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ABSTRACT

We present a novel and unique combination of algorithms to detect
the gender of the leading vocalist in recorded popular music. Building
on our previous successful approach that enhanced the harmonic parts
by means of Non-Negative Matrix Factorization (NMF) for increased
accuracy, we integrate on the one hand a new source separation algo-
rithm specifically tailored to extracting the leading voice from monau-
ral recordings. On the other hand, we introduce Bidirectional Long
Short-Term Memory Recurrent Neural Networks (BLSTM-RNNs)
as context-sensitive classifiers for this scenario, which have lately
led to great success in Music Information Retrieval tasks. Through
a combination of leading voice separation and BLSTM networks,
as opposed to a baseline approach using Hidden Naive Bayes on
the original recordings, the accuracy of simultaneous detection of
vocal presence and vocalist gender on beat level is improved by up to
10 % absolute. Furthermore, using this technique we achieve 91.6 %
accuracy in determining the gender of the predominant vocalist on
song level, which is 4 % absolute above our previous best result.

Index Terms— Long Short-Term Memory, Non-Negative Matrix
Factorization, Music Information Retrieval

1. INTRODUCTION

Vocalist gender recognition, that is determination of the gender of the
main vocalist(s) in recorded (popular) music, is a task that has not yet
been broadly addressed in the field of Music Information Retrieval
(MIR), as opposed to spoken language processing [1]. On the other
hand, it is considerably challenging when performed on contemporary
popular music due to the variety of singing styles and the large
spectral overlap with the instrumental accompaniment. As in speech
processing, knowing the gender of the lead performing artist may be
used to select gender-adapted models for lyrics transcription – such as
in [2] – or other MIR tasks. Additionally, it can be useful as a feature
for organizing and querying music collections, or for recommendation
systems in on-line stores, which motivated the introduction of vocalist
gender recognition in [3].

Building on that study, the first major contribution of this pa-
per is to compare different solutions to reduce the accompaniment
in order to more reliably identify the singing voice, including both
leading voice separation and enhancement of harmonic parts by drum
beat separation. The former appears to be naturally suited to the
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recognition task at hand, and we have recently introduced a tech-
nique incorporating Non-Negative Matrix Factorization (NMF) on
a source / filter model and Viterbi-based melody smoothing, which
robustly identifies the pitch of the leading voice [4], then separates it
from the signal [5]. On the other hand, in [3] we used enhancement
of harmonic parts to great success, which can be performed very
robustly by discrimination of the drum and harmonic signal parts
extracted by Non-Negative Matrix Factorization, based on spectral
and temporal characteristics [6].

Moreover, we depart from the static beatwise classification in [3]
which completely ignores context. As it can be argued that context is
vital in determining the gender of the lead singer, which is expected
to change rather slowly over time, we introduce Bidirectional Long
Short-Term Memory Recurrent Neural Networks (BLSTM-RNNs)
as a context-sensitive sequence classifier. Their most prominent
advantage over other sequence classifiers is that they automatically
learn the required amount of context [7]. Notably, we have used
BLSTM-RNNs for our onset detector which performed best among
all approaches evaluated in the 2010 Music Information Retrieval
EXchange (MIREX) challenge [8].

The remainder of this paper is structured as follows: first, we sum-
marize our source separation methods for enhancement of harmonic
parts and leading voice separation in Sec. 2. Next, we briefly present
the basic concept of BLSTM networks in Sec. 3 before turning to
a detailed description of our experimental setup and classification
procedures in Sec. 4. Results are interpreted, and conclusions are
drawn in Sec. 5. To increase clarity of the following section, we
introduce the following notations: for a matrix A, the notation [A]i,:
– resembling Matlab syntax – denotes the i-th row of A (as a row
vector), and we analogously define [A]:,j for the j-th column of A
(as a column vector). We write A⊗B for the elementwise product
of matrices A and B; division of matrices is always to be understood
as elementwise.

2. SOURCE SEPARATION METHODS

2.1. Enhancement of Harmonic Parts

As a first method to improve gender identification from the vocal
parts, we chose the enhancement of harmonic parts as in our previous
study [3]. It is based on a non-negative factorization of the magnitude
spectrogram |X| obtained by short-time transform (STFT):

|X| = WH,

that is computed using a multiplicative update algorithm for NMF
which minimizes the β-divergence between |X| and WH, for β = 1
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(Kullback-Leibler divergence). We then use a Support Vector Ma-
chine (SVM) classifier to discriminate between drum and harmonic
components, i. e. pairs (w(j),h(j)) of spectra w(j) := [W]:,j along

with their time-varying gains h(j) := [H]j,: that model percussive
or non-percussive signal parts. The classifier is trained on a set of
NMF components extracted from popular music that were manually
labeled as ‘drum’ or ‘harmonic’, as described in [3]. The features for
discrimination of drum and harmonic components exactly correspond
to those used in [3]. After classification, we estimate the magnitude

spectrogram |X̂|harm of the harmonic signal parts as follows: defining

Jharm = {j : (w(j),h(j)) classified as harmonic},

|X̂|harm = |X| ⊗
∑

j∈Jharm

w(j)h(j)

WH
. (1)

Finally, we obtain a ‘harmonic’ time signal from the inverse STFT

of |X̂|harm and the phase matrix of the original signal, thereby win-
dowing each time frame. Note that this procedure goes beyond the
one used for our previous study [3]: due to the Wiener filtering
in (1), it is guaranteed that the estimated spectrograms of the har-
monic and non-harmonic signal parts sum to the original spectrogram.
Therefore, no information is lost due to the factorization and recon-
struction. For straightforward reproducibility of our experiments, we
used the default parameters of the drum beat separation demonstrator
of our toolkit openBliSSART1: frame rate 30 ms, window size 60 ms,
and 100 iterations. Although the algorithm can efficiently process
songs as a whole, we found it beneficial to divide the songs into
non-overlapping chunks of 19.98 s length (synchronous to the frame
rate). This allows the algorithm to use different sets of components
for the individual sections of a song.

2.2. Leading Voice Separation

The second method used to facilitate gender identification is the lead-
ing voice separation approach described in [4, 5]. In this model, the
STFT of the observed signal at frame n, denoted [X]:,n, is expressed
as the sum of two components as [X]:,n = [V]:,n + [M]:,n, where
[V]:,n and [M]:,n are respectively the STFTs of the leading voice
and background musical signals. Furthermore, [V]:,n and [M]:,n are
assumed to be center proper complex Gaussian variables2:

[V]:,n ∼ Nc(0, diag(σ
2
[V]:,n)), (2)

[M]:,n ∼ Nc(0, diag(σ
2
[M]:,n)), (3)

where σ2
[V]:,n

(resp. σ2
[M]:,n

) is the power spectral density (PSD)
of the leading voice (resp. of the background music) at frame n.
Following an independence assumption between the two components,
the STFT of the observed signal is also a proper Gaussian vector:

[X]:,n ∼ Nc(0, diag(σ
2
[V]:,n + σ2

[M]:,n)). (4)

Extracting the main melody then consists in estimating σ2
[V]:,n

and σ2
[M]:,n

for each signal frame n. Here, the approach is entirely
unsupervised (i. e. no learning step is involved) and therefore relies
on specific constraints for the voice signal. More precisely, the
voice signal is assumed to follow a source / filter production model
where the source is a periodic signal (referring to the periodic glottal

1Software available at http://www.openaudio.eu
2A complex proper Gaussian random variable is a complex random vari-

able whose real part and imaginary part are independent and follow a (real)
Gaussian distribution, with the same parameters: mean equal to 0 and identical
variance (co-variance matrix in the multi-variate case).

pulse of the singing voice). No specific constraints are set for the
background music signal because of its wide possible variability. The
estimation of the various model parameters is then conducted by
iterative approaches based on NMF techniques following a two step
strategy. The first step provides an initial estimate of the parameters
while the second step is a constrained re-estimation stage which
refines the leading melody estimation and in particular limits sudden
octave jumps that may remain after the first estimation stage. Once the
PSD σ2

[V]:,n
and σ2

[M]:,n
of both signals are obtained, the separated

singing voice signal is obtained by Wiener filtering for each frame :

[̂V]:,n =
σ2
[V]:,n

σ2
[V]:,n

+ σ2
[M]:,n

[X]:,n. (5)

To ensure best reproducibility of our results, we used our open-
source implementation3 of the algorithm with default parameters
(frame rate 256 samples, window size 2 048 samples, 50 iterations
for each of the first and second separation stage). To cope with
the memory requirements of the algorithm, it was applied to frame-
synchronous chunks of 881 664 samples (≈ 20 s at 44.1 kHz sample
rate).

3. BIDIRECTIONAL LONG SHORT-TERM MEMORY
RECURRENT NEURAL NETWORKS

A key part of the study presented in this paper is to evaluate the per-
formance of BLSTM-RNNs as context-sensitive sequence classifiers
on the vocalist gender recognition task. BLSTM-RNNs unite the con-
cept of bidirectional RNNs (BRNNs) with Long Short-Term Memory
(LSTM). Here we will only briefly describe the theory underlying
BLSTM networks to motivate their use in this study. For a detailed
discussion of the network architecture, we refer to [7].

RNNs consist of one input, one output and one or more hidden
layer(s). In contrast to basic feedforward neural networks, cyclic
connections theoretically allow the network to map from the entire
history of previous inputs to an output. The recurrent connections
form a kind of memory, which allows input values to persist in
the hidden layer(s) and influence the network output in the future.
BRNNs use two separate hidden layers instead of one, both connected
to the same input and output layers, of which the first processes the
input sequence forwards and the second backwards. The network
therefore always has access to the complete past and the future context
in a symmetrical way. Consequently, it must have the complete input
sequence at hand before it can be processed; however, this is not a
restriction in the context of our application.

Although (B)RNNs have access to past (and future) information,
the range of context is limited to a few frames due to the vanishing
gradient problem: the influence of an input value decays or blows
up exponentially over time. To overcome this deficiency, the LSTM
concept was introduced. In an LSTM hidden layer, the nonlinear
units are extended to LSTM memory blocks. Each block contains
one or more linear memory units, whose internal state is maintained
by a recurrent connection with constant weight 1.0, enabling the unit
to store information over arbitrary periods of time. The input, output,
and internal state of the memory units are controlled by multiplicative
gate units, which - in computer memory terminology - correspond
to write, read, and reset operations. The gates are connected to the
input layer as well as recurrently to the output layer. During network
training, the weights for all connections, including the gate units, are
optimized such that the network automatically learns when to store,

3Software available at http://www.durrieu.ch/phd/software.html
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# beats train devel test Σ

no voice 87 592 74 174 45 525 207 291
female 33 194 21 949 10 576 65 719
male 52 178 48 842 34 718 135 738
duet 370 202 1 130 1 702

Σ 173 334 145 167 91 949 410 450

Table 1: Number of beats per class and set in the UltraStar database.

use, or discard information acquired from previous inputs or outputs.
This makes (B)LSTM-RNNs useful for sequence classification tasks
where the required amount of context is unknown a priori. They
have been successfully used for a great variety of applications includ-
ing handwriting recognition [7], automatic speech recognition [9],
and note onset detection [8], often outperforming more traditional
sequence classifiers such as Hidden Markov Models.

4. EXPERIMENTS

4.1. UltraStar Database

To evaluate the combination of source separation techniques and
BLSTM-RNNs and enforce comparability of results, we chose the
UltraStar song database introduced in [3], which is annotated on beat
as well as song level. While the songwise, singer-independent subdi-
vision into training, development, and test set was exactly preserved,
we refined our annotation, i. e. the ground truth of the vocalist gender,
to better reflect the real-world nature of the database where the gender
may change several times throughout a song. Instead of assigning the
predominant vocalist gender per song and propagating this decision to
the beat level, as done in [3], we first labeled each beat as ‘no voice’,
‘female voice’, ‘male voice’, or as ‘duet’ if a male and female singer
were present simultaneously. Then, we assigned the labels ‘male’ or
‘female’ on song level based on the songwise majority vote of the
ground truths on the beats labeled as ‘male’ or ‘female’. Furthermore,
the alignment of the lyrics as well as the ground truth tempo was
slightly corrected. The number of beats per class is shown in Tab. 1.

4.2. Baseline Classifiers

As in our previous study [3], the baseline classification performance
is measured using SVM with polynomial kernel and Hidden Naive
Bayes (HNB) [10]. SVMs were trained using Sequential Minimal
Optimization (SMO). HNB was applied in a feature space that was
discretized using Kononenko’s Minimum Description Length (MDL)
criterion. The features exactly correspond to those used in [3] and
were extracted using the open-source toolkit openSMILE [11]. In
line with our strategy to use open-source software for easy repro-
ducibility, classification was performed using the Weka toolkit. In
comparison to [3], the classification process was optimized in two
respects: first, instead of downsampling the training material, we
applied upsampling by copying the instances of the minority classes
to achieve a roughly uniform class distribution among the union of
training and development set. Second, we found it beneficial to lower
the complexity parameter used for SVM training from 1.0 to 0.1.

4.3. BLSTM Topology and Training

The BLSTM networks had one hidden layer with 80 LSTM memory
cells for each direction. The size of the input layer was equal to the
number of features, while the size of the output layer was equal to
the number of classes to discriminate. Its output activations were

restricted to the interval [0; 1] and their sum was forced to unity by
normalizing with the softmax function. Thus, the normalized outputs
represent the posterior class probabilities. The songs in the test set
were presented frame by frame (in correct temporal order) to the
input layer, and each frame was assigned to the class with the highest
probability as indicated by the output layer. For network training,
supervised learning with early stopping was used as follows: we
initialized the network weights randomly from a Gaussian distribu-
tion (μ = 0, σ = 0.1). Then, each sequence (song) in the UltraStar
training set was presented frame by frame to the network. To im-
prove generalization, the order of the input sequences was determined
randomly, and Gaussian noise (μ = 0, σ = 0.3) was added to the
input activations. The network weights were iteratively updated using
resilient propagation. To prevent over-fitting, the performance (in
terms of classification error) on the validation set was evaluated after
each training iteration (epoch). Once no improvement over 20 epochs
had been observed, the training was stopped and the network with the
best performance on the validation set was used as the final network.

4.4. Beat and Song Level Classification

Each combination of classifier and source separation algorithm was
evaluated on four different tasks. Thereby the beats labeled as ‘duet’
were excluded due to the very small number of instances. First, each
beat in the test set had to be classified as ‘male’, ‘female’, or ‘no
voice’ (3-class beatwise decision). Second, we restricted the training
and testing material for the classifier to the beats where a voice was
present according to the annotation, leading to a 2-class beatwise
decision task. Finally, from the results of both these classification
tasks, a song level decision can be performed by taking the majority
vote of the beatwise decisions, considering only the beats classified
as ‘male’ or ‘female’.

4.5. Results

Fig. 1 shows the classification accuracy achieved in the beatwise 3-
and 2-class tasks. Comparing the classifiers, it can be clearly seen that
the BLSTM outperforms static classifiers: even for the original audio,
the BLSTM accuracy is 6.7 % absolute above the HNB accuracy. In
particular, the combination of BLSTM with leading voice separation
seems to be especially powerful on the 3-class task: here, the voice
separation yields a gain in accuracy of almost 4 % absolute. Both
the aforementioned improvements are significant at the 0.1 % level
according to a one-tailed t-test. For the 2-class task, the BLSTM
achieves excellent results independent of the preprocessing. While
the SVM and HNB seem both inferior to the BLSTM in this task, it is
notable that for these types of classifiers the harmonic enhancement
conveys a larger gain than the leading voice separation (6 % vs. 3 %
absolute for HNB).

Additionally, we present the results on song level, i. e. the
weighted and unweighted average recall (WAR / UAR) of songs with
a predominant female or male artist, in Tab. 2. Interestingly, the
results obtained from the 3-class classifier on beat level seem to be
more robust on song level than those from the 2-class classifier. Next,
concerning different source separation methods as preprocessing,
there is no clear picture: while the leading voice separation performs
considerably better in the voting based on the 2-class task, achieving
the overall best UAR, harmonic enhancement does so for the voting
based on the 3-class task. Yet, since all these differences fail to be
significant on the 5 % level, we conclude that the quality of the song
level decision is highly robust against the preprocessing method.
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(b) 2-class beatwise classification

Fig. 1: Accuracy in beatwise classification: 3-class task (no
voice / female / male) and 2-class task (female / male), using SVM,
HNB, and BLSTM classifiers. “voice sep.” and “harm. sep.” indicate
preprocessing according to Secs. 2.1 and 2.2, respectively.

[%] original harm. sep. voice sep.
task WAR UAR WAR UAR WAR UAR
3-class 92.4 88.3 93.1 88.8 90.8 87.3
2-class 91.6 87.8 90.8 84.0 91.6 88.9

Table 2: Accuracy (weighted average recall, WAR) and unweighted
average recall (UAR) of the song level decision based on 3-class and
2-class beatwise classification, using a BLSTM classifier. “voice sep.”
and “harm. sep.” indicate preprocessing according to Secs. 2.1 and
2.2, respectively.

5. CONCLUSIONS

We have shown that our novel BLSTM-NMF approach yields a sig-
nificant performance gain in the task to simultaneously detect voiced
beats and to tell apart male and female vocalists. In fact, the appar-
ently easier 2-class task to discriminate between male and female
voiced beats can be performed more robustly, especially using the
BLSTM classifier. However, our results indicate that the gender dis-
crimination on song level is equally robust when using the results
from the 3-class task. Most importantly, it can be argued that this task
is the more realistic one, since it reflects the most common situation
where the alignment of lyrics in the songs is unknown.

As a consequence, the performance gain on beat level by our
novel technique to combine BLSTM and leading voice separation
is especially valuable for a real-world application scenario. Fur-
thermore, this performance gain is particularly interesting since the
leading voice separation method is entirely unsupervised and further
improvements can therefore be expected by integrating a training
or adaptation stage. On the other hand, the beat level decisions of
3-class BLSTM classifier deliver an accuracy of up to 93.1 % on song
level, which is almost 6 % absolute above our previous best result [3].

Building on these promising achievements, we will consider a
source separation procedure that integrates leading voice separation
and enhancement of harmonic components. Additionally, we will
investigate how to best deal with simultaneous performance of artists.
To this end, we will have to overcome limitations of the source
separation process – the leading voice separation algorithm can only
handle one main melody – as well as the classification. For example,
we might consider a BLSTM regression (instead of classification)
on voice activity for male / female artists. On the other hand, we
might try to train with artificial mixtures to increase training material
especially for the ‘duet’ class.

6. ACKNOWLEDGMENT

The authors would like to thank the student assistants Pascal Staudt
and Christoph Kozielski for their highly valuable contributions.

7. REFERENCES

[1] T. Vogt and E. André, “Improving automatic emotion recogni-
tion from speech via gender differentiation,” in Proc. of LREC,
Genoa, Italy, 2006.

[2] A. Mesaros and T. Virtanen, “Automatic recognition of lyrics
in singing,” EURASIP Journal on Audio, Speech, and Music
Processing, vol. 2009, Article ID 546047.

[3] B. Schuller, C. Kozielski, F. Weninger, F. Eyben, and G. Rigoll,
“Vocalist gender recognition in recorded popular music,” in Proc.
of ISMIR, Utrecht, Netherlands, August 2010, pp. 613–618.

[4] J.-L. Durrieu, G. Richard, B. David, and C. Févotte,
“Source/filter model for unsupervised main melody extraction
from polyphonic audio signals,” IEEE Transactions on Audio,
Speech, and Language Processing, vol. 18, no. 3, pp. 564–575,
2010.

[5] J.-L. Durrieu, G. Richard, and B. David, “An iterative approach
to monaural musical mixture de-soloing,” in Proc. of ICASSP,
Taipei, Taiwan, 2009.

[6] M. Helén and T. Virtanen, “Separation of drums from poly-
phonic music using non-negative matrix factorization and sup-
port vector machine,” in Proc. of EUSIPCO, Antalya, Turkey,
2005.

[7] A. Graves, Supervised sequence labelling with recurrent neural
networks, Ph.D. thesis, Technische Universität München, 2008.
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