TELECOM Paris

Institut Mines-Télécom

High resolution methods

Roland Badeau,
roland.badeau@telecom-paris.fr
M2 MVA
Audio signal analysis,
indexing and transformation

Sinusoidal modeling of audio signals

- Sounds that generate pitch perception have a quasi-periodic waveform

Sinusoidal modeling of audio signals

- Sounds that generate pitch perception have a quasi-periodic waveform
- Spectrum made of harmonic multiples of the fundamental frequency:

Sinusoidal modeling of audio signals

- Sounds that generate pitch perception have a quasi-periodic waveform
- Spectrum made of harmonic multiples of the fundamental frequency:
- voiced speech sounds, produced by quasi-periodic vibration of the vocal cords

Sinusoidal modeling of audio signals

- Sounds that generate pitch perception have a quasi-periodic waveform
- Spectrum made of harmonic multiples of the fundamental frequency:
- voiced speech sounds, produced by quasi-periodic vibration of the vocal cords
- sounds produced by string or wind instruments

Sinusoidal modeling of audio signals

- Sounds that generate pitch perception have a quasi-periodic waveform
- Spectrum made of harmonic multiples of the fundamental frequency:
- voiced speech sounds, produced by quasi-periodic vibration of the vocal cords
- sounds produced by string or wind instruments
- The harmonicity property does not always hold:

Sinusoidal modeling of audio signals

- Sounds that generate pitch perception have a quasi-periodic waveform
- Spectrum made of harmonic multiples of the fundamental frequency:
- voiced speech sounds, produced by quasi-periodic vibration of the vocal cords
- sounds produced by string or wind instruments
- The harmonicity property does not always hold:
- Some instruments are slightly inharmonic

Sinusoidal modeling of audio signals

- Sounds that generate pitch perception have a quasi-periodic waveform
- Spectrum made of harmonic multiples of the fundamental frequency:
- voiced speech sounds, produced by quasi-periodic vibration of the vocal cords
- sounds produced by string or wind instruments
- The harmonicity property does not always hold:
- Some instruments are slightly inharmonic
- Polyphony: overlap of harmonic combs

Sinusoidal modeling of audio signals

- Sounds that generate pitch perception have a quasi-periodic waveform
- Spectrum made of harmonic multiples of the fundamental frequency:
- voiced speech sounds, produced by quasi-periodic vibration of the vocal cords
- sounds produced by string or wind instruments
- The harmonicity property does not always hold:
- Some instruments are slightly inharmonic
- Polyphony: overlap of harmonic combs
- Presence of pairs or triplets of close frequencies:

Sinusoidal modeling of audio signals

- Sounds that generate pitch perception have a quasi-periodic waveform
- Spectrum made of harmonic multiples of the fundamental frequency:
- voiced speech sounds, produced by quasi-periodic vibration of the vocal cords
- sounds produced by string or wind instruments
- The harmonicity property does not always hold:
- Some instruments are slightly inharmonic
- Polyphony: overlap of harmonic combs
- Presence of pairs or triplets of close frequencies:
- asymmetry in a bell geometry

Sinusoidal modeling of audio signals

- Sounds that generate pitch perception have a quasi-periodic waveform
- Spectrum made of harmonic multiples of the fundamental frequency:
- voiced speech sounds, produced by quasi-periodic vibration of the vocal cords
- sounds produced by string or wind instruments
- The harmonicity property does not always hold:
- Some instruments are slightly inharmonic
- Polyphony: overlap of harmonic combs
- Presence of pairs or triplets of close frequencies:
- asymmetry in a bell geometry
- coupling between the strings and bridge (chevalet) in a guitar

Sinusoidal modeling of audio signals

- Sounds that generate pitch perception have a quasi-periodic waveform
- Spectrum made of harmonic multiples of the fundamental frequency:
- voiced speech sounds, produced by quasi-periodic vibration of the vocal cords
- sounds produced by string or wind instruments
- The harmonicity property does not always hold:
- Some instruments are slightly inharmonic
- Polyphony: overlap of harmonic combs
- Presence of pairs or triplets of close frequencies:
- asymmetry in a bell geometry
- coupling between the strings and bridge (chevalet) in a guitar
- pairs or triplets of strings in a piano, plus coupling of the vertical and horizontal vibration modes

Part I

Parametric signal model

Exponential Sinusoidal Model (ESM)

- Exponential amplitude modulation to model the natural damping of free vibrating systems

Exponential Sinusoidal Model (ESM)

- Exponential amplitude modulation to model the natural damping of free vibrating systems
- Real model: $s[t]=\sum_{k=0}^{K-1} a_{k} e^{\delta_{k} t} \cos \left(2 \pi f_{k} t+\phi_{k}\right)$

Exponential Sinusoidal Model (ESM)

- Exponential amplitude modulation to model the natural damping of free vibrating systems
- Real model: $s[t]=\sum_{k=0}^{K-1} a_{k} e^{\delta_{k} t} \cos \left(2 \pi f_{k} t+\phi_{k}\right)$
- Complex model: $s[t]=\sum_{k=0}^{K-1} a_{k} e^{\delta_{k} t} e^{i\left(2 \pi f_{k} t+\phi_{k}\right)}$

Exponential Sinusoidal Model (ESM)

- Exponential amplitude modulation to model the natural damping of free vibrating systems
- Real model: $s[t]=\sum_{k=0}^{K-1} a_{k} e^{\delta_{k} t} \cos \left(2 \pi f_{k} t+\phi_{k}\right)$
- Complex model: $s[t]=\sum_{k=0}^{K-1} a_{k} e^{\delta_{k} t} e^{i\left(2 \pi f_{k} t+\phi_{k}\right)}$
- Compact form: $s[t]=\sum_{k=0}^{K-1} \alpha_{k} z_{k}{ }^{t}$ where

Exponential Sinusoidal Model (ESM)

- Exponential amplitude modulation to model the natural damping of free vibrating systems
- Real model: $s[t]=\sum_{k=0}^{K-1} a_{k} e^{\delta_{k} t} \cos \left(2 \pi f_{k} t+\phi_{k}\right)$
- Complex model: $s[t]=\sum_{k=0}^{K-1} a_{k} e^{\delta_{k} t} e^{i\left(2 \pi f_{k} t+\phi_{k}\right)}$
- Compact form: $s[t]=\sum_{k=0}^{K-1} \alpha_{k} z_{k}{ }^{t}$ where
- $\alpha_{k}=a_{k} e^{i \phi_{k}}$ is a complex amplitude,

Exponential Sinusoidal Model (ESM)

- Exponential amplitude modulation to model the natural damping of free vibrating systems
- Real model: $s[t]=\sum_{k=0}^{K-1} a_{k} e^{\delta_{k} t} \cos \left(2 \pi f_{k} t+\phi_{k}\right)$
- Complex model: $s[t]=\sum_{k=0}^{K-1} a_{k} e^{\delta_{k} t} e^{i\left(2 \pi f_{k} t+\phi_{k}\right)}$
- Compact form: $s[t]=\sum_{k=0}^{K-1} \alpha_{k} z_{k}{ }^{t}$ where
- $\alpha_{k}=a_{k} e^{i \phi_{k}}$ is a complex amplitude,
- $z_{k}=e^{\delta_{k}+i 2 \pi f_{k}}$ is a complex pole.

Exponential Sinusoidal Model (ESM)

- Exponential amplitude modulation to model the natural damping of free vibrating systems
- Real model: $s[t]=\sum_{k=0}^{K-1} a_{k} e^{\delta_{k} t} \cos \left(2 \pi f_{k} t+\phi_{k}\right)$
- Complex model: $s[t]=\sum_{k=0}^{K-1} a_{k} e^{\delta_{k} t} e^{i\left(2 \pi f_{k} t+\phi_{k}\right)}$
- Compact form: $s[t]=\sum_{k=0}^{K-1} \alpha_{k} z_{k}{ }^{t}$ where
- $\alpha_{k}=a_{k} e^{i \phi_{k}}$ is a complex amplitude,
- $z_{k}=e^{\delta_{k}+i 2 \pi f_{k}}$ is a complex pole.
- Hypotheses: for all $k \in\{0 \ldots K-1\}, \alpha_{k} \neq 0, z_{k} \neq 0$, and all poles z_{k} are pairwise distinct

Exponential Sinusoidal Model (ESM)

- Exponential amplitude modulation to model the natural damping of free vibrating systems
- Real model: $s[t]=\sum_{k=0}^{K-1} a_{k} e^{\delta_{k} t} \cos \left(2 \pi f_{k} t+\phi_{k}\right)$
- Complex model: $s[t]=\sum_{k=0}^{K-1} a_{k} e^{\delta_{k} t} e^{i\left(2 \pi f_{k} t+\phi_{k}\right)}$
- Compact form: $s[t]=\sum_{k=0}^{K-1} \alpha_{k} z_{k}{ }^{t}$ where
- $\alpha_{k}=a_{k} e^{i \phi_{k}}$ is a complex amplitude,
- $z_{k}=e^{\delta_{k}+i 2 \pi f_{k}}$ is a complex pole.
- Hypotheses: for all $k \in\{0 \ldots K-1\}, \alpha_{k} \neq 0, z_{k} \neq 0$, and all poles z_{k} are pairwise distinct
- The observed signal $x[t]$ is modeled as the signal $s[t]$ plus a complex Gaussian white noise $b[t]$ of variance σ^{2}

Spectral estimation by Fourier analysis

- Peak detection in the Fourier transform

Spectral estimation by Fourier analysis

- Peak detection in the Fourier transform
- Advantages

Spectral estimation by Fourier analysis

- Peak detection in the Fourier transform
- Advantages
- existence of a fast algorithm (FFT)

Spectral estimation by Fourier analysis

- Peak detection in the Fourier transform
- Advantages
- existence of a fast algorithm (FFT)
- robust estimation method

Spectral estimation by Fourier analysis

- Peak detection in the Fourier transform
- Advantages
- existence of a fast algorithm (FFT)
- robust estimation method
- Drawbacks

Spectral estimation by Fourier analysis

- Peak detection in the Fourier transform
- Advantages
- existence of a fast algorithm (FFT)
- robust estimation method
- Drawbacks
- spectral resolution limited by the window length

Spectral estimation by Fourier analysis

- Peak detection in the Fourier transform
- Advantages
- existence of a fast algorithm (FFT)
- robust estimation method
- Drawbacks
- spectral resolution limited by the window length
- spectral precision limited by the length of the transform

Spectral estimation by Fourier analysis

- Peak detection in the Fourier transform
- Advantages
- existence of a fast algorithm (FFT)
- robust estimation method
- Drawbacks
- spectral resolution limited by the window length
- spectral precision limited by the length of the transform
- trade-off between the width of the principal lobe and the height of the secondary lobes induced by the window shape

Spectral estimation by Fourier analysis

- Peak detection in the Fourier transform
- Advantages
- existence of a fast algorithm (FFT)
- robust estimation method
- Drawbacks
- spectral resolution limited by the window length
- spectral precision limited by the length of the transform
- trade-off between the width of the principal lobe and the height of the secondary lobes induced by the window shape
- widening of the peak in case of exponential damping

Resolution problems

Test signal:

- Sampling frequency: 8000 Hz
- First sinusoid: 440 Hz (A)
- Second sinusoid: 415,3 Hz (G\#)
- No damping, all amplitudes equal to 1
- Length of the rectangular window: $N=128$ (16 ms)
- Length of the transform: 1024 samples

Resolution problems

Resolution problems

-

Resolution problems

Maximum likelihood method

- General parametric estimation principle, asymptotically unbiased, consistent and efficient

Maximum likelihood method

- General parametric estimation principle, asymptotically unbiased, consistent and efficient
- It leads to a 3-step estimation:

Maximum likelihood method

- General parametric estimation principle, asymptotically unbiased, consistent and efficient
- It leads to a 3-step estimation:
- Estimation of the complex poles: numerical optimization of a function of K complex variables

Maximum likelihood method

- General parametric estimation principle, asymptotically unbiased, consistent and efficient
- It leads to a 3-step estimation:
- Estimation of the complex poles: numerical optimization of a function of K complex variables
- Estimation of the complex amplitudes: by means of the least squares method

Maximum likelihood method

- General parametric estimation principle, asymptotically unbiased, consistent and efficient
- It leads to a 3-step estimation:
- Estimation of the complex poles: numerical optimization of a function of K complex variables
- Estimation of the complex amplitudes: by means of the least squares method
- Estimation of the variance: power of the residual signal

Maximum likelihood method

- General parametric estimation principle, asymptotically unbiased, consistent and efficient
- It leads to a 3-step estimation:
- Estimation of the complex poles: numerical optimization of a function of K complex variables
- Estimation of the complex amplitudes: by means of the least squares method
- Estimation of the variance: power of the residual signal
- Difficulties of the first step:

Maximum likelihood method

- General parametric estimation principle, asymptotically unbiased, consistent and efficient
- It leads to a 3-step estimation:
- Estimation of the complex poles: numerical optimization of a function of K complex variables
- Estimation of the complex amplitudes: by means of the least squares method
- Estimation of the variance: power of the residual signal
- Difficulties of the first step:
- computational complexity

Maximum likelihood method

- General parametric estimation principle, asymptotically unbiased, consistent and efficient
- It leads to a 3-step estimation:
- Estimation of the complex poles: numerical optimization of a function of K complex variables
- Estimation of the complex amplitudes: by means of the least squares method
- Estimation of the variance: power of the residual signal
- Difficulties of the first step:
- computational complexity
- presence of many local maxima

Maximum likelihood method

- General parametric estimation principle, asymptotically unbiased, consistent and efficient
- It leads to a 3-step estimation:
- Estimation of the complex poles: numerical optimization of a function of K complex variables
- Estimation of the complex amplitudes: by means of the least squares method
- Estimation of the variance: power of the residual signal
- Difficulties of the first step:
- computational complexity
- presence of many local maxima
- Need for specific methods for the complex poles

Maximum likelihood method

- General parametric estimation principle, asymptotically unbiased, consistent and efficient
- It leads to a 3-step estimation:
- Estimation of the complex poles: numerical optimization of a function of K complex variables
- Estimation of the complex amplitudes: by means of the least squares method
- Estimation of the variance: power of the residual signal
- Difficulties of the first step:
- computational complexity
- presence of many local maxima
- Need for specific methods for the complex poles
- High resolution parametric estimation methods overcome the limits of Fourier analysis

Part II

High resolution methods

Linear prediction methods

- Principle: any signal such that $s[t]-z_{0} s[t-1]=0$ is of the form $s[t]=\alpha_{0} z_{0}{ }^{t}$

Linear prediction methods

- Principle: any signal such that $s[t]-z_{0} s[t-1]=0$ is of the form $s[t]=\alpha_{0} z_{0}{ }^{t}$
- General case: let $P[z] \triangleq \prod_{K=0}^{K-1}\left(z-z_{k}\right)=\sum_{\tau=0}^{K} p_{\tau} z^{K-\tau}$.

High resolution methods

Linear prediction methods

- Principle: any signal such that $s[t]-z_{0} s[t-1]=0$ is of the form $s[t]=\alpha_{0} z_{0}{ }^{t}$
- General case: let $P[z] \triangleq \prod_{k=0}^{K-1}\left(z-z_{k}\right)=\sum_{\tau=0}^{K} p_{\tau} z^{K-\tau}$.
- A discrete signal $\{s[t]\}_{t \in \mathbb{Z}}$ is solution of the recursion $\sum_{\tau=0}^{K} p_{\tau} s[t-\tau]=0$ if and only if it is of the form $s[t]=\sum_{k=0}^{K-1} \alpha_{k} z_{k}{ }^{t}$

Linear prediction methods

- Principle: any signal such that $s[t]-z_{0} s[t-1]=0$ is of the form $s[t]=\alpha_{0} z_{0}{ }^{t}$
- General case: let $P[z] \triangleq \prod_{k=0}^{K-1}\left(z-z_{k}\right)=\sum_{\tau=0}^{K} p_{\tau} z^{K-\tau}$.
- A discrete signal $\{s[t]\}_{t \in \mathbb{Z}}$ is solution of the recursion $\sum_{\tau=0}^{K} p_{\tau} s[t-\tau]=0$ if and only if it is of the form
$s[t]=\sum_{k=0}^{K-1} \alpha_{k} z_{k}{ }^{t}$
- Prony and Pisarenko methods:

Linear prediction methods

- Principle: any signal such that $s[t]-z_{0} s[t-1]=0$ is of the form $s[t]=\alpha_{0} z_{0}{ }^{t}$
- General case: let $P[z] \triangleq \prod_{k=0}^{K-1}\left(z-z_{k}\right)=\sum_{\tau=0}^{K} p_{\tau} z^{K-\tau}$.
- A discrete signal $\{s[t]\}_{t \in \mathbb{Z}}$ is solution of the recursion $\sum_{\tau=0}^{K} p_{\tau} s[t-\tau]=0$ if and only if it is of the form
$s[t]=\sum_{k=0}^{K-1} \alpha_{k} z_{k}{ }^{t}$
- Prony and Pisarenko methods:
- Estimate polynomial $P[z]$ by means of linear prediction

Linear prediction methods

- Principle: any signal such that $s[t]-z_{0} s[t-1]=0$ is of the form $s[t]=\alpha_{0} z_{0}{ }^{t}$
- General case: let $P[z] \triangleq \prod_{k=0}^{K-1}\left(z-z_{k}\right)=\sum_{\tau=0}^{K} p_{\tau} z^{K-\tau}$.
- A discrete signal $\{s[t]\}_{t \in \mathbb{Z}}$ is solution of the recursion $\sum_{\tau=0}^{K} p_{\tau} s[t-\tau]=0$ if and only if it is of the form
$s[t]=\sum_{k=0}^{K-1} \alpha_{k} z_{k}{ }^{t}$
- Prony and Pisarenko methods:
- Estimate polynomial $P[z]$ by means of linear prediction
- Extract the roots of this polynomial

Linear prediction methods

- Principle: any signal such that $s[t]-z_{0} s[t-1]=0$ is of the form $s[t]=\alpha_{0} z_{0}{ }^{t}$
- General case: let $P[z] \triangleq \prod_{k=0}^{K-1}\left(z-z_{k}\right)=\sum_{\tau=0}^{K} p_{\tau} z^{K-\tau}$.
- A discrete signal $\{s[t]\}_{t \in \mathbb{Z}}$ is solution of the recursion $\sum_{\tau=0}^{K} p_{\tau} s[t-\tau]=0$ if and only if it is of the form
$s[t]=\sum_{k=0}^{K-1} \alpha_{k} z_{k}{ }^{t}$
- Prony and Pisarenko methods:
- Estimate polynomial $P[z]$ by means of linear prediction
- Extract the roots of this polynomial
- Drawback: mediocre performance in presence of noise

Matrix representation of the signal

- Observation horizon: $t \in\{0 \ldots N-1\}$, where $N>2 K$

Matrix representation of the signal

- Observation horizon: $t \in\{0 \ldots N-1\}$, where $N>2 K$
- Data matrix $(n>K, I>K$ and $N=n+I-1)$:

$$
\mathbf{S}=\left[\begin{array}{cccc}
s[0] & s[1] & \ldots & s[/-1] \\
s[1] & s[2] & \ldots & s[/] \\
\vdots & \vdots & \vdots & \vdots \\
s[n-1] & s[n] & \ldots & s[N-1]
\end{array}\right]
$$

Matrix representation of the signal

- Observation horizon: $t \in\{0 \ldots N-1\}$, where $N>2 K$
- Data matrix $(n>K, I>K$ and $N=n+I-1)$:

$$
\mathbf{S}=\left[\begin{array}{cccc}
s[0] & s[1] & \ldots & s[/-1] \\
s[1] & s[2] & \ldots & s[/] \\
\vdots & \vdots & \vdots & \vdots \\
s[n-1] & s[n] & \ldots & s[N-1]
\end{array}\right]
$$

- Factorization of matrix $\mathbf{S}: \mathbf{S}=\mathbf{V}^{n} \mathbf{A} \mathbf{V}^{\prime T}$, where

Matrix representation of the signal

- Observation horizon: $t \in\{0 \ldots N-1\}$, where $N>2 K$
- Data matrix $(n>K, I>K$ and $N=n+I-1)$:

$$
\mathbf{S}=\left[\begin{array}{cccc}
s[0] & s[1] & \ldots & s[/-1] \\
s[1] & s[2] & \ldots & s[/] \\
\vdots & \vdots & \vdots & \vdots \\
s[n-1] & s[n] & \ldots & s[N-1]
\end{array}\right]
$$

- Factorization of matrix $\mathbf{S}: \mathbf{S}=\mathbf{V}^{n} \mathbf{A} \mathbf{V}^{\prime T}$, where
- \mathbf{V}^{n} is the Vandermonde matrix of dimension $n \times K$,

$$
\mathbf{V}^{n}=\left[\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
z_{0} & z_{1} & \ldots & z_{K-1} \\
z_{0}{ }^{2} & z_{1}{ }^{2} & \ldots & z_{K-1}{ }^{2} \\
\vdots & \vdots & \vdots & \vdots \\
z_{0}{ }^{n-1} & z_{1}{ }^{n-1} & \ldots & z_{K-1}{ }^{n-1}
\end{array}\right]
$$

Matrix representation of the signal

- Observation horizon: $t \in\{0 \ldots N-1\}$, where $N>2 K$
- Data matrix $(n>K, I>K$ and $N=n+I-1)$:

$$
\mathbf{S}=\left[\begin{array}{cccc}
s[0] & s[1] & \ldots & s[/-1] \\
s[1] & s[2] & \ldots & s[/] \\
\vdots & \vdots & \vdots & \vdots \\
s[n-1] & s[n] & \ldots & s[N-1]
\end{array}\right]
$$

- Factorization of matrix $\mathbf{S}: \mathbf{S}=\mathbf{V}^{n} \mathbf{A} \mathbf{V}^{\prime T}$, where
- \mathbf{V}^{n} is the Vandermonde matrix of dimension $n \times K$,
- \mathbf{V}^{\prime} is the Vandermonde matrix of dimension $I \times K$,

Matrix representation of the signal

- Observation horizon: $t \in\{0 \ldots N-1\}$, where $N>2 K$
- Data matrix $(n>K, I>K$ and $N=n+I-1)$:

$$
\mathbf{S}=\left[\begin{array}{cccc}
s[0] & s[1] & \ldots & s[/-1] \\
s[1] & s[2] & \ldots & s[/] \\
\vdots & \vdots & \vdots & \vdots \\
s[n-1] & s[n] & \ldots & s[N-1]
\end{array}\right]
$$

- Factorization of matrix $\mathbf{S}: \mathbf{S}=\mathbf{V}^{n} \mathbf{A} \mathbf{V}^{\prime T}$, where
- \mathbf{V}^{n} is the Vandermonde matrix of dimension $n \times K$,
- \mathbf{V}^{\prime} is the Vandermonde matrix of dimension $I \times K$,
- $\mathbf{A}=\operatorname{diag}\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{K-1}\right)$ is a diagonal matrix of dimension $K \times K$.

Empirical covariance matrix

- Let us define the empirical covariance matrix $\mathbf{R}_{s s}=\frac{1}{l} \mathbf{S} \mathbf{S}^{H}$

Empirical covariance matrix

- Let us define the empirical covariance matrix $\mathbf{R}_{s s}=\frac{1}{l} \mathbf{S} \mathbf{S}^{H}$
- Then $\mathbf{R}_{s s}=\mathbf{V}^{n} \mathbf{P} \mathbf{V}^{n H}$, where $\mathbf{P}=\frac{1}{l} \mathbf{A} \mathbf{V}^{\prime T} \mathbf{V}^{\prime *} \mathbf{A}^{H}$

Empirical covariance matrix

- Let us define the empirical covariance matrix $\mathbf{R}_{s s}=\frac{1}{l} \mathbf{S} \mathbf{S}^{H}$
- Then $\mathbf{R}_{s s}=\mathbf{V}^{n} \mathbf{P} \mathbf{V}^{n H}$, where $\mathbf{P}=\frac{1}{l} \mathbf{A} \mathbf{V}^{I T} \mathbf{V}^{l^{*}} \mathbf{A}^{H}$
- Matrix $\mathbf{R}_{s s}$ has rank K

Empirical covariance matrix

- Let us define the empirical covariance matrix $\mathbf{R}_{s S}=\frac{1}{l} \mathbf{S} \mathbf{S}^{H}$
- Then $\mathbf{R}_{s s}=\mathbf{V}^{n} \mathbf{P} \mathbf{V}^{n H}$, where $\mathbf{P}=\frac{1}{l} \mathbf{A} \mathbf{V}^{\prime T} \mathbf{V}^{\prime *} \mathbf{A}^{H}$
- Matrix $\mathbf{R}_{s s}$ has rank K
- $\mathbf{R}_{s s}$ is diagonalizable in an orthonormal basis $\left\{\mathbf{w}_{0} \ldots \mathbf{w}_{n-1}\right\}$

Empirical covariance matrix

- Let us define the empirical covariance matrix $\mathbf{R}_{s S}=\frac{1}{l} \mathbf{S} \mathbf{S}^{H}$
- Then $\mathbf{R}_{s s}=\mathbf{V}^{n} \mathbf{P} \mathbf{V}^{n H}$, where $\mathbf{P}=\frac{1}{l} \mathbf{A} \mathbf{V}^{\prime T} \mathbf{V}^{\prime *} \mathbf{A}^{H}$
- Matrix $\mathbf{R}_{s s}$ has rank K
- $\mathbf{R}_{s s}$ is diagonalizable in an orthonormal basis $\left\{\mathbf{w}_{0} \ldots \mathbf{w}_{n-1}\right\}$
- Its eigenvalues $\lambda_{0} \geq \lambda_{1} \geq \ldots \geq \lambda_{n-1} \geq 0$ are such that

Empirical covariance matrix

- Let us define the empirical covariance matrix $\mathbf{R}_{s S}=\frac{1}{l} \mathbf{S} \mathbf{S}^{H}$
- Then $\mathbf{R}_{s s}=\mathbf{V}^{n} \mathbf{P} \mathbf{V}^{n H}$, where $\mathbf{P}=\frac{1}{l} \mathbf{A} \mathbf{V}^{\prime T} \mathbf{V}^{\prime *} \mathbf{A}^{H}$
- Matrix $\mathbf{R}_{s s}$ has rank K
- $\mathbf{R}_{s s}$ is diagonalizable in an orthonormal basis $\left\{\mathbf{w}_{0} \ldots \mathbf{w}_{n-1}\right\}$
- Its eigenvalues $\lambda_{0} \geq \lambda_{1} \geq \ldots \geq \lambda_{n-1} \geq 0$ are such that
- $\forall i \in\{0 \ldots K-1\}, \lambda_{i}>0$;

Empirical covariance matrix

- Let us define the empirical covariance matrix $\mathbf{R}_{s s}=\frac{1}{l} \mathbf{S} \mathbf{S}^{H}$
- Then $\mathbf{R}_{s s}=\mathbf{V}^{n} \mathbf{P} \mathbf{V}^{n H}$, where $\mathbf{P}=\frac{1}{l} \mathbf{A} \mathbf{V}^{\prime T} \mathbf{V}^{\prime *} \mathbf{A}^{H}$
- Matrix $\mathbf{R}_{s s}$ has rank K
- $\mathbf{R}_{s s}$ is diagonalizable in an orthonormal basis $\left\{\mathbf{w}_{0} \ldots \mathbf{w}_{n-1}\right\}$
- Its eigenvalues $\lambda_{0} \geq \lambda_{1} \geq \ldots \geq \lambda_{n-1} \geq 0$ are such that
- $\forall i \in\{0 \ldots K-1\}, \lambda_{i}>0$;
- $\forall i \in\{K \ldots n-1\}, \lambda_{i}=0$.

Empirical covariance matrix

- Let us define the empirical covariance matrix $\mathbf{R}_{s s}=\frac{1}{l} \mathbf{S} \mathbf{S}^{H}$
- Then $\mathbf{R}_{s s}=\mathbf{V}^{n} \mathbf{P} \mathbf{V}^{n H}$, where $\mathbf{P}=\frac{1}{l} \mathbf{A} \mathbf{V}^{\prime T} \mathbf{V}^{\prime *} \mathbf{A}^{H}$
- Matrix $\mathbf{R}_{s s}$ has rank K
- $\mathbf{R}_{s s}$ is diagonalizable in an orthonormal basis $\left\{\mathbf{w}_{0} \ldots \mathbf{w}_{n-1}\right\}$
- Its eigenvalues $\lambda_{0} \geq \lambda_{1} \geq \ldots \geq \lambda_{n-1} \geq 0$ are such that
- $\forall i \in\{0 \ldots K-1\}, \lambda_{i}>0$;
- $\forall i \in\{K \ldots n-1\}, \lambda_{i}=0$.
- Let $\widehat{\mathbf{R}}_{b b}=\frac{1}{l} \mathbf{B} \mathbf{B}^{H}$ and $\mathbf{R}_{b b}=\mathbb{E}\left[\widehat{\mathbf{R}}_{b b}\right]=\sigma^{2} \mathbf{I}_{n}$.

Empirical covariance matrix

- Let us define the empirical covariance matrix $\mathbf{R}_{s s}=\frac{1}{l} \mathbf{S} \mathbf{S}^{H}$
- Then $\mathbf{R}_{s s}=\mathbf{V}^{n} \mathbf{P} \mathbf{V}^{n H}$, where $\mathbf{P}=\frac{1}{l} \mathbf{A} \mathbf{V}^{\prime T} \mathbf{V}^{\prime *} \mathbf{A}^{H}$
- Matrix $\mathbf{R}_{s s}$ has rank K
- $\mathbf{R}_{s s}$ is diagonalizable in an orthonormal basis $\left\{\mathbf{w}_{0} \ldots \mathbf{w}_{n-1}\right\}$
- Its eigenvalues $\lambda_{0} \geq \lambda_{1} \geq \ldots \geq \lambda_{n-1} \geq 0$ are such that
- $\forall i \in\{0 \ldots K-1\}, \lambda_{i}>0$;
- $\forall i \in\{K \ldots n-1\}, \lambda_{i}=0$.
- Let $\widehat{\mathbf{R}}_{b b}=\frac{1}{l} \mathbf{B} \mathbf{B}^{H}$ and $\mathbf{R}_{b b}=\mathbb{E}\left[\widehat{\mathbf{R}}_{b b}\right]=\sigma^{2} \mathbf{I}_{n}$.
- In the same way, let $\widehat{\mathbf{R}}_{x x}=\frac{1}{l} \mathbf{X} \mathbf{X}^{H}$ and $\mathbf{R}_{x x}=\mathbb{E}\left[\widehat{\mathbf{R}}_{x x}\right]$.

Empirical covariance matrix

- Let us define the empirical covariance matrix $\mathbf{R}_{s s}=\frac{1}{l} \mathbf{S} \mathbf{S}^{H}$
- Then $\mathbf{R}_{s s}=\mathbf{V}^{n} \mathbf{P} \mathbf{V}^{n H}$, where $\mathbf{P}=\frac{1}{l} \mathbf{A} \mathbf{V}^{\prime T} \mathbf{V}^{\prime *} \mathbf{A}^{H}$
- Matrix $\mathbf{R}_{s s}$ has rank K
- $\mathbf{R}_{s s}$ is diagonalizable in an orthonormal basis $\left\{\mathbf{w}_{0} \ldots \mathbf{w}_{n-1}\right\}$
- Its eigenvalues $\lambda_{0} \geq \lambda_{1} \geq \ldots \geq \lambda_{n-1} \geq 0$ are such that
- $\forall i \in\{0 \ldots K-1\}, \lambda_{i}>0$;
- $\forall i \in\{K \ldots n-1\}, \lambda_{i}=0$.
- Let $\widehat{\mathbf{R}}_{b b}=\frac{1}{l} \mathbf{B} \mathbf{B}^{H}$ and $\mathbf{R}_{b b}=\mathbb{E}\left[\widehat{\mathbf{R}}_{b b}\right]=\sigma^{2} \mathbf{I}_{n}$.
- In the same way, let $\widehat{\mathbf{R}}_{x x}=\frac{1}{l} \mathbf{X} \mathbf{X}^{H}$ and $\mathbf{R}_{x x}=\mathbb{E}\left[\widehat{\mathbf{R}}_{x x}\right]$.
- Then $\mathbf{R}_{x x}=\mathbf{R}_{s s}+\sigma^{2} \mathbf{I}_{n}$

Signal subspace and noise subspace

- For all $i \in\{0 \ldots n-1\}, \mathbf{w}_{i}$ is also an eigenvector of $\mathbf{R}_{x x}$ corresponding to the eigenvalue $\lambda_{i}^{\prime}=\lambda_{i}+\sigma^{2}$. Therefore,

Signal subspace and noise subspace

- For all $i \in\{0 \ldots n-1\}, \mathbf{w}_{i}$ is also an eigenvector of $\mathbf{R}_{x x}$ corresponding to the eigenvalue $\lambda_{i}^{\prime}=\lambda_{i}+\sigma^{2}$. Therefore,
- $\forall i \in\{0 \ldots K-1\}, \lambda_{i}^{\prime}>\sigma^{2}$;

Signal subspace and noise subspace

- For all $i \in\{0 \ldots n-1\}, \mathbf{w}_{i}$ is also an eigenvector of $\mathbf{R}_{x x}$ corresponding to the eigenvalue $\lambda_{i}^{\prime}=\lambda_{i}+\sigma^{2}$. Therefore,
- $\forall i \in\{0 \ldots K-1\}, \lambda_{i}^{\prime}>\sigma^{2}$;
- $\forall i \in\{K \ldots n-1\}, \lambda_{i}^{\prime}=\sigma^{2}$.

Signal subspace and noise subspace

- For all $i \in\{0 \ldots n-1\}, \mathbf{w}_{i}$ is also an eigenvector of $\mathbf{R}_{x x}$ corresponding to the eigenvalue $\lambda_{i}^{\prime}=\lambda_{i}+\sigma^{2}$. Therefore,
- $\forall i \in\{0 \ldots K-1\}, \lambda_{i}^{\prime}>\sigma^{2}$;
- $\forall i \in\{K \ldots n-1\}, \lambda_{i}^{\prime}=\sigma^{2}$.
- Let $\mathbf{W}=\left[\mathbf{w}_{0} \ldots \mathbf{w}_{K-1}\right]$, and $\mathbf{W}_{\perp}=\left[\mathbf{w}_{K} \ldots \mathbf{w}_{n-1}\right]$

Signal subspace and noise subspace

- For all $i \in\{0 \ldots n-1\}, \mathbf{w}_{i}$ is also an eigenvector of $\mathbf{R}_{x x}$ corresponding to the eigenvalue $\lambda_{i}^{\prime}=\lambda_{i}+\sigma^{2}$. Therefore,
- $\forall i \in\{0 \ldots K-1\}, \lambda_{i}^{\prime}>\sigma^{2}$;
- $\forall i \in\{K \ldots n-1\}, \lambda_{i}^{\prime}=\sigma^{2}$.
- Let $\mathbf{W}=\left[\mathbf{w}_{0} \ldots \mathbf{w}_{K-1}\right]$, and $\mathbf{W}_{\perp}=\left[\mathbf{w}_{K} \ldots \mathbf{w}_{n-1}\right]$
- Then $\operatorname{Span}(\mathbf{W})=\operatorname{Span}\left(\mathbf{V}^{n}\right)$ is referred to as the signal subspace

Signal subspace and noise subspace

- For all $i \in\{0 \ldots n-1\}, \mathbf{w}_{i}$ is also an eigenvector of $\mathbf{R}_{x x}$ corresponding to the eigenvalue $\lambda_{i}^{\prime}=\lambda_{i}+\sigma^{2}$. Therefore,
- $\forall i \in\{0 \ldots K-1\}, \lambda_{i}^{\prime}>\sigma^{2}$;
- $\forall i \in\{K \ldots n-1\}, \lambda_{i}^{\prime}=\sigma^{2}$.
- Let $\mathbf{W}=\left[\mathbf{w}_{0} \ldots \mathbf{w}_{K-1}\right]$, and $\mathbf{W}_{\perp}=\left[\mathbf{w}_{K} \ldots \mathbf{w}_{n-1}\right]$
- Then $\operatorname{Span}(\mathbf{W})=\operatorname{Span}\left(\mathbf{V}^{n}\right)$ is referred to as the signal subspace
- In the same way, $\operatorname{Span}\left(\mathbf{W}_{\perp}\right)$ is referred to as the noise subspace

Signal subspace and noise subspace

- For all $i \in\{0 \ldots n-1\}, \mathbf{w}_{i}$ is also an eigenvector of $\mathbf{R}_{x x}$ corresponding to the eigenvalue $\lambda_{i}^{\prime}=\lambda_{i}+\sigma^{2}$. Therefore,
- $\forall i \in\{0 \ldots K-1\}, \lambda_{i}^{\prime}>\sigma^{2}$;
- $\forall i \in\{K \ldots n-1\}, \lambda_{i}^{\prime}=\sigma^{2}$.
- Let $\mathbf{W}=\left[\mathbf{w}_{0} \ldots \mathbf{w}_{K-1}\right]$, and $\mathbf{W}_{\perp}=\left[\mathbf{w}_{K} \ldots \mathbf{w}_{n-1}\right]$
- Then $\operatorname{Span}(\mathbf{W})=\operatorname{Span}\left(\mathbf{V}^{n}\right)$ is referred to as the signal subspace
- In the same way, $\operatorname{Span}\left(\mathbf{W}_{\perp}\right)$ is referred to as the noise subspace
- The poles $\left\{z_{k}\right\}_{k \in\{0 \ldots K-1\}}$ are the solutions of equation $\left\|\mathbf{W}_{\perp}^{H} \mathbf{v}(z)\right\|^{2}=0$, where $\mathbf{v}(z)=\left[1, z, \ldots, z^{n-1}\right]$

Signal subspace and noise subspace

- For all $i \in\{0 \ldots n-1\}, \mathbf{w}_{i}$ is also an eigenvector of $\mathbf{R}_{x x}$ corresponding to the eigenvalue $\lambda_{i}^{\prime}=\lambda_{i}+\sigma^{2}$. Therefore,
- $\forall i \in\{0 \ldots K-1\}, \lambda_{i}^{\prime}>\sigma^{2}$;
- $\forall i \in\{K \ldots n-1\}, \lambda_{i}^{\prime}=\sigma^{2}$.
- Let $\mathbf{W}=\left[\mathbf{w}_{0} \ldots \mathbf{w}_{K-1}\right]$, and $\mathbf{W}_{\perp}=\left[\mathbf{w}_{K} \ldots \mathbf{w}_{n-1}\right]$
- Then $\operatorname{Span}(\mathbf{W})=\operatorname{Span}\left(\mathbf{V}^{n}\right)$ is referred to as the signal subspace
- In the same way, $\operatorname{Span}\left(\mathbf{W}_{\perp}\right)$ is referred to as the noise subspace
- The poles $\left\{z_{k}\right\}_{k \in\{0 \ldots K-1\}}$ are the solutions of equation $\left\|\mathbf{W}_{\perp}^{H} \mathbf{v}(z)\right\|^{2}=0$, where $\mathbf{v}(z)=\left[1, z, \ldots, z^{n-1}\right]$
- The MUSIC method consists in solving this equation

Signal subspace and noise subspace

- For all $i \in\{0 \ldots n-1\}, \mathbf{w}_{i}$ is also an eigenvector of $\mathbf{R}_{x x}$ corresponding to the eigenvalue $\lambda_{i}^{\prime}=\lambda_{i}+\sigma^{2}$. Therefore,
- $\forall i \in\{0 \ldots K-1\}, \lambda_{i}^{\prime}>\sigma^{2}$;
- $\forall i \in\{K \ldots n-1\}, \lambda_{i}^{\prime}=\sigma^{2}$.
- Let $\mathbf{W}=\left[\mathbf{w}_{0} \ldots \mathbf{w}_{K-1}\right]$, and $\mathbf{W}_{\perp}=\left[\mathbf{w}_{K} \ldots \mathbf{w}_{n-1}\right]$
- Then $\operatorname{Span}(\mathbf{W})=\operatorname{Span}\left(\mathbf{V}^{n}\right)$ is referred to as the signal subspace
- In the same way, $\operatorname{Span}\left(\mathbf{W}_{\perp}\right)$ is referred to as the noise subspace
- The poles $\left\{z_{k}\right\}_{k \in\{0 \ldots K-1\}}$ are the solutions of equation $\left\|\mathbf{W}_{\perp}^{H} \mathbf{v}(z)\right\|^{2}=0$, where $\mathbf{v}(z)=\left[1, z, \ldots, z^{n-1}\right]$
- The MUSIC method consists in solving this equation
- The Spectral-MUSIC method consists in detecting the K highest peaks in function $z \mapsto \frac{1}{\left\|\mathbf{W}_{\perp}^{H} \mathbf{v}(z)\right\|^{2}}$.

Spectral MUSIC method

Test signal:

- Sampling frequency: 8000 Hz
- First sinusoid: 440 Hz (A)
- Second sinusoid: 415,3 Hz (G\#)
- No damping, all amplitudes equal to 1
- Length of the rectangular window: $N=128$ (16 ms)
- Length of the transform: 1024 samples

Spectral MUSIC method

Spectral MUSIC method

Spectral MUSIC method

Spectral MUSIC method

ESPRIT method

- Rotational invariance property of \mathbf{V}^{n} :

ESPRIT method

- Rotational invariance property of \mathbf{V}^{n} :
$\underbrace{\left[\begin{array}{ccc}1 & \ldots & 1 \\ z_{0} & \ldots & z_{K-1} \\ \vdots & \ldots & \vdots \\ z_{0}{ }^{n-2} \ldots & z_{K-1}{ }^{n-2} \\ z_{0}{ }^{n-1} \ldots z_{K-1}{ }^{n-1}\end{array}\right]}_{\mathbf{V}^{n} \uparrow}$

ESPRIT method

- Rotational invariance property of \mathbf{V}^{n} :
\(\underbrace{\left[\begin{array}{ccc}1 \& ··· \& 1

z_{0} \& ··· \& z_{K-1}

\vdots \& ··· \& \vdots

z_{0}{ }^{n-2} ··· \& ··· z_{K-1}{ }^{n-2}

z_{0}{ }^{n-1} ··· z_{K-1}{ }^{n-1}\end{array}\right]}_{\)| $\mathbf{V}^{n} \uparrow$ |
| :---: |
| $(n-1) \times K$ |\(} \underbrace{\left[\begin{array}{ccc}1 \& ··· \& 1

z_{0} \& ··· \& z_{K-1}

\vdots \& ··· \& \vdots

z_{0}{ }^{n-2} ··· \& z_{K-1}{ }^{n-2}

z_{0}{ }^{n-1} ··· \& z_{K-1}{ }^{n-1}\end{array}\right]}_{\)| \mathbf{V}^{n} |
| :---: |$}$

ESPRIT method

- Rotational invariance property of \mathbf{V}^{n} :

ESPRIT method

- Rotational invariance property of \mathbf{V}^{n} :

ESPRIT method

- Rotational invariance property of $\mathbf{V}^{n}: \mathbf{V}^{n} \uparrow=\mathbf{V}^{n}{ }_{\downarrow} \mathbf{D}$

ESPRIT method

- Rotational invariance property of $\mathbf{V}^{n}: \mathbf{V}^{n} \uparrow=\mathbf{V}^{n}{ }_{\downarrow} \mathbf{D}$
- Change of basis: $\mathbf{V}^{n}=\mathbf{W} \mathbf{G}$

ESPRIT method

- Rotational invariance property of $\mathbf{V}^{n}: \mathbf{V}^{n} \uparrow=\mathbf{V}^{n}{ }_{\downarrow} \mathbf{D}$
- Change of basis: $\mathbf{V}^{n}=\mathbf{W G}$
- Rotational invariance of $\mathbf{W}: \mathbf{W}_{\uparrow}=\mathbf{W}_{\downarrow} \boldsymbol{\Phi}$ where $\boldsymbol{\Phi}=\mathbf{G D G}^{-1}$ is referred to as the spectral matrix

ESPRIT method

- Rotational invariance property of $\mathbf{V}^{n}: \mathbf{V}^{n} \uparrow=\mathbf{V}_{\downarrow}{ }_{\downarrow} \mathbf{D}$
- Change of basis: $\mathbf{V}^{n}=\mathbf{W G}$
- Rotational invariance of $\mathbf{W}: \mathbf{W}_{\uparrow}=\mathbf{W}_{\downarrow} \boldsymbol{\Phi}$ where $\boldsymbol{\Phi}=\mathbf{G D G}^{-1}$ is referred to as the spectral matrix
- The eigenvalues of $\boldsymbol{\Phi}$ are the poles $\left\{z_{k}\right\}_{k \in\{0 \ldots K-1\}}$

ESPRIT method

- Rotational invariance property of $\mathbf{V}^{n}: \mathbf{V}^{n} \uparrow=\mathbf{V}^{n}{ }_{\downarrow} \mathbf{D}$
- Change of basis: $\mathbf{V}^{n}=\mathbf{W G}$
- Rotational invariance of $\mathbf{W}: \mathbf{W}_{\uparrow}=\mathbf{W}_{\downarrow} \boldsymbol{\Phi}$ where $\boldsymbol{\Phi}=\mathbf{G D G}^{-1}$ is referred to as the spectral matrix
- The eigenvalues of $\boldsymbol{\Phi}$ are the poles $\left\{z_{k}\right\}_{k \in\{0 \ldots K-1\}}$
- Matrix $\boldsymbol{\Phi}$ is such that $\boldsymbol{\Phi}=\left(\mathbf{W}_{\downarrow}^{H} \mathbf{W}_{\downarrow}\right)^{-1} \mathbf{W}_{\downarrow}^{H} \mathbf{W}_{\uparrow}$

ESPRIT method

- Rotational invariance property of $\mathbf{V}^{n}: \mathbf{V}^{n} \uparrow=\mathbf{V}^{n}{ }_{\downarrow} \mathbf{D}$
- Change of basis: $\mathbf{V}^{n}=\mathbf{W G}$
- Rotational invariance of $\mathbf{W}: \mathbf{W}_{\uparrow}=\mathbf{W}_{\downarrow} \boldsymbol{\Phi}$ where $\boldsymbol{\Phi}=\mathbf{G D G}^{-1}$ is referred to as the spectral matrix
- The eigenvalues of $\boldsymbol{\Phi}$ are the poles $\left\{z_{k}\right\}_{k \in\{0 \ldots K-1\}}$
- Matrix $\boldsymbol{\Phi}$ is such that $\boldsymbol{\Phi}=\left(\mathbf{W}_{\downarrow}^{H} \mathbf{W}_{\downarrow}\right)^{-1} \mathbf{W}_{\downarrow}^{H} \mathbf{W}_{\uparrow}$
- ESPRIT algorithm:

ESPRIT method

- Rotational invariance property of $\mathbf{V}^{n}: \mathbf{V}^{n} \uparrow=\mathbf{V}^{n}{ }_{\downarrow} \mathbf{D}$
- Change of basis: $\mathbf{V}^{n}=\mathbf{W G}$
- Rotational invariance of $\mathbf{W}: \mathbf{W}_{\uparrow}=\mathbf{W}_{\downarrow} \boldsymbol{\Phi}$ where $\boldsymbol{\Phi}=\mathbf{G D G}^{-1}$ is referred to as the spectral matrix
- The eigenvalues of $\boldsymbol{\Phi}$ are the poles $\left\{z_{k}\right\}_{k \in\{0 \ldots K-1\}}$
- Matrix $\boldsymbol{\Phi}$ is such that $\boldsymbol{\Phi}=\left(\mathbf{W}_{\downarrow}^{H} \mathbf{W}_{\downarrow}\right)^{-1} \mathbf{W}_{\downarrow}^{H} \mathbf{W}_{\uparrow}$
- ESPRIT algorithm:
- compute the estimator $\widehat{\mathbf{R}}_{x x}$ of matrix $\mathbf{R}_{x x}$,

ESPRIT method

- Rotational invariance property of $\mathbf{V}^{n}: \mathbf{V}^{n} \uparrow=\mathbf{V}_{\downarrow}{ }_{\downarrow} \mathbf{D}$
- Change of basis: $\mathbf{V}^{n}=\mathbf{W G}$
- Rotational invariance of $\mathbf{W}: \mathbf{W}_{\uparrow}=\mathbf{W}_{\downarrow} \boldsymbol{\Phi}$ where $\boldsymbol{\Phi}=\mathbf{G D G}^{-1}$ is referred to as the spectral matrix
- The eigenvalues of $\boldsymbol{\Phi}$ are the poles $\left\{z_{k}\right\}_{k \in\{0 \ldots K-1\}}$
- Matrix $\boldsymbol{\Phi}$ is such that $\boldsymbol{\Phi}=\left(\mathbf{W}_{\downarrow}^{H} \mathbf{W}_{\downarrow}\right)^{-1} \mathbf{W}_{\downarrow}^{H} \mathbf{W}_{\uparrow}$
- ESPRIT algorithm:
- compute the estimator $\widehat{\mathbf{R}}_{x x}$ of matrix $\mathbf{R}_{x x}$,
- diagonalize it and extract matrix \mathbf{W},

ESPRIT method

- Rotational invariance property of $\mathbf{V}^{n}: \mathbf{V}^{n} \uparrow=\mathbf{V}^{n}{ }_{\downarrow} \mathbf{D}$
- Change of basis: $\mathbf{V}^{n}=\mathbf{W G}$
- Rotational invariance of $\mathbf{W}: \mathbf{W}_{\uparrow}=\mathbf{W}_{\downarrow} \boldsymbol{\Phi}$ where $\boldsymbol{\Phi}=\mathbf{G D G}^{-1}$ is referred to as the spectral matrix
- The eigenvalues of $\boldsymbol{\Phi}$ are the poles $\left\{z_{k}\right\}_{k \in\{0 \ldots K-1\}}$
- Matrix $\boldsymbol{\Phi}$ is such that $\boldsymbol{\Phi}=\left(\mathbf{W}_{\downarrow}^{H} \mathbf{W}_{\downarrow}\right)^{-1} \mathbf{W}_{\downarrow}^{H} \mathbf{W}_{\uparrow}$
- ESPRIT algorithm:
- compute the estimator $\widehat{\mathbf{R}}_{x x}$ of matrix $\mathbf{R}_{x x}$,
- diagonalize it and extract matrix \mathbf{W},
- compute $\boldsymbol{\Phi}=\left(\mathbf{W}_{\downarrow}^{H} \mathbf{W}_{\downarrow}\right)^{-1} \mathbf{W}_{\downarrow}^{H} \mathbf{W}_{\uparrow}$,

ESPRIT method

- Rotational invariance property of $\mathbf{V}^{n}: \mathbf{V}^{n} \uparrow=\mathbf{V}^{n}{ }_{\downarrow} \mathbf{D}$
- Change of basis: $\mathbf{V}^{n}=\mathbf{W G}$
- Rotational invariance of $\mathbf{W}: \mathbf{W}_{\uparrow}=\mathbf{W}_{\downarrow} \boldsymbol{\Phi}$ where $\boldsymbol{\Phi}=\mathbf{G D G}^{-1}$ is referred to as the spectral matrix
- The eigenvalues of $\boldsymbol{\Phi}$ are the poles $\left\{z_{k}\right\}_{k \in\{0 \ldots K-1\}}$
- Matrix $\boldsymbol{\Phi}$ is such that $\boldsymbol{\Phi}=\left(\mathbf{W}_{\downarrow}^{H} \mathbf{W}_{\downarrow}\right)^{-1} \mathbf{W}_{\downarrow}^{H} \mathbf{W}_{\uparrow}$
- ESPRIT algorithm:
- compute the estimator $\widehat{\mathbf{R}}_{x x}$ of matrix $\mathbf{R}_{x x}$,
- diagonalize it and extract matrix \mathbf{W},
- compute $\boldsymbol{\Phi}=\left(\mathbf{W}_{\downarrow}{ }_{\downarrow} \mathbf{W}_{\downarrow}\right)^{-1} \mathbf{W}_{\downarrow}{ }^{H} \mathbf{W}_{\uparrow}$,
- diagonalize $\boldsymbol{\Phi}$ and get the poles $\left\{z_{k}\right\}_{k \in\{0 \ldots K-1\}}$.

Estimation of the amplitudes and phases

－Let \mathbf{x} be the vector $[x[0], x[1], \ldots, x[N-1]]^{T}$ of dimension N

Estimation of the amplitudes and phases

- Let \mathbf{x} be the vector $[x[0], x[1], \ldots, x[N-1]]^{T}$ of dimension N
- Let \mathbf{V}^{N} denote the Vandermonde matrix with N rows

High resolution methods

Estimation of the amplitudes and phases

- Let \mathbf{x} be the vector $[x[0], x[1], \ldots, x[N-1]]^{T}$ of dimension N
- Let \mathbf{V}^{N} denote the Vandermonde matrix with N rows
- Let $\alpha=\left[\alpha_{0}, \alpha_{1}, \ldots, \alpha_{K-1}\right]^{T}$ denote the vector of complex amplitudes that we aim to estimate

Estimation of the amplitudes and phases

- Let \mathbf{x} be the vector $[x[0], x[1], \ldots, x[N-1]]^{T}$ of dimension N
- Let \mathbf{V}^{N} denote the Vandermonde matrix with N rows
- Let $\alpha=\left[\alpha_{0}, \alpha_{1}, \ldots, \alpha_{K-1}\right]^{T}$ denote the vector of complex amplitudes that we aim to estimate
- The maximum likelihood principle leads to using the lest squares method: $\widehat{\alpha}=\underset{\beta}{\operatorname{argmin}}\left\|\mathbf{x}-\mathbf{V}^{N} \beta\right\|^{2}$

Estimation of the amplitudes and phases

- Let \mathbf{x} be the vector $[x[0], x[1], \ldots, x[N-1]]^{T}$ of dimension N
- Let \mathbf{V}^{N} denote the Vandermonde matrix with N rows
- Let $\alpha=\left[\alpha_{0}, \alpha_{1}, \ldots, \alpha_{K-1}\right]^{T}$ denote the vector of complex amplitudes that we aim to estimate
- The maximum likelihood principle leads to using the lest squares method: $\widehat{\alpha}=\underset{\beta}{\operatorname{argmin}}\left\|\mathbf{x}-\mathbf{V}^{N} \beta\right\|^{2}$
- The solution is $\widehat{\alpha}=\left(\mathbf{V}^{N^{H}} \mathbf{V}^{N}\right)^{-1} \mathbf{V}^{N^{H}} \mathbf{x}$

Estimation of the amplitudes and phases

- Let \mathbf{x} be the vector $[x[0], x[1], \ldots, x[N-1]]^{T}$ of dimension N
- Let \mathbf{V}^{N} denote the Vandermonde matrix with N rows
- Let $\alpha=\left[\alpha_{0}, \alpha_{1}, \ldots, \alpha_{K-1}\right]^{T}$ denote the vector of complex amplitudes that we aim to estimate
- The maximum likelihood principle leads to using the lest squares method: $\widehat{\alpha}=\underset{\beta}{\operatorname{argmin}}\left\|\mathbf{x}-\mathbf{V}^{N} \beta\right\|^{2}$
- The solution is $\widehat{\alpha}=\left(\mathbf{V}^{N^{H}} \mathbf{V}^{N}\right)^{-1} \mathbf{V}^{N^{H}} \mathbf{x}$
- We finally get $\widehat{a}_{k}=\left|\widehat{\alpha}_{k}\right|$ and $\widehat{\phi}_{k}=\arg \left(\widehat{\alpha}_{k}\right)$

Part III

Signals to be processed

Bell sound

(a) Signal waveform
(b) Fourier transform (dB)

