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1Institut National de l’Audiovisuel, 4 avenue de l’Europe 94366 Bry-sur-marne Cedex, France

2Institut Telecom, Telecom ParisTech, CNRS/LTCI, 37 rue Dareau, 75014 Paris, France

Correspondence should be addressed to Sebastien Gulluni (gulluni@telecom-paristech.fr)

ABSTRACT
In this paper, we present an interactive approach for the classification of sound objects in electro-acoustic
music. For this purpose, we use relevance feedback combined with active-learning segment selection in an
interactive loop. Validation and correction information given by the user is injected in the learning process
at each iteration to achieve more accurate classification. Three active learning criteria are compared in the
evaluation of a system classifying polyphonic pieces (with a varying degree of polyphony). The results show
that the interactive approach achieves satisfying performance in a reasonable number of iterations.

1. INTRODUCTION
In marked contrast to other more conventional musical
forms, the composers of electro-acoustic music work di-
rectly with the “sound material” using recording tech-
niques [1]. Apart from a very few exceptions, the com-
posers have not created a symbolic representation of their
pieces that could be assimilated to a score sheet. This
renders the analysis and study of this type of music quite
complex and totally user-centered, hence our work to-
wards developing adaptive classification systems capa-
ble of analyzing and structuring electro-acoustic music
in a semi-automatic fashion using user relevance feed-
back [2], which to the best of our knowledge remains an
original approach.

Previous works on polyphonic timbre classification have
focused on “standard” instruments and percussion used
in the majority of conventional music [3, 4, 5, 6]. In
these approaches, as individual timbres are known, it is
possible to build supervised systems by using large au-
dio databases which involve the corresponding standard
instruments. In the electro-acoustic case, composers ex-
ploit various sound sources and we do not have a-priori
knowledge about these sources which are most of the
time polyphonic and heterogeneous. The reader can re-
fer to [7] (a multimedia presentation on the works of im-
portant composers of the genre) for examples of electro-
acoustic compositions.

Relevance feedback has been widely used in content-
based image retrieval tasks (see [8] for an overview).
Many works use classifiers to learn high level semantic
concept from low level features for the image retrieval
task. The user gives feedback to the system by quali-
fying the images returned as “relevant” or “irrelevant”.
The present work uses this approach to identify complex
sounds.

Opposing to image retrieval, relevance feedback and ac-
tive learning have only been used in a few studies [9, 10]
in the field of audio retrieval. In [9] the study is focused
on the task of pop music retrieval based on user prefer-
ences and [10] is about mood and style classification.

In this work, we propose an interactive approach with
relevance feedback adapted to the analysis of electro-
acoustic compositions which are traditionally organized
in sound objects. Here, we define “sound object” as any
sound event perceived as a whole [1]. Most of the time
a music piece does not expose separated sound objects,
i.e. simultaneous sounds are masking each others due to
polyphony. As in [6], we use sound mixtures which con-
tain the target object as positive samples, and sound mix-
tures which do not contain the target object as negative
samples for learning. The interactive classification of
sound objects uses relevance feedback and active learn-
ing segment selection (see Figure 1). From a user’s point
of view, the search for a target sound object begins with

AES 42ND INTERNATIONAL CONFERENCE, Ilmenau, Germany, 2011 July 22–24
1



Gulluni et al. Interactive Classification of Sound Objects

Initial Segments

Initial Selection

Validated 
Segments

Predicted 
Segments

All Segments

User

Classifier

Active Selection

Predicted Segments

Validated Segments

Predicted Segm
ents

Selected Segment 
Validation Request

Selection

Validation/Correction

Interactive Loop

Learning

Classifier Parameters

U
nv

al
id

at
ed

 S
eg

m
en

ts

Fig. 1: Overview of the interactive system

the selection of 2 segments: the first contains the target
sound (positive samples) and the second does not (nega-
tive samples). Then, the system enters in an interaction
loop and suggests, at each iteration, segments to be anno-
tated by the user to make learning progress. On each new
proposed segment, the user can correct the system’s la-
bel prediction. The interaction loop ends when the user
is satisfied with the annotation. We compare different
active learning criteria and show that we can obtain sat-
isfying results in a reasonable number of iterations for
different degrees of polyphonic complexity.

The paper is organized as follows: Section 2 describes
the interactive classification approach including the user
scenario and active learning segment selection. Section
3 is dedicated to the evaluation of the method and the last
section suggests some conclusions.

2. INTERACTIVE CLASSIFICATION SYSTEM

In this section, we describe all the aspects of the classifi-
cation system including the user point of view.

2.1. System architecture
Figure 2 is a representation of a polyphonic piece which
involves potential sounds masking: the distinct sound

layers are arranged in parallel timelines (one for each
sound). The goal of the annotation is to mark the pres-
ence of the different sounds in the whole piece. The clas-
sification operates on segments, i.e. temporal fragments
of homogeneous timbre (as shown with vertical orange
lines in Figure 2). In this work, the segment boundaries
are supposed to be known to allow us to focus on the
classification problem. In future work, the segmentation
could be obtained interactively as in [11].

The interactions of the user with the system can be sum-
marized as follows:

1. The user selects a segment Si+. This segment
should be the most characteristic instance of a class
Ci (see Figure 2). Hence, the chosen segment should
be the one in which the target sound class is per-
ceived by the user to be the least masked by other
signals.

2. The user selects a segment Si− which does not con-
tain the target sound class Ci.

3. The system learns from the validated segments and
enters in the classification process to automatically
annotate the remaining parts of the signal.

4. In order to improve the previous classification, the
system selects a segment, based on one of the ac-
tive learning strategies described in Section 2.4, and
asks the user to validate or correct its current label.

5. If the user is not satisfied with the current overall an-
notation, the system goes back to step 3. Otherwise,
the system goes back to step 1 to annotate the next
class Ci+1 until all the target classes are annotated.

2.2. Feature extraction
The features are calculated on 20ms windows with 50%
overlap. The sampling rate of the sound files is 44.1kHz.
To cope with the complexity of the sounds to be classi-
fied, a large set of audio features is considered and fea-
ture selection is used and updated at each relevance feed-
back iteration. The reader can refer to [12, 13] for a com-
plete description of the features. All the features used
and the corresponding number of attributes are listed in
Table 1. Feature extraction was performed using the
YAAFE software [14]. A total of 217 attributes were
extracted from 25 descriptors.
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Fig. 2: Time-line representation of a polyphonic piece
with Ci (target class), Si+ (initial positive segment) and
Si− (initial negative segment). Though the distinct sound
layers are here displayed in parallel time lines (a), in real
situations the user can actually only see the final mix
made by the composer that appears as a single track (b).
The initial user selection and subsequent validations are
done by listening.

2.3. Classification

In this system, the classification task consists in detect-
ing the presence of a given class for all the segments of
the music piece. Classifications are performed indepen-
dently for all the classes of the music piece. A character-
istic of this system is that it uses polyphonic segments as
in [6] in a “one vs all” fashion for the learning phase. In
other words, positive samples are those which contain the
target sound class and negative samples are those which
do not. This implies that the positive segments may be
complex sound mixtures which contain other sounds.

The classification phase begins with a feature selection
based on the Fisher discriminant [15]. The algorithm it-
eratively selects the attributes which maximize the Fisher
discriminant and the d best features are kept to define
the feature space for the current target class. The pa-
rameter d was experimentally determined using a sep-
arate database and a value of d = 10 has been found
to be an appropriate trade-of between performance and
complexity. The goal of the selection is to create a rel-
evant descriptor for each sound class. As this selection
is part of the interaction loop, the sound descriptors may

Feature Name Attributes
Auto Correlation 49

Root Mean Square Energy 1
Amplitude Envelope 6

Envelope Shape Statistics 4
Linear Predictive Coding 2
Line Spectral Frequencies 10

Loudness 24
MFCC (and derivates order 1,2) 39
Octave Band Signal Intensities 10

Octave Band Signal Intensities Ratio 9
Perceptual Sharpness 1

Perceptual Spread 1
Spectral Crest Factor Per Band 23

Spectral Decrease 1
Spectral Flatness 1

Spectral Flatness Per Band 23
Spectral Flux 1

Spectral Rolloff 1
Spectral Shape Statistics 4

Spectral Slope 1
Spectral Variation 1

Temporal Shape Statistics 4
Zero Crossing Rate 1

Total number of attributes 217

Table 1: List of the extracted features

evolve accordingly with the user feedback. This method
is adapted to our problem since we do not have prior
knowledge on the sound sources.

After the selection process, the feature vectors of the cur-
rent validated segments (Figure 1) are used to train a
Support Vector Machine (SVM) classifier [16]. In the
same way as we do in the feature selection phase, a sepa-
rate database was used to find the optimal parameter set-
tings for the SVM. We use probabilised output SVMs1

to obtain a frame-level posterior probability p(Ci|X j)
of the class Ci on each frame feature vector X j [18].
Then, a segment-level probability P(Ci|X jτ , ...,X jτ +Lτ−1)
is computed for each segment. For this, the sum of
all frame-level log probabilities is used. The probabil-
ity on the τ th texture segment of length Lτ is given by:
P(Ci|X jτ , ...,X jτ +Lτ−1) = ∑

jτ +Lτ−1
j= jτ log p(Ci|X j). Finally,

the label of a texture segment is given by the maximum
probability criterion.

1we use the libSVM implementation [17].
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2.4. Active learning for segment selection

Relevance feedback has been widely used in multimedia
Information Retrieval and the reader can refer to [2] for
an overview. In the context of this work, our approach
consists in gradually adding new segments validated by
the user in the learning process. As a consequence, the
labels predicted for the other segments may evolve at
each iteration of the algorithm. The process begins with
a limited number of segments for training the classifier
and the training segment dataset grows step by step as
user-validated segments are injected. The goal of this
approach is to obtain the correct labeling of samples in
a reasonable number of iterations. Active learning the-
ory proposes sampling strategies which are used to select
the segments to be user-validated first. The choice of an
adapted sampling strategy criterion is crucial to obtain
correct labeling quickly (See section 3.3).

In this work, we compared the following sampling strate-
gies which were used successfully with SVM classifiers
in other relevance feedback studies [citer papier RF].

• Most Positive: this strategy chooses in priority the
samples which have the highest probability to con-
tain the target class;

• Most Negative: in contrast to the previous strat-
egy, this one selects first the samples which have
the lowest probability to contain the target class;

• Most Ambiguous: this strategy chooses first the
uncertain samples (probability near 0.5). In the
SVM classifier point of view, most ambiguous sam-
ples are the closest to the hyperplane in the feature
space.

For each probability given by the classifier, we compute
a score in accordance with the used sampling strategy
(see Figure 3). Given this score for each frame of audio,
we obtain a score for each segment by temporal integra-
tion, where the segment score is the mean of the under-
lying frame scores. The temporal integration allows us
to obtain a unique sampling strategy score for each seg-
ment and to rank them. The segment which maximizes
the chosen sampling strategy is selected and the segment
validation request is sent to the user.
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Fig. 3: Sampling strategies score calculation

3. EVALUATION

User-based experiments are very time consuming and re-
quire the creation of ground-truth annotation of numer-
ous music pieces, which often turns out to be even more
tricky, especially as far as electro-acoustic music is con-
cerned. Indeed, there exists only a few annotations in this
case which mix the description of sound objects with the
annotators’ subjective interpretation of the pieces. As
a result, to validate our method with a descent number
of files and easily compare the different parameters set-
tings, we opted for a user simulation with synthetic music
pieces generation.

3.1. Synthetic pieces generation

The goal of the synthetic pieces generation is to create
a polyphony of complex sounds. As a consequence, the
sounds used for the generation are initially complex and
have a temporal evolution.

Three composers of electro-acoustic music from the
Groupe de Recherches Musicales (INA-GRM) were in-
volved to provide sounds. These sounds, for the most
of them, come from personal sound recordings and were
chosen independently by the composers without any
compositional intents. However, the only constraint
was to opt for acoustically homogeneous sounds in the
sense that the main timbral characteristics of each sound
selected had to remain stable over its duration in or-
der to consider it as an individual class instance. The
three composers selected a total of 24 sounds (hence 24
classes) which were used for the generation of the syn-
thetic pieces. The most important characteristics of the
selected sounds are the length and complexity:
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• Lengths vary from one second to a minute;

• Some sounds are built from an aggregate of smaller
elementary sound events;

• Some sounds are composed from the superposition
of many elementary sound events.

In order to make a more accurate study of the polyphonic
evolution, 5 versions of the same basic piece were gen-
erated with a different degree of polyphony. The first
version of each piece is monophonic and the fifth has a
polyphonic degree of 5 sounds. As a result, for the ith

version of the piece, we have a maximum of i sounds
playing at the same time. A total of 100 pieces were gen-
erated with 5 polyphonic versions for each. All pieces
are 2-minute long. The reader can refer to the website of
this paper2 for examples of individual sounds and syn-
thetic pieces. The generation process to make sequences
of sound events was to take 5 arbitrary sounds from the
24 available and then to extract randomly segments in the
selected sounds to make different instances of the same
class. By alternating sound events and silence, we ob-
tained sound layers that we juxtaposed accordingly with
the polyphony of the generated piece. In these synthetic
files, the different instances of the sound classes are con-
sidered as the target sound objects.

3.2. User simulation

In this work, we focus on the classification of segments
longer than 0.5 s since shorter segments could be mis-
judged by the user when asked for validation, due to hu-
man perception limitations. The successive interaction
steps of the user with the system exposed in Section 2.1
were simulated for the 500 sound files of the whole cor-
pus. For the initial selection of the segment Si+, the seg-
ment with the smallest masking degree is selected: the
simulation algorithm first filters the segments which do
not contain the sound class Ci and the segment with the
smallest polyphonic degree, i.e. the one involving the
smallest number of sound classes, is selected.

3.3. Results

For the validation of the interactive method, we mon-
itored the behaviour of the F-measure scores for 500
pieces over the sequence of relevance feedback itera-
tions: the user simulation algorithm loops until the max-
imum score is reached. The goal is to minimize the

2http://www.tsi.enst.fr/~gulluni/aes2k11/
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Fig. 4: Average F-measure versus number of iterations
for the three active learning criteria (polyphony = 3).
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number of iterations. We compute the F-measure score
Fi for the class Ci using the segment-level predictions:
Fi = 2RiPi

Ri+Pi
where Ri is the recall and Pi is the precision

for the ith class.

Figure 4 is a global view of the average F-measure evolu-
tion for all iterations of the experiment. Figure 5 shows
the detailed performances of the first iterations for the
three sampling strategies (Most Ambiguous, Most Posi-
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Fig. 6: Average F-measure versus number of iterations
for five polyphonic degrees with the MA sampling strat-
egy.

tive, Most Negative). The two figures are the results for
the intermediate polyphonic degree (polyphonic degree
= 3) and show that the Most Ambiguous strategy per-
forms significantly better than the Most Positive and the
Most Negative strategies. An average number of 12 iter-
ations to get a F-measure of 0.95 is shown in Figure 4 for
the Most Ambiguous strategy. The Most Positive strat-
egy takes an average number of 19 iterations to get the
same score and the Most Negative is the worst with 41
iterations.

Figure 6 shows the average F-measures for the five poly-
phonic categories in the Most Ambiguous case. As ex-
pected, the performance decreases significantly when the
polyphony becomes more complex. The monophonic
case takes 4 iterations on average to get a performance
score of 0.95 and the same score is obtained in 20 itera-
tions for the most polyphonic cases.

4. CONCLUSION

In this study we have proposed an interactive classifica-
tion system adapted to the annotation of electro-acoustic
music. The lack of a-priori knowledge of the sound
sources makes the classic techniques for polyphonic mu-
sic classification difficult to apply [3, 4, 5]. Three
sampling strategies have been compared and the Most
Ambiguous criterium has been shown to perform best.
Sound classes can be successfully annotated in an aver-
age of 4 iterations for the monophonic case, 12 iterations
for the intermediate case (polyphonic degree = 3) and 20
iterations for the most polyphonic case.

Future work will focus on limiting the number of inter-
actions with the user. More than one segment could be
selected by the system and the user could give more feed-
back before a new learning phase is launched. In paral-
lel, to extend the evaluation to real users and real music
pieces, dedicated effort will be devoted to the design of
an appropriate user interface.
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