

Audio source separation

Roland Badeau, roland.badeau@telecom-paris.fr

M2 MVA Audio signal analysis, indexing and transformation

> Art of estimating "source" signals, assumed independent, from the observation of one or

Part I

Introduction

Introduction

Source separation

Application examples:

several "mixtures" of these sources

Remix, transformations, re-spatialization

Denoising (cocktail party, suppression of vuvuzela, karaoke)

Separation of the instruments in polyphonic music

2/48	Une école de l'IMT	Audio source separation
	Typology of the mix	ture models

- Definition of the problem
 - Observations: *M* mixtures $x_m(t)$, concatenated in a vector $\mathbf{x}(t)$
 - Unknowns: K sources $s_k(t)$, concatenated in a vector $\mathbf{s}(t)$
 - General mixture model: function \mathscr{A} which transforms $\mathbf{s}(t)$ into $\mathbf{x}(t)$
- ▶ Stationarity: *A* is translation invariant
- ► Linearity: 𝒴 is a linear map
- Memory:
 - Convolutive mixtures
 - Instantaneous mixtures: $\mathbf{x}(t) = \mathbf{A}\mathbf{s}(t)$
 - ▶ \mathscr{A} is defined by the "mixture matrix" **A** (of dimension $M \times K$)
- Inversibility:
 - Determined mixtures: M = K
 - Over-determined mixtures: M > K
 - Under-determined mixtures: M < K

Une école de l'IMT

Une école de l'IMT

3/48

TELECO

R

(a) Convolutive mixture

L

Audio source separation

FELECOM Paris

P PARIS 8/48

R

(b) Binaural mixture

Une école de l'IMT

🛞 IP PARIS

- Notation: $\phi[\mathbf{x}]$ denotes a function of $p(\mathbf{x})$
- Mean vector: $\mu_x = \mathbb{E}[\mathbf{x}]$
- Covariance matrix: $\mathbf{\Sigma}_{xx} = \mathbb{E}[(\mathbf{x} \boldsymbol{\mu}_x)(\mathbf{x} \boldsymbol{\mu}_x)^T]$
- Characteristic function: $\phi_{\mathbf{x}}(\mathbf{f}) = \mathbb{E}[e^{-2i\pi\mathbf{f}^T\mathbf{x}}] = \int_{\mathbb{R}} p(\mathbf{x})e^{-2i\pi\mathbf{f}^T\mathbf{x}}d\mathbf{x}$
- Probability distribution: $p(\mathbf{x}) = \int_{\mathbb{D}} \phi_{\mathbf{x}}(\mathbf{f}) e^{+2i\pi \mathbf{f}^T \mathbf{x}} d\mathbf{f}$
- Cumulants:
 - Definition: $\ln(\phi_x(\mathbf{f})) = \sum_{n=1}^{+\infty} \frac{(-2i\pi)^n}{n!} \sum_{k_1=1}^K \sum_{k_n=1}^K \kappa_{k_1\dots k_n}^n [\mathbf{x}] f_{k_1} \dots f_{k_n}$

 - $\kappa^n[\mathbf{x}]$ is an *n*-th order tensor $\kappa^1[\mathbf{x}]$ is the mean vector, $\kappa^2[\mathbf{x}]$ is the covariance matrix
 - If $p(\mathbf{x})$ is symmetric $(p(-\mathbf{x}) = p(\mathbf{x}))$, $\kappa^n[\mathbf{x}] = 0$ for any odd value n
 - the ratio $\kappa_{k,k,k,k}^4[\mathbf{x}]/(\kappa_{k,k}^2[\mathbf{x}])^2$ is called "kurtosis"

- The Gaussian distribution is the one such that all cumulants of order n > 2 are zero
- Characteristic function

$$\phi_{\mathsf{x}}(\mathbf{f}) = \exp(-2i\pi\mathbf{f}^{\mathsf{T}}\boldsymbol{\mu}_{\mathsf{x}} - 2\pi^{2}\mathbf{f}^{\mathsf{T}}\boldsymbol{\Sigma}_{\mathsf{xx}}\mathbf{f})$$

• Probability density function (defined if Σ_{xx} is invertible)

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{\frac{K}{2}} \det(\mathbf{\Sigma}_{xx})^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_{x})^{T} \mathbf{\Sigma}_{xx}^{-1}(\mathbf{x} - \boldsymbol{\mu}_{x})\right)$$

			TELECOM Paris 習務實際自			TELECOM Paris
48	Une école de l'IMT	Audio source separation	10/48	Une école de l'IMT	Audio source separation	IP PARIS
	WSS vector processe	25		Information theory		_

- Definition: the cumulants of orders 1 et 2 are translation-invariant
- Covariance matrices of 2 centered WSS processes $\mathbf{x}(t)$ and $\mathbf{y}(t)$:
 - Definition: $\mathbf{R}_{xy}(\tau) = \mathbb{E}\left[\mathbf{x}(t+\tau)\mathbf{y}(t)^{T}\right]$
 - Property: $\mathbf{R}_{xx}(0) = \boldsymbol{\Sigma}_{xx}$ is Hermitian and positive semi-definite.
- PSD matrices of a WSS process x(t):
 - Definition: $\mathbf{S}_{xx}(v) = \sum_{\tau \in \mathbb{Z}_{+}} \mathbf{R}_{xx}(\tau) e^{-2i\pi v \tau}$
 - Property: $\forall v, \mathbf{S}_{xx}(v)$ is Hermitian and positive semi-definite

- Shannon entropy
 - Definition: $\mathbb{H}[\mathbf{x}] = -\mathbb{E}[\ln(p(\mathbf{x}))]$
 - H[x] is not necessarily non-negative for a continuous r.v.
- Kullback-Leibler divergence
 - $D_{KL}(p||q) = \int p(\mathbf{x}) \ln\left(\frac{p(\mathbf{x})}{q(\mathbf{x})}\right) d\mathbf{x}$

Une école de l'IMT

- Property: $D_{KL}(p||q) \ge 0$, $D_{KL}(p||q) = 0$ if and only if p = q
- Mutual information
 - ► Definition: $\mathbb{I}[\mathbf{x}] = \mathbb{E}\left[\ln\left(\frac{p(\mathbf{x})}{p(x_1)...p(x_K)}\right)\right] = D_{KL}(p(\mathbf{x})||p(x_1)...p(x_K))$
 - Property: $\mathbb{I}[\mathbf{x}] = 0$ if and only if $x_1 \dots x_K$ are mutually independent
 - Relationship with entropy: $\mathbb{I}[\mathbf{x}] = \sum_{k=1}^{K} \mathbb{H}[x_k] \mathbb{H}[\mathbf{x}]$

11/48

🗭 IP PARIS

- Sources are assumed IID: $p({s_k(t)}_{k,t}) = \prod_{k=1}^{K} \prod_{t=1}^{T} p_k(s_k(t))$
- Problem: estimate **A** and sources $\mathbf{s}(t)$ given $\mathbf{x}(t)$
- Definition: non-mixing matrix
 - a matrix **C** of dimension $K \times K$ is non-mixing if and only if it has a unique non-zero entry in each row and each column
- If s̃(t) = Cs(t) and à = AC⁻¹, then x(t) = Ãs̃(t) is another admissible decomposition of the observations
 - Sources can be recovered up to a permutation and a multiplicative factor

• Let $\mathbf{y}(t) = \mathbf{B}\mathbf{x}(t)$, where $\mathbf{B} \in \mathbb{R}^{K \times M}$ is referred to as the "separation matrix"

Part III

Linear instantaneous mixtures

• Linear separation is feasible if **A** has rank *K*:

- We get $\mathbf{y}(t) = \mathbf{s}(t)$ by defining:
 - $\mathbf{B} = \mathbf{A}^{-1}$ in the determined case (M = K)
 - $\mathbf{B} = \mathbf{A}^{\dagger}$ in the over-determined case (M > K)
- the pseudo-inverse $\mathbf{A}^{\dagger} = (\mathbf{A}^{T}\mathbf{A})^{-1}\mathbf{A}^{T}$ is such that $\mathbf{A}^{\dagger}\mathbf{A} = \mathbf{I}_{K}$
- In the under-determined case (M < K), separation is not feasible

Independent component analysis

15/48

TELECO Pari

In practice matrix A is unknown:

- We look for a matrix **B** that makes the y_k independent (ICA)
- We then get equation $\mathbf{y}(t) = \mathbf{Cs}(t)$, where $\mathbf{C} = \mathbf{BA}$
- The problem is solved if matrix C is non-mixing

- Theorem (identifiability)
 - Let s_k be K IID sources, among which at most one is Gaussian, and $\mathbf{y}(t) = \mathbf{Cs}(t)$ with **C** invertible ((over)-determined case). If signals $y_k(t)$ are independent, then **C** is non-mixing.

- ▶ We now suppose that the sources are centered: $\mathbb{E}[\mathbf{s}(t)] = \mathbf{0}$ and that the mixture is (over-)determined
- Canonical problem: we can assume without loss of generality that s(t) is spatially white $(\mathbf{\Sigma}_{ss} = \mathbb{E}[\mathbf{s}(t)\mathbf{s}(t)^T] = \mathbf{I}_K)$
- Then $\Sigma_{xx} = A\Sigma_{ss}A^T = AA^T$: A is a matrix square root of Σ_{xx}
- We first aim to whiten (decorrelate) the mixture:
 - Σ_{xx} is diagonalizable in an orthonormal basis: $\Sigma_{xx} = Q\Lambda^2 Q^T$ where $\Lambda = \text{diag}(\lambda_1 \dots \lambda_M)$ with $\lambda_1 \ge \lambda_K > \lambda_{K+1} = \lambda_M = 0$ (the rank of Σ_{xx} is equal to K) • Let $\mathbf{S} = \mathbf{Q}_{(:.1:K)} \mathbf{\Lambda}_{(1:K,1:K)} \in \mathbb{R}^{M \times K}$

 - **S** is a matrix square root of Σ_{xx} : $\Sigma_{xx} = SS^T$
 - Let $\mathbf{W} = \mathbf{S}^{\dagger}$ and $\mathbf{z}(t) = \mathbf{W}\mathbf{x}(t)$
 - Then z(t) is white $(\mathbb{E}[z(t)] = 0$ and $\Sigma_{zz} = W\Sigma_{xx}W^T = I)$

			TELECOM Paris			TELECOM Paris
7/48	Une école de l'IMT	Audio source separation	🛞 IP PARIS 18/48	Une école de l'IMT	Audio source separation	🐼 IP PARIS
	Whitening			Higher order statistic	CS.	

- We conclude without loss of generality that $U \triangleq WA$ is a rotation matrix $(\mathbf{U}\mathbf{U}^T = \mathbf{I}).$
- Then $\mathbf{y}(t) = \mathbf{U}^T \mathbf{z}(t) = \mathbf{U}^T \mathbf{W} \mathbf{x}(t) = (\mathbf{W} \mathbf{A})^{-1} (\mathbf{W} \mathbf{A}) \mathbf{s}(t) = \mathbf{s}(t)$.
- We can thus assume $\mathbf{B} = \mathbf{U}^T \mathbf{W}$ where \mathbf{U} is a rotation matrix.

- One can estimate Σ_{xx} from the observations and get W
- ▶ The whiteness property (second order cumulants) determines W and leaves U unknown.
- \blacktriangleright If sources are Gaussian, the z_k are independent and **U** cannot be determined.
- ▶ In order to determine rotation U, we need to exploit the non-Gaussianity of sources and characterize the independence property by using cumulants of order greater than 2.

Contrast functions

- Definition: ϕ is a "contrast function" if and only if $\phi[\mathbf{Cs}(t)] \ge \phi[\mathbf{s}(t)] \forall \mathbf{C}$ and if $\phi[\mathbf{Cs}(t)] = \phi[\mathbf{s}(t)] \Leftrightarrow \mathbf{C}$ is non-mixing.
- Separation is performed by minimizing $\phi[\mathbf{y}(t) = \mathbf{Cs}(t)]$ with respect to **U** (or **B**)
- "Canonical" contrast function: $\phi_{IM}[\mathbf{y}(t)] = \mathbb{I}[\mathbf{y}(t)]$
- Orthogonal contrasts: to be minimized under the constraint $\mathbb{E}[\mathbf{y}(t)\mathbf{y}(t)^T] = \mathbf{I}$. For instance, $\phi_{IM}^{\circ}[\mathbf{y}(t)] = \sum_{k=1}^{K} \mathbb{H}(y_k(t))$
- ► Order 4 approximation of ϕ_{IM}° : $\phi_{ICA}^{\circ}[\mathbf{y}(t)] = \sum_{ijkl \neq iiii} (\kappa_{ijkl}^{4}[\mathbf{y}(t)])^{2}$
- Descent algorithms for minimizing ϕ with respect to **B** or **U**:
 - Gradient algorithm applied to matrix B
 - Parameterization of U with Givens rotations and coordinate descent

- 1. Estimation of the covariance matrix Σ_{xx}
- 2. Diagonalization of Σ_{xx} : $\Sigma_{xx} = Q\Lambda^2 Q^T$ where $\Lambda = \text{diag}(\lambda_1 \dots \lambda_M)$ with $\lambda_1 \geq \ldots \geq \lambda_M \geq 0$
- 3. Computation of $\mathbf{S} = \mathbf{Q}_{(:,1;K)} \mathbf{\Lambda}_{(1;K,1;K)}$
- 4. Computation of the whitening matrix $\mathbf{W} = \mathbf{S}^{\dagger}$
- 5. Data whitening: $\mathbf{z}(t) = \mathbf{W}\mathbf{x}(t)$
- 6. Estimation of **U** by minimizing the contrast function ϕ°
- 7. Estimation of source signals via $\mathbf{y}(t) = \mathbf{U}^T \mathbf{z}(t)$

			TELECOM Paris 副務員歌目			TELECOM Paris
/48	Une école de l'IMT	Audio source separation	() IP PARIS 22/48	Une école de l'IMT	Audio source separation	E IP PARIS
				Temporal coherence	of sources	

Part V	• Model: $\mathbb{E}(\mathbf{s}(t)) = 0$, $\mathbf{R}_{ss}(\tau) = \mathbb{E}(\mathbf{s}(t+\tau)\mathbf{s}(t)^T) = \operatorname{diag}(r_{s_k}(\tau))$
	• Canonical problem: we assume that $\Sigma_{ss} = \mathbf{R}_{ss}(0) = \mathbf{I}$
	We first aim to spatially whiten the mixture:
Second order methods	• Let S be a matrix square root of Σ_{xx}

- Let $\mathbf{W} = \mathbf{S}^{\dagger}$ and $\mathbf{z}(t) = \mathbf{W}\mathbf{x}(t)$
- Since $\Sigma_{xx} = AA^T$, $U \triangleq WA$ is a rotation matrix
- However, $\forall \tau \in \mathbb{Z}$, $\mathbf{R}_{zz}(\tau) = \mathbf{U}\mathbf{R}_{ss}(\tau)\mathbf{U}^T$
- The joint diagonalization of matrices $\mathbf{R}_{zz}(\tau)$ for various values of τ permits us to identify rotation \mathbf{U}

21

Joint diagonalization

- Unicity theorem :
 - ► Let a set of matrices $\mathbf{R}_{zz}(\tau)$ of dimension $K \times K$ and of the form $\mathbf{R}_{zz}(\tau) = \mathbf{U}\mathbf{R}_{ss}(\tau)\mathbf{U}^{T}$ with \mathbf{U} unitary and $\mathbf{R}_{ss}(\tau) = \operatorname{diag}(r_{s_{k}}(\tau))$. Then \mathbf{U} is unique (up to a non-mixing matrix) if and only if $\forall 1 \le k \ne l \le K$, there is τ such that $r_{s_{k}}(\tau) \ne r_{s_{l}}(\tau)$
- Joint diagonalization methods: minimize the criterion

 $J(\mathbf{U}) = \sum_{\tau} \|\mathbf{U}^{\mathsf{T}} \mathbf{R}_{zz}(\tau) \mathbf{U} - \operatorname{diag}(\mathbf{U}^{\mathsf{T}} \mathbf{R}_{zz}(\tau) \mathbf{U})\|_{F}^{2}$

 \blacktriangleright Parameterization of \boldsymbol{U} with Givens rotations and coordinate descent

- Second Order Blind Identification (SOBI)
 - 1. Estimation and diagonalization of Σ_{xx} : $\Sigma_{xx} = Q \Lambda^2 Q^T$ where $\Lambda = \text{diag}(\lambda_1 \dots \lambda_M)$ with $\lambda_1 \ge \dots \ge \lambda_M \ge 0$
 - 2. Computation of $\mathbf{S} = \mathbf{Q}_{(:,1:\mathcal{K})} \mathbf{\Lambda}_{(1:\mathcal{K},1:\mathcal{K})}$
 - 3. Computation of the whitening matrix $\mathbf{W} = \mathbf{S}^{\dagger}$
 - 4. Data whitening: $\mathbf{z}(t) = \mathbf{W}\mathbf{x}(t)$
 - 5. Estimation of covariance matrices $\mathbf{R}_{zz}(\tau)$ for various delays τ
 - 6. Approximate joint diagonalization of matrices $\mathbf{R}_{zz}(\tau)$ in a common basis U
 - 7. Estimation of source signals via $\mathbf{y}(t) = \mathbf{U}^T \mathbf{z}(t)$

			TELECOM Paris 習餐餐院			TELECOM Paris
5/48	Une école de l'IMT	Audio source separation	E IP PARIS 26/48	Une école de l'IMT	Audio source separation	🛞 IP PARIS
	Non-stationarity of s	ources		Conclusion of the fir	rst part	

- Model: $\mathbb{E}(\mathbf{s}(t)) = \mathbf{0}$, $\mathbf{\Sigma}_{ss}(t) \triangleq \mathbb{E}(\mathbf{s}(t)\mathbf{s}(t)^{\mathsf{T}}) = \operatorname{diag}(\sigma_k^2(t))$
- Then $\forall t \in \mathbb{Z}$, $\mathbf{\Sigma}_{xx}(t) = \mathbf{A}\mathbf{\Sigma}_{ss}(t)\mathbf{A}^T$
- Joint diagonalization methods: minimize the criterion

$$J(\mathbf{B}) = \sum_{t} \|\mathbf{B}\boldsymbol{\Sigma}_{xx}(t)\mathbf{B}^{T} - \operatorname{diag}(\mathbf{B}\boldsymbol{\Sigma}_{xx}(t)\mathbf{B}^{T})\|_{F}^{2}$$

- Gradient descent algorithm applied to matrix B
- In the over-determined case, B must be constrained to span the principal subspace of all matrices Σ_{xx}(t)
- Variant of the SOBI algorithm:

Une école de l'IMT

- 1. Segmentation of source signals and estimation of covariance matrices $\mathbf{\Sigma}_{\scriptscriptstyle X\!X}(t)$ on windows centered at different times t
- 2. Joint diagonalization of matrices $\Sigma_{xx}(t)$ in a common basis B
- 3. Estimation of source signals via $\mathbf{y}(t) = \mathbf{B}\mathbf{x}(t)$

- The use of higher order cumulants is only necessary for the non-Gaussian IID source model
- Second order statistics are sufficient for sources that are:
 - ▶ stationary but not IID (\rightarrow <u>spectral</u> dynamics)
 - ▶ non stationary (→ temporal dynamics)
- Remember that classical tools (based on second order statistics) are appropriate for blind separation of independent (and possibly Gaussian) sources, on condition that the spectral / temporal source dynamics is taken into account.

Time-frequency representations

D	Motivations
Part VI	 Spectral and temporal dynamics are highlighted by a time-frequency (TF) representation of signals
T : C	 TF representations are appropriate to process convolutive and/or under-determined mixtures
I ime-frequency methods	Use of a filter bank (examples: STFT, MDCT):
	• Decomposition in F sub-bands and decimation of factor $T \leq F$
	• Analysis filters h_f and synthesis filters g_f
	• TF representation of sources: $s_k(f,n) = (h_f * s_k)(nT)$

- TF representation of mixtures: $x_m(f,n) = (h_f * x_m)(nT)$
- Perfect reconstruction: $s_k(t) = \sum_{f=1}^F \sum_{n \in \mathbb{Z}} g_f(t-nT) s_k(f,n)$
- ▶ Then $\forall f, n, \mathbf{x}(f, n) = \mathbf{As}(f, n)$ (same linear instantaneous mixture)

			TELECOM Parts 密調時			TELECOM Paris 警察で
9/48	Une école de l'IMT	Audio source separation	IP PARIS 30/48	Une école de l'IMT	Audio source separation	
	Non-stationary source	ce model		Separation method		

Assumption: independent and centered second order processes

- Model of non-stationary sources:
 - if the time frames n₁ and n₂ are disjoint, then s_k(., n₁) and s_k(., n₂) are uncorrelated and of distinct variances
- Model of WSS sources:
 - ▶ if sub-bands f_1 and f_2 are disjoint $(h_{f_1} * \tilde{h}_{f_2} = 0)$, then $s_k(f_1,.)$ and $s_k(f_2,.)$ are WSS, uncorrelated and of distinct variances $\sigma_k^2(f_1) = (h_{f_1} * \tilde{h}_{f_1} * r_{s_k})(0)$ and
 - $\sigma_k^2(f_2) = (h_{f_2} * \tilde{h}_{f_2} * r_{s_k})(0)$
- Time-frequency source model:
 - ▶ all $s_k(f, n)$ are uncorrelated for all n and f, of distinct variances $\sigma_k^2(f, n)$ (⇒ time-frequency dynamics)

- Separation by joint matrix diagonalization:
 - Let $\Sigma_{ss}(f,n) = \mathbb{E}[\mathbf{s}(f,n)\mathbf{s}(f,n)^T]$ and $\Sigma_{xx}(f,n) = \mathbb{E}[\mathbf{x}(f,n)\mathbf{x}(f,n)^T]$
 - ► Then $\Sigma_{xx}(f,n) = \mathbf{A}\Sigma_{ss}(f,n)\mathbf{A}^T$ where $\Sigma_{ss}(f,n) = \operatorname{diag}(\sigma_k^2(f,n))$
- Variant of the SOBI algorithm:
 - 1. TF analysis of the mixtures: $x_k(f,n) = (h_f * x_k)(nT)$
 - 2. Estimation of covariance matrices $\Sigma_{xx}(f, n)$
 - 3. Joint diagonalization of matrices $\Sigma_{xx}(f, n)$ in a basis B
 - 4. Estimation of the source signals via $\mathbf{y}(f, n) = \mathbf{B}\mathbf{x}(f, n)$
 - 5. TF synthesis of the sources: $y_k(t) = \sum_{f=1}^F \sum_{n \in \mathbb{Z}} g_f(t-nT) y_k(f,n)$

31/48

TELECO

Convolutive linear mixture

Convolutive mixtures

- Instantaneous mixture model unsuitable for real acoustic mixtures
- Let $\mathbf{x}_k(f, n) \in \mathbb{R}^M$ be the image of source $s_k(f, n)$
 - ▶ received multichannel signal if only source $s_k(f, n)$ was active
- Mixture model: $\mathbf{x}(f,n) = \sum_{k=1}^{K} \mathbf{x}_k(f,n)$
- Decomposition of the source separation problem
 - **separation**: estimate $\mathbf{x}_k(f, n)$ from the mixture $\mathbf{x}(f, n)$
 - deconvolution: estimate $s_k(f, n)$ from $x_k(f, n)$
- Mixture model: $x_m(t) = \sum_{k=1}^{K} (a_{mk} * s_k)(t)$, i.e. $\mathbf{x}(t) = \mathbf{A} * \mathbf{s}(t)$
- Theorem (identifiability)
 - Let s_k be K IID sources, among which at most one is Gaussian, and y(t) = C * s(t) with C invertible ((over)-determined case). If signals y_k(t) are independent, then C is non-mixing.

			TELECOM Paris 副務團務			TELECOM Paris
33/48	Une école de l'IMT	Audio source separation	E IP PARIS 34/48	Une école de l'IMT	Audio source separation	🛞 IP PARIS
	Time-frequency appr	oach		Independent component	nt analysis	

- Mixture model: $x_m(t) = \sum_{k=1}^{K} (a_{mk} * s_k)(t)$
- Assumptions:
 - the filter bank corresponds to an STFT
 - the IR of a_{mk} is short compared with the window length
 - $\forall m, k, f, a_{mk}(v)$ varies slowly compared with $h_f(v)$
 - $\blacktriangleright \Rightarrow (h_f * a_{mk})(t) \approx a_{mk}(f) h_f(t)$
- Approximation of the convolutive mixture model:

$$x_m(f,n) = \sum_{k=1}^K a_{mk}(f) s_k(f,n)$$

- Matrix form: $\mathbf{x}(f,n) = \mathbf{A}(f)\mathbf{s}(f,n)$
 - F instantaneous mixture models in every sub-band
 - \blacktriangleright \Rightarrow we can use any ICA method in every sub-band

- Let $\mathbf{y}(f,n) = \mathbf{B}(f)\mathbf{x}(f,n)$, where $\mathbf{B}(f) \in \mathbb{C}^{K \times M}$
- Linear separation is feasible if A(f) has rank K:
 - We get $\mathbf{y}(f, n) = \mathbf{s}(f, n)$ by defining:
 - $\mathbf{B}(f) = \mathbf{A}(f)^{-1}$ in the determined case (M = K)
 - $\mathbf{B}(f) = \mathbf{A}(f)^{\dagger}$ in the over-determined case (M > K)
- In the under-determined case (M < K), separation remains impossible
- ▶ In practice matrix **A**(*f*) is unknown:
 - We look for $\mathbf{B}(f)$ that makes the $y_k(f, n)$ independent (ICA)
 - We then get $\mathbf{y}(f,n) = \mathbf{C}(f)\mathbf{s}(f,n)$, where $\mathbf{C}(f) = \mathbf{B}(f)\mathbf{A}(f)$
 - C(f) is non-mixing

Indeterminacies

- Problem: indeterminacies (permutations and multiplicative factors) in matrices $\mathbf{C}(f)$
 - ▶ $\forall k$, identify indexes k_f such that $\forall f$, $y_{k_f}(f,n) = c_{k_f,k} s_k(f,n)$
 - identify the multiplicative factors $c_{k_f,k}$
- Infinitely many solutions \Rightarrow need to constrain the model:
 - Assumptions on the mixture
 - continuity of the frequency responses $a_{mk}(f)$ with respect to f
 - \blacktriangleright \rightarrow beamforming model and anechoic model
 - Assumptions on the sources
 - similarity of the temporal dynamics of $\sigma_k^2(f, n)$

- Beamforming model:
 - Assumptions: plane waves, far field, no reverberation, linear antenna
 - Model: $a_{mk}(f) = e^{-2i\pi f \tau_{mk}}$ where $\tau_{mk} = \frac{d_m}{c} \sin(\theta_k)$
 - Parameters: positions d_m of the sensors and angles θ_k of the sources
- Anechoic model:
 - Assumptions: punctual sources, no reverberation
 - Model: $a_{mk}(f) = \alpha_{mk} e^{-2i\pi f \tau_{mk}}$ where $\alpha_{mk} = \frac{1}{\sqrt{4\pi r_{mk}}}$ and $\tau_{mk} = \frac{r_{mk}}{c}$ Parameters: distances r_{mk} between the sensors and sources

37/48	Une école de l'IMT	Audio source separation	IP PARIS 38/48	Une école de l'IMT	Audio source separation	E IP PARIS
			TELECOM Paris			TELECOM Paris

Part VIII

Under-determined mixtures

- ▶ Usual case in audio: monophonic (M = 1) or stereophonic (M = 2) mixtures, with a number of sources K > M
- Convolutive mixture model: $\mathbf{x}(f,n) = \mathbf{A}(f)\mathbf{s}(f,n)$ with M < K
- Assumption: the mixture model $\mathbf{A}(f)$ and the source model $\mathbf{\Sigma}_{ss}(f, n)$ are known
- Even in this case, the exact separation is not feasible, because there is no matrix $\mathbf{B}(f)$ such that $\mathbf{B}(f)\mathbf{A}(f) = \mathbf{I}_{K}$

Separation via non-stationary filtering

- Let $\mathbf{y}(f,n) = \mathbf{B}(f,n)\mathbf{x}(f,n)$ where $\mathbf{B}(f,n) \in \mathbb{C}^{K \times M}$ depends on n
- ► Minimum Mean Square Error (MMSE) estimator: we look for B(f,n) which minimizes E[||y(f,n)-s(f,n)||₂²]
- ► Solution: $\mathbf{B}(f,n) = \mathbf{\Sigma}_{sx}(f,n)\mathbf{\Sigma}_{xx}(f,n)^{-1}$ where $\mathbf{\Sigma}_{xx}(f,n) = \mathbf{A}(f)\mathbf{\Sigma}_{ss}(f,n)\mathbf{A}(f)^{H}$ and $\mathbf{\Sigma}_{sx}(f,n) = \mathbf{\Sigma}_{ss}(f,n)\mathbf{A}(f)^{H}$ ((.)^H denotes the Hermitian conjugate)
- Remark: $\mathbf{x}(f,n) = \mathbf{A}(f)\mathbf{y}(f,n)$ (exact reconstruction)
- Particular case: monophonic mixtures
 - Without loss of generality, we define A(f) = [1, ..., 1]

• We get
$$y_k(f,n) = \frac{\sigma_k^2(f,n)}{\sum_{l=1}^K \sigma_l^2(f,n)} x(f,n)$$

$$\blacktriangleright$$
 \Rightarrow similar to Wiener filtering

- 1. TF analysis of the mixtures: $x_k(f,n) = (h_f * x_k)(f,nT)$
- 2. Estimation of $\mathbf{A}(f)$ and $\sigma_k^2(f, n)$
 - instantaneous mixture model
 - sparse source model
- 3. Computation of $\mathbf{B}(f,n) = \mathbf{\Sigma}_{ss}(f,n)\mathbf{A}(f)^{H} (\mathbf{A}(f)\mathbf{\Sigma}_{ss}(f,n)\mathbf{A}(f)^{H})^{-1}$
- 4. Estimation of the source signals via $\mathbf{y}(f,n) = \mathbf{B}(f,n)\mathbf{x}(f,n)$
- 5. TF synthesis of the sources: $y_k(t) = \sum_{f=1}^F \sum_{n \in \mathbb{Z}} g_f(t nT) y_k(f, n)$

			TELECOM Paris			TELECOM Paris
41/48	Une école de l'IMT	Audio source separation	E IP PARIS 42/48	Une école de l'IMT	Audio source separation	E IP PARIS
	Stereophonic mixture	es: temporal sparsity		Sparsity in a transfor	rmed domain	

Case of a linear instantaneous stereophonic mixture: $\mathbf{x}(t) = \mathbf{A}\mathbf{s}(t)$

Case of a linear instantaneous stereophonic mixture: $\mathbf{x}(f,n) = \mathbf{As}(f,n)$

1 P PARIS 44/48

04

Une école de l'IMT

43/48

Audio source separation

Une école de l'IMT

DUET method

- Degenerate Unmixing Estimation Technique (DUET)
- Linear instantaneous stereophonic mixture model: $\mathbf{x}(f,n) = \mathbf{As}(f,n)$
 - Without loss of generality, we assume $\mathbf{A}_{(:,k)} = \begin{bmatrix} \cos(\theta_k) \\ \sin(\theta_k) \end{bmatrix} \forall k$
- **Sparse** source model:
 - ► $\forall f, n, \exists ! k_{(f,n)}$ such that $\sigma^2_{k_{(f,n)}}(f,n) > 0$, and $\forall l \neq k_{(f,n)}, \sigma^2_l(f,n) = 0$
- If only source k is active at (f, n), then $\mathbf{x}(f, n) = \mathbf{a}_k s_k(f, n)$

1. TF analysis of the mixtures: $x_k(f,n) = (h_f * x_k)(nT)$

2. Estimation of parameters θ_k and of the active source $k_{(f,n)}$

- computation of the histogram of the angles of vectors $\mathbf{x}(f, n)$
- peak detection in order to estimate parameters θ_k
- determination of the active source at (f, n) by proximity with θ_k

3. Source separation: for all k,

- estimation of source images via binary masking: $\mathbf{y}_k(f,n) = \mathbf{x}(f,n) \forall (f,n)$ such that $k_{(f,n)} = k$ and $\mathbf{y}_k(f,n) = 0$ for the other time-frequency bins (f,n)
- MMSE estimation of the sources: $y_k(f,n) = \hat{\mathbf{a}}_k(f)^{\dagger} \mathbf{y}_k(f,n)$
- 4. TF synthesis of the sources: $y_k(t) = \sum_{f=1}^F \sum_{n \in \mathbb{Z}} g_f(t nT) y_k(f, n)$

