random ;
Select ;
Update ;
and ;

;
end

end
;

III. STRUCTURED SPARSE MODEL

In case of data acquired with multiple sensors, the sparse
model can be extended to take the structure of the data into ac-
count. Let be the data matrix formed by stacking
the signals recorded by sensors. Given the same dictionary ,
one seeks an approximate of as a sparse expansion
in . The unstructured problem reads:

subject to (8)

where stands for theFrobeniusnormand is thenumber
of non-zero entries. The signal model for one sensor reads:

(9)

where is the -th column of , is the noise recorded by
sensor , is a binary sparse vector of zeroes or ones indepen-
dent of the sensor, and is a weight vector specific to the sensor
that has the same support as and whose values are all zeroes if
is not in the set . The notation stands for the element-wise
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multiplication. In a matrix form, this writes with
a matrix whose -th column is full of zeroes if is not in

and whose -th row is full of zeroes if . Such ma-
trices typically arise when using mixed-norms for group-sparse
approximation problems [15], such as:

subject to (10)

where is the norm as in [15]. Such problems are
commonly addressed with greedy algorithms [16] or group soft-
thresholding (Group-LASSO) [17]. It is known as a Multiple
Measurement Vector (MMV) problem in the signal processing
literature [16].
Adapting Algorithm 1 to the structured case requires a re-

fined selection rule. Typically an atom is selected if it maxi-
mizes the sum of the projections over all sensors [16]. How-
ever, only a fraction of the sensors may simultaneously record
the signal from a source. Let , , be this fraction.
Let be the residual signal of sensor and let us write

and the ordered projections of

on (i.e. ). Let us denote:

(11)

The selection procedure also yields a list of sensors
containing the atom, and where an update is necessary.
In theory, it is again possible to use order statistics to model

the sum in (11) and its maximum as RVs. In practice, a simple
idea is to stop the decomposition once a given proportion of the
most energetic signals have been denoised:

(12)
where the set corresponds to the biggest
values of . This criterion is coherent with the se-
lection rule (11). The complete procedure is summarized in
Algorithm 2.

Algorithm 2 Structured Blind Random Pursuit Denoising
(S-BIRD)

Input: , , , ,
Output:
for do
initialization: , , ;
while condition do

;
Draw at random ;
Select

;

Update ;
and ;

;
end

end
;

IV. EXPERIMENTAL VALIDATION

All the experiments and results shown in this section as well
as those presented in the provided supplementary material
can be reproduced using our Python code freely available
online1.

A. Synthetic Examples

A first set of experiments compares the proposed algorithm
BIRD to existing mono-channel denoising techniques on syn-
thetic signals and simulated MEG data. We present the perfor-
mance of BIRD compared to various state-of-the art methods
among which:
• Wavelet Shrinkage (WaveShrink) methods (with both soft
and hard thresholding) using Daubechies wavelets and a
Short-Time Fourier Transform (STFT) dictionaries. These
dictionaries can be made shift-invariant using the Cycle-
Spinning method [7], [18].

• Stochastic MP (SMP) as introduced in [8]. In this method,
each of the runs is performed on a subdictionary
, that is chosen at random once for each run, and kept
unchanged in the whole decomposition.

• Randomized OMP (RandOMP) as introduced in [9]. In this
method, atoms are selected at random in the complete dic-
tionary at every iteration of the runs.

These methods require a stopping criterion, typically set by
fixing the reconstruction error in accordance with the noise
level. In contrast, our algorithms select an atom in a random
subdictionary at each iteration of the runs and derive their
stopping criterion from the statistics of the projections as ex-
plained above. For comparison, we present the results obtained
by WaveShrink (respectively SMP and RandOMP) methods
in an Oracle case, that is when the true signal is known and
used to set the target reconstruction errors in order to minimize
the errors.
For all greedy approaches, we use an overcomplete dictionary
built as a union of Modulated Discrete Cosine Transforms

(MDCT) of 6 different scales. For each basis, atoms are further
replicated and shifted so as to form a highly overcomplete, shift-
invariant, dictionary of size . We set the overfitting
probability to . This may seem a conservative
value, but in practice the algorithm is not very sensitive to (See
Fig. 3 in supplementary materials).
One can verify in Fig. 1 that BIRD has some advantages

over alternative methods. Two observations can be made.
First, the double randomization scheme is valuable: with a
limited number of runs the resulting denoised signal with
BIRD presents less disturbing artifacts than SMP or RandOMP
methods. Second, the self-stopping criterion yields satisfying
signal estimates in most cases. Note that no parameter is mod-
ified when varying the SNR. Given pure white noise as input,
BIRD does not select any spurious atom. Given a pure sparse
signal, BIRD will select atoms up to a very high reconstruction
fidelity.

B. Simulated MEG Data

Publicly available software [?] has been used to simulate
MEG signals. A controlled level of white or colored noise
(auto-regressive process fitted on real data) was added to a

1http://manuel.moussallam.net/birdcode
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Fig. 1. Examples of denoising for synthetic signals Doppler and Blocks. SMP,
RandOMP and BIRD are set with runs and use a multiscale MDCT
dictionary.

Fig. 2. NMSE for various denoising methods on simulated single-sensor MEG
data (score averaged over 20 trials) as a function of the noise level.

collection of smooth and oscillatory signals mimicking clas-
sical MEG evoked responses thanks to the use of a real forward
solution. The recordings in the absence of noise are given in the
form of a ground truth matrix . Denoising methods can then
be applied to and compared using a Normalized
Mean Squared Error (NMSE) ratio:

(13)

Fig. 2 illustrates the performance of the proposed approach in
terms of reconstruction for a single-sensor signal. BIRD outper-
forms competitive methods, even informed by the oracle noise
level.
Given the same test framework, we now evaluate the de-

noising capabilities on multichannel signals. We compare the
performance of BIRD being applied independently to each

Fig. 3. Top: examples of BIRD and S-BIRD denoising for simulated
multi-sensor MEG signals (evoked response corrupted by white noise).
Bottom: NMSE (dB) for various methods.

sensor (i.e. not taking any structure into account) to the Struc-
tured version S-BIRD. In this simulation study, all channels
contain information and we set . For comparison, we use
group soft thresholding methods using wavelets (Daubechies
wavelets with 3 vanishing moments) and STFT, and present
the best results obtained while varying the threshold parameter
(labelled Oracle Group WS). Finally, it is compared to SMP
applied independently on each sensor. As shown on Fig. 3,
by taking cross-sensor correlation into account at the tom
selection level, S-BIRD improves over BIRD and outperforms
other methods. This improvement is even more visible for
colored noise and with real data (see supplementary material
for additional figures).

V. CONCLUSION

We propose a greedy strategy that relies on averaging the re-
sults of multiple runs of random sequential pursuits, each of
which can select a different number of atoms and reach a dif-
ferent approximation level that is determined by a signal-inde-
pendent stopping criterion. The only parameter depends solely
on the dictionary.
The algorithm is fast as it avoids computing all projections

while using FFT-based MDCT or wavelet dictionaries. An en-
hanced version S-BIRD, taking into account atom correlations
between multiple sensors achieves even better results on simu-
lated data with white or colored noise, as well as on MEG data.
The multiple runs averaging strategy, also called bagging [19]
in the machine learning literature, reduces the estimation vari-
ance of a single pursuit, and is a key ingredient of the BIRD
algorithm.
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