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Typology of the mixture models

_ Introduction

v

Definition of the problem
> Observations: M mixtures x(t), concatenated in a vector x(t)
> Unknowns: K sources si(t), concatenated in a vector s(t)
» Source separation > General mixture model: function &/ which transforms s(t) into x(t)

> Art of estimating "source” signals, assumed independent, from the observation of one or » Stationarity: & is translation invariant

several "mixtures” of these sources . Li itv: o i i
. . Inearity: IS a linear map
> Application examples: . M
.. . . emory:
> Denoising (cocktail party, suppression of vuvuzela, karaoke) . M i .
> Separation of the instruments in polyphonic music . ﬁz::ﬂ:ﬂ:gu?zﬁiﬁies X(t) = As(1)
> Remix, transformations, re-spatialization : -
P > o is defined by the "mixture matrix” A (of dimension M x K)

> Inversibility:
> Determined mixtures: M =K
» Over-determined mixtures: M > K
> Under-determined mixtures: M < K
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_ Instantaneous linear mixtures
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_ Anechoic linear mixtures
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(a) XY Stereo configuration (b) Direct injection to the mixer
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Convolutive linear mixtures

(a) Convolutive mixture

(b) Binaural mixture
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Mathematical reminders
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_ Real random vectors

v

Notation: ¢[x] denotes a function of p(x)

> Mean vector: u, = E[x]
T =E[(x— ) (x— 1) 7]
» Characteristic function: ¢, (f) = E[ef2"”fo] = [gp(x)e

. (F e+2i7rfo df
R

» Covariance matrix:

—2imf T x gy

v

Probability distribution: p(x) =
» Cumulants:
> Definition: In(¢.(f)) = Z 2t 2'”) Z Z Ky Xy - -

—1kn=1
k"[x] is an n-th order tensor
k![x] is the mean vector, k2[x] is the covariance matrix
If p(x) is symmetric (p(—x) = p(x)), k"[x] =0 for any odd value n
the ratio Kf‘k?k‘k[x]/(qu‘k[x])2 is called "kurtosis”

vyvyVvyy
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WSS vector processes

> Definition: the cumulants of orders 1 et 2 are translation-invariant
» Covariance matrices of 2 centered WSS processes x(t) and y(t):

> Definition: R, (t) =E [x(t+1)y(t)"]

> Property: R (0) =X, is Hermitian and positive semi-definite.
» PSD matrices of a WSS process x(t):

> Definition: S, (V) = ¥ Ru(7)e 27

[=A
> Property: Vv, S, (V) is Hermitian and positive semi-definite
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_ Real Gaussian random vectors

» The Gaussian distribution is the one such that all cumulants of order n > 2 are
zero

> Characteristic function
0. (F) = exp(—2inf T u, —272F T . f)
> Probability density function (defined if X is invertible)

p(x) = —x——exp (- 3(x— 1) TE (x— 1))
en% det(}:xx)?
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Information theory

» Shannon entropy
> Definition: H[x] = —E[In(p(x))]
> H[x] is not necessarily non-negative for a continuous r.v.
» Kullback-Leibler divergence
> Dia(plla) = [ p(x)In (23 ) dx
> Property: Dk, (pl||q) >0, Dki(p|lqg) =0 if and only if p=g¢q
» Mutual information
> Definition: I[x] = E [m (W)] = D (p(¥)[|p(x1)-.. p(x))

> Property: I[x] =0 if and only if x;...xx are mutually independent
> Relationship with entropy: T[x] = Y, H[x] — H[x]
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I Blind source separation (BSS)

v

Observation model:

Part 111

> Vt, x(t) = As(t) where A € RM*K is called the "mixture matrix”

K T
> Sources are assumed IID: p({sc(t)}x¢) = k]:Il tI:[ka(sk(t))

v

Linear instantaneous mixtures Problem: estimate A and sources s(t) given x(t)

Definition: non-mixing matrix

v

> a matrix C of dimension K x K is non-mixing if and only if it has a unique non-zero
entry in each row and each column

» 1 5(t) = Cs(t) and A=AC™!, then x(t) = A§(t) is another admissible
decomposition of the observations
> Sources can be recovered up to a permutation and a multiplicative factor
TELECOM TELECOM
5 i | 5 diii |
Linear separation of sources
Part IV
» Let y(t) = Bx(t), where B € RX*M is referred to as the "separation matrix”
» Linear separation is feasible if A has rank K:
> We get y(t) =s(t) by defining: .
» B AT in the determined cose (M — K) Independent component analysis
> B=A" in the over-determined case (M > K)
> the pseudo-inverse A" = (ATA)~1AT is such that ATA = I
> In the under-determined case (M < K), separation is not feasible
TELECOM TELECOM
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. Independent component analysis (ICA) N Whitening

> In practice matrix A is unknown:

> We look for a matrix B that makes the yj independent (ICA)
> We then get equation y(t) = Cs(t), where C = BA >

We now suppose that the sources are centered: E[s(t)] =0 and that the mixture
> The problem is solved if matrix C is non-mixing

is (over-)determined

> Canonical problem: we can assume without loss of generality that s(t) is spatially
y(t) x(t) s(t) white (Ze = E[s(t)s(t)T] = Ix)
— B A ss — . —T K
> Then X, = AX, A’ =AA’: A is a matrix square root of X,y
> We first aim to whiten (decorrelate) the mixture:
ﬁ » ¥, is diagonalizable in an orthonormal basis: £, = QA’Q” where A = diag(A1...Am)
(t) s(t) with A1 > Ak > Ak41 = Am = 0 (the rank of X, is equal to K)
y C > Let S =Q(1.x)Awk k) € RMK
> S is a matrix square root of £,,: X, =SS’
e > Let W=S" and z(t) = Wx(t)
> Theorem (identifiability)

v

Then 2(t) is white (E[z(t)] =0 and X, = WX, W™ =1)
> Let s, be K IID sources, among which at most one is Gaussian, and y(t) = Cs(t) with

C invertible ((over)-determined case). If signals yx(t) are independent, then C is
non-mixing.

TELECOM TELECOM
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Whitening Higher order statistics
» We conclude without loss of generality that U £ WA is a rotation matrix
(uuT =1).
> Then y(t) = UTz(t) = UTWx(t) = (WA)"L(WA)s(t) = s(t). > One can estimate X, from the observations and get W
» We can thus assume B — UTW where U is a rotation matrix. > The whiteness property (second order cumulants) determines W and leaves U
k .
(1) 2(t) x(t) e
u’ W — > |If sources are Gaussian, the z; are independent and U cannot be determined.
> In order to determine rotation U, we need to exploit the non-Gaussianity of
T sources and characterize the independence property by using cumulants of order
greater than 2.
y(t) x(t)
— B D
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e i |




BN Contrast functions B Algorithm

v

Definition: ¢ is a "contrast function” if and only if $[Cs(t)] > ¢[s(t)] VC and if o ) )
#[Cs(t)] = ¢[s(t)] < C is non-mixing. 1. Estimation of the covariance matrix X,y

. . . . _ 2AT T .
> Separation is performed by minimizing ¢[y(t) = Cs(t)] with respect to U (or B) ?|a>gona|>|zzt|02 (‘))f Lot Lo =QA°Q" where A =diag(4; ... Am) with
» "Canonical” contrast function: ¢m[y(t)] =I[y(t)] L= =M=

A

C tati S =Q1.0)N1.K.1-
» Orthogonal contrasts: to be minimized under the constraint E[y(t)y(t)7] =1. For omputation © Q1010

instance, 9 [y(£)] = Li_q H(y(t))
> Order 4 approximation of @5, ¢;-aly(t)] =

Computation of the whitening matrix W = S

___'(ng/[y(t)])z Data whitening: z(t) = Wx(t)

>
ijklIiiii
> Descent algorithms for minimizing ¢ with respect to B or U:

> Gradient algorithm applied to matrix B
> Parameterization of U with Givens rotations and coordinate descent

Estimation of U by minimizing the contrast function ¢°

N o o~ w

Estimation of source signals via y(t) = U7 z(t)
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Temporal coherence of sources

Part V > Model: E(s(t)) =0, Rss(7) =E (s(t +7)s(t) ") = diag(rs, (7))
> Canonical problem: we assume that X4 = Rg(0) =1
» We first aim to spatially whiten the mixture:

> Let S be a matrix square root of X,
Second order methods Lot W 5" ot ()

» Since X, = AAT, U2 WA is a rotation matrix
> However, V1 € Z, R, (7) = URg(7)UT

> The joint diagonalization of matrices R,(7) for various values of T permits us to
identify rotation U
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_ Joint diagonalization

> Unicity theorem :

> Let a set of matrices R,,(7) of dimension K x K and of the form R,,(t) = UR(7)U”
with U unitary and Ry (7) = diag(rs, (7)). Then U is unique (up to a non-mixing matrix)
if and only if V1 < k # I < K, there is T such that r;, (1) # r5 (1)

» Joint diagonalization methods: minimize the criterion

JU)=Y, HUTRZZ(T)U fdiag(UTRzz('L')U)H%_—

> Parameterization of U with Givens rotations and coordinate descent

Non-stationarity of sources

v

Model: E(s(t)) =0, Xss(t) £E (s(t)s(t)") = diag(o7(t))
Then Vt € Z, X, (t) = AXg(t)AT
Joint diagonalization methods: minimize the criterion
J(B) =Y |BEx(t)B" —diag(BE(£)BT)|}

v

v

> Gradient descent algorithm applied to matrix B
> In the over-determined case, B must be constrained to span the principal subspace of all
matrices X, (t)

> Variant of the SOBI algorithm:
1. Segmentation of source signals and estimation of covariance matrices X (t) on
windows centered at different times t
2. Joint diagonalization of matrices X,,(t) in a common basis B
3. Estimation of source signals via y(t) = Bx(t)
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_ SOBI algorithm

> Second Order Blind Identification (SOBI)
1. Estimation and diagonalization of X,.: X, = QA2Q7 where A = diag(A; ... Ay) with
M>...>Au>0
Computation of S = Q. 1.k)A@:k,1:K)
Computation of the whitening matrix W = S°
Data whitening: z(t) = Wx(t)
. Estimation of covariance matrices R, (7) for various delays ©
Approximate joint diagonalization of matrices R,,(7) in a common basis U
. Estimation of source signals via y(t) = U7 z(t)

Noorw N

Conclusion of the first part

> The use of higher order cumulants is only necessary for the non-Gaussian 1D
source model
» Second order statistics are sufficient for sources that are:

> stationary but not IID (— spectral dynamics)
> non stationary (— temporal dynamics)

> Remember that classical tools (based on second order statistics) are appropriate
for blind separation of independent (and possibly Gaussian) sources, on condition
that the spectral / temporal source dynamics is taken into account.
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Part VI

Time-frequency methods

Non-stationary source model

» Assumption: independent and centered second order processes
> Model of non-stationary sources:

> if the time frames n; and ny are disjoint, then sy (.,n1) and si(.,ny) are uncorrelated and of
distinct variances

> Model of WSS sources:
> if sub-bands f; and £, are disjoint (hf1 *sz =0), then si(f1,.) and s (f,.) are WSS,
uncorrelated and of distinct variances Gf(fl) = (h,'1 *Ffl *rs,.)(0) and
07(f2) = (hs, * hg, % 15,)(0)
> Time-frequency source model:

> all s, (f,n) are uncorrelated for all n and f, of distinct variances o‘f(f, n) (= time-frequency
dynamics)

KA
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_ Time-frequency representations

» Motivations

> Us

>

€
>

>
>
>
>

Spectral and temporal dynamics are highlighted by a time-frequency (TF)
representation of signals

TF representations are appropriate to process convolutive and/or under-determined
mixtures

of a filter bank (examples: STFT, MDCT):
Decomposition in F sub-bands and decimation of factor T < F
Analysis filters hs and synthesis filters gr

TF representation of sources: si(f,n) = (hf*s,)(nT)

TF representation of mixtures: xp,(f,n) = (hf*xy,)(nT)
Perfect reconstruction: sy (t) =Y ;¥ pczgr(t—nT)sc(f,n)

> Then Vf,n, x(f,n) = As(f,n) (same linear instantaneous mixture)

TELECOM
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Separation method

> Separation by joint matrix diagonalization:
> Let Xy (f,n) =E[s(f,n)s(f,n)T] and X, (f,n) = E[x(f,n)x(f,n)7T]
> Then X, (f,n) = AZ(f,n)AT where Xy (f,n) = diag(c?(f,n))

> Variant of the SOBI algorithm:

gD

TF analysis of the mixtures: xi(f,n) = (hf*x)(nT)
Estimation of covariance matrices X, (f,n)

Joint diagonalization of matrices X, (f,n) in a basis B
Estimation of the source signals via y(f,n) = Bx(f,n)

TF synthesis of the sources: yi(t) =X Ypezgr(t—nT)yi(f,n)
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_ Convolutive linear mixture

> Instantaneous mixture model unsuitable for real acoustic mixtures
Let x,(f,n) € RM be the image of source si(f,n)
> received multichannel signal if only source s (f,n) was active
> Mixture model: x(f,n) =YK | x,(f,n)
Convolutive mixtures » Decomposition of the source separation problem

> separation: estimate x,(f,n) from the mixture x(f,n)
> deconvolution: estimate s, (f,n) from x,(f,n)

> Mixture model: xp(t) =YK | (amk *sk)(t), i.e. x(t) = Axs(t)
Theorem (identifiability)

> Let s, be K IID sources, among which at most one is Gaussian, and y(t) = Cxs(t) with
C invertible ((over)-determined case). If signals y,(t) are independent, then C is

v

Part VII

v

non-mixing.
TELECOM TELECOM
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Time-frequency approach Independent component analysis
H . _vK
g Z/llxture rnodel. Xm(t) = Liem (ami %5)(1) > Let y(f,n) = B(f)x(f,n), where B(f) € CKx*M
g ssumptl.ons. > Linear separation is feasible if A(f) has rank K:
> the filter bank corresponds to an STFT - W £ ) =s(f.n) by defining:
> the IR of a, is short compared with the window length e get y(f,n) =s(f,n) by defining:
> Vm, k,f, amk(V) varies slowly compared with h¢(v) > B(f) = A(f)"1 in the determined case (M = K)
> = (hfxami)(t) = ami(F) he(t) > B(f) =A(f)" in the over-determined case (M > K)
> Approximation of the convolutive mixture model: > In the under-determined case (M < K), separation remains impossible
im(F,n) = XK, ami(F)si(F,n) > In practice matrix A(f) is unknown:
. ) . B > We look for B(f) that makes the y,(f,n) independent (ICA)
> Matrix form: x(f,n) = A(f)s(f,n) > We then get y(f,n) = C(F)s(F,n), where C(f) — B(F)A(F)
> F instantaneous mixture models in every sub-band > C(f) is non-mixing
> = we can use any ICA method in every sub-band
TELECOM TELECOM
EZET EZET
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_ Indeterminacies _ Convolutive mixture models

> Problem: indeterminacies (permutations and multiplicative factors) in matrices
c(f)

> Vk, identify indexes ks such that Vf, ykf(f,n) = Ckf,ksk(f, n)
> identify the multiplicative factors Ckp k

» Beamforming model:

> Assumptions: plane waves, far field, no reverberation, linear antenna

> Model: ami(f) = e 2" mk where Ty = 92 sin(6y)

> Parameters: positions d,, of the sensors and angles 6y of the sources
> Anechoic model:

> Infinitely many solutions = need to constrain the model:
> Assumptions on the mixture

> continuity of the frequency responses a(f) with respect to f

> Assumptions: punctual sources, no reverberation ,
> — beamforming model and anechoic model > Model: am(f) = Amie 2™ "mk where Qm = \/“_"—lfmk and Tk = ngk
> Assumptions on the sources > Parameters: distances r,,, between the sensors and sources
> similarity of the temporal dynamics of Gf(ﬂn)
TELECOM TELECOM
EHEG T
Under-determined convolutive mixtures
> Usual case in audio: monophonic (M = 1) or stereophonic (M = 2) mixtures, with
Part VIII a number of sources K > M
» Convolutive mixture model: x(f,n) = A(f)s(f,n) with M < K
> Assumption: the mixture model A(f) and the source model X (f,n) are known
Under-determined mixtures > Even in this case, the exact separation is not feasible, because there is no matrix
B(f) such that B(f)A(f) =k
y(f,n) x(f,n) s(f,n)
B(f) A(f) |—
TELECOM TELECOM
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_ Separation via non-stationary filtering _ Separation method

> Let y(f,n) = B(f,n)x(f,n) where B(f,n) € CK*M depends on n
> Minimum Mean Square Error (MMSE) estimator: we look for B(f,n) which

minimizes E[[ly(f.n) —s(f,n)|2] 1. TF analysis of the mixtures: xx(f,n) = (hf*xx)(f,nT)
. 7 2 1 2. Estimation of A(f) and ¢2(f,n)
> Solution: B(f,n) = Eo(f,n) T, n) > instantaneous mixture model
where X, (f,n) = A(f)Zss(f,n)A(F)H and T (f,n) = Zes(F,n)A(F)" (()H » sparse source model
denotes the Hermitian conjugate) i Y -1
> Remark: x(f,n) = A(f)y(f,n) (exact reconstruction) 3. Corjnput.atlon of B(f,n) = .Zss(f,n.)A(f) (A(F) Zss(,m)A()")
» Particular case: monophonic mixtures 4. Estimation of the source signals via y(f,n) = B(f,n)x(f,n)
> Without loss of generality we define A(f) =[1,...,1] 5. TF synthesis of the sources: yx(t) =Yf_; Y ez gr(t—nT)yk(f,n)
> We get yi(f,n) = Lﬂ;n) x(f,n)

> = similar to Wlener f||ter|ng

TELECOM TELECOM
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Stereophonic mixtures: temporal sparsity Spar5|ty in a transformed domain
Case of a linear instantaneous stereophonic mixture: x(t) = As(t) Case of a linear instantaneous stereophonic mixture: x(f,n) = As(f,n)
2 2
% W'wbw”iﬁw,ﬂ: Jail »‘AJ‘A - ; -
o ,f! = e
- F < . 1 1r
E, MM Mm // -
‘ LAk o
0 S f - g
% NPL — e ——%v 5 ”% ¥ 0 g o
g > =
b e . : ) o
gw»MMMJ ST T Y 0 ) ; it I
Y — - ) | ] | | |
1000 2000 3000 4000 5000 6000 -04 02 0 02 04 2 -1 0 1 2 -22 -1 0 1 2
x1inl x1 MDCT(x1)
(a) Temporal source signals and corresponding stereo mixture . (b) Dispersion diagrams (1. r2) over time (a) Time samples (b) Time-frequency coefficients after MDCT decomposition

TELECDM TELECGM

’aris 2aris

WHET WA
43/48 Une école de I'MT @ e eares U Une école de IIMT @ e ans




BN DUET method B DUET method

1. TF analysis of the mixtures: x,(f,n) = (hfxxx)(nT)

> Degenerate Unmixing Estimation Technique (DUET) 2. Estimation of parameters 6 and of the active source k(f )

> Linear instantaneous stereophonic mixture model: x(f,n) = As(f,n) > computation of the histogram of the angles of vectors x(f,n)

. . | cos(6k) > peak detection in order to estimate parameters 0y
> Without loss of generality, we assume A = { sin(6k) vk > determination of the active source at (f,n) by proximity with 6y
> Sparse source model: 3. Source separation: for all k,
> Vf,n, 3! ki such that Uf(f )(f,n) >0, and VI # k(¢ n), o?(f,n)=0 > estimation of source images via binary masking: y,(f,n) =x(f,n) V (f,n) such that
\n

k(f.ny = k and y,(f,n) = 0 for the other time-frequency bins (f,n)
> MMSE estimation of the sources: yi(f,n) = a,(f)"y,(f,n)

4. TF synthesis of the sources: yx(t) =YFr_; Y ez gr(t—nT)yk(f,n)

v

If only source k is active at (f,n), then x(f,n) = agsk(f,n)
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Conclusion
Part IX > Summary

> Source separation requires to make assumptions about the mixture and sources
> For an (over-)determined instantaneous linear mixture, the assumption of independent
. sources is sufficient
Conc|u5|on > In all other cases, we need to model the mixture and/or the sources
> Perspectives
> Non-stationary mixtures (adaptive algorithms)
> Informed source separation (e.g. from music score)
> Deep learning techniques
> Objective assessment of audio source separation
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