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Sinusoidal modeling of audio signals

I Sounds that generate pitch perception have a quasi-periodic
waveform

I Spectrum made of harmonic multiples of the fundamental
frequency:

I voiced speech sounds, produced by quasi-periodic vibration of
the vocal cords

I sounds produced by string or wind instruments

I The harmonicity property does not always hold:

I Some instruments are slightly inharmonic
I Polyphony: overlap of harmonic combs
I Presence of pairs or triplets of close frequencies:

I asymmetry in a bell geometry
I coupling between the strings and bridge (chevalet) in a guitar
I pairs or triplets of strings in a piano, plus coupling of the

vertical and horizontal vibration modes

2/17 Une école de l’IMT High resolution methods



Sinusoidal modeling of audio signals

I Sounds that generate pitch perception have a quasi-periodic
waveform

I Spectrum made of harmonic multiples of the fundamental
frequency:

I voiced speech sounds, produced by quasi-periodic vibration of
the vocal cords

I sounds produced by string or wind instruments

I The harmonicity property does not always hold:

I Some instruments are slightly inharmonic
I Polyphony: overlap of harmonic combs
I Presence of pairs or triplets of close frequencies:

I asymmetry in a bell geometry
I coupling between the strings and bridge (chevalet) in a guitar
I pairs or triplets of strings in a piano, plus coupling of the

vertical and horizontal vibration modes
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2/17 Une école de l’IMT High resolution methods



Sinusoidal modeling of audio signals

I Sounds that generate pitch perception have a quasi-periodic
waveform

I Spectrum made of harmonic multiples of the fundamental
frequency:

I voiced speech sounds, produced by quasi-periodic vibration of
the vocal cords

I sounds produced by string or wind instruments

I The harmonicity property does not always hold:
I Some instruments are slightly inharmonic
I Polyphony: overlap of harmonic combs
I Presence of pairs or triplets of close frequencies:

I asymmetry in a bell geometry
I coupling between the strings and bridge (chevalet) in a guitar

I pairs or triplets of strings in a piano, plus coupling of the
vertical and horizontal vibration modes
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Part I

Parametric signal model
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Exponential Sinusoidal Model (ESM)

I Exponential amplitude modulation to model the natural
damping of free vibrating systems

I Real model: s[t] = ∑
K−1
k=0 ak e

δk t cos(2πfkt + φk)

I Complex model: s[t] = ∑
K−1
k=0 ak e

δk t e i(2πfk t+φk)

I Compact form: s[t] = ∑
K−1
k=0 αk zk

t where

I αk = ake
iφk is a complex amplitude,

I zk = eδk+i2πfk is a complex pole.

I Hypotheses: for all k ∈ {0 . . .K −1}, αk 6= 0, zk 6= 0, and all
poles zk are pairwise distinct

I The observed signal x [t] is modeled as the signal s[t] plus a
complex Gaussian white noise b[t] of variance σ2
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Spectral estimation by Fourier analysis

I Peak detection in the Fourier transform

I Advantages

I existence of a fast algorithm (FFT)
I robust estimation method

I Drawbacks

I spectral resolution limited by the window length
I spectral precision limited by the length of the transform
I trade-off between the width of the principal lobe and the

height of the secondary lobes induced by the window shape
I widening of the peak in case of exponential damping
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5/17 Une école de l’IMT High resolution methods



Spectral estimation by Fourier analysis

I Peak detection in the Fourier transform
I Advantages

I existence of a fast algorithm (FFT)
I robust estimation method

I Drawbacks
I spectral resolution limited by the window length
I spectral precision limited by the length of the transform
I trade-off between the width of the principal lobe and the

height of the secondary lobes induced by the window shape

I widening of the peak in case of exponential damping
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Resolution problems

Test signal:

I Sampling frequency: 8000 Hz

I First sinusoid: 440 Hz (A)

I Second sinusoid: 415,3 Hz (G#)

I No damping, all amplitudes equal to 1

I Length of the rectangular window: N = 128 (16 ms)

I Length of the transform: 1024 samples
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Maximum likelihood method

I General parametric estimation principle, asymptotically
unbiased, consistent and efficient

I It leads to a 3-step estimation:

I Estimation of the complex poles: numerical optimization of a
function of K complex variables

I Estimation of the complex amplitudes: by means of the least
squares method

I Estimation of the variance: power of the residual signal

I Difficulties of the first step:

I computational complexity
I presence of many local maxima

I Need for specific methods for the complex poles

I High resolution parametric estimation methods overcome the
limits of Fourier analysis
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Part II

High resolution methods
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Linear prediction methods

I Principle: any signal such that s[t]− z0 s[t−1] = 0 is of the
form s[t] = α0 z0

t

I General case: let P[z] ,
K−1
∏
k=0

(z− zk) =
K

∑
τ=0

pτ z
K−τ .

I A discrete signal {s[t]}t∈Z is solution of the recursion
K

∑
τ=0

pτ s[t− τ] = 0 if and only if it is of the form

s[t] =
K−1
∑
k=0

αk zk
t

I Prony and Pisarenko methods:

I Estimate polynomial P[z] by means of linear prediction
I Extract the roots of this polynomial

I Drawback: mediocre performance in presence of noise
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Matrix representation of the signal

I Observation horizon: t ∈ {0 . . .N−1}, where N > 2K

I Data matrix (n > K , l > K and N = n+ l−1):

S =


s[0] s[1] . . . s[l−1]
s[1] s[2] . . . s[l ]

...
...

...
...

s[n−1] s[n] . . . s[N−1]


I Factorization of matrix S: S = Vn AVl T , where

I Vn is the Vandermonde matrix of dimension n×K ,
I Vl is the Vandermonde matrix of dimension l×K ,
I A = diag(α0, α1, . . . , αK−1) is a diagonal matrix of dimension

K ×K .
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Empirical covariance matrix

I Let us define the empirical covariance matrix Rss = 1
l SSH

I Then Rss = Vn PVnH , where P = 1
l AVl TVl ∗AH

I Matrix Rss has rank K

I Rss is diagonalizable in an orthonormal basis {w0 . . .wn−1}
I Its eigenvalues λ0 ≥ λ1 ≥ . . .≥ λn−1 ≥ 0 are such that

I ∀i ∈ {0 . . .K −1}, λi > 0;
I ∀i ∈ {K . . .n−1}, λi = 0.

I Let R̂bb = 1
l BBH and Rbb = E

[
R̂bb

]
= σ2In.

I In the same way, let R̂xx = 1
l XXH and Rxx = E

[
R̂xx

]
.

I Then Rxx = Rss + σ2In
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Signal subspace and noise subspace

I For all i ∈ {0 . . .n−1}, wi is also an eigenvector of Rxx

corresponding to the eigenvalue λ ′i = λi + σ2. Therefore,

I ∀i ∈ {0 . . .K −1}, λ ′i > σ2;
I ∀i ∈ {K . . .n−1}, λ ′i = σ2.

I Let W = [w0 . . .wK−1], and W⊥ = [wK . . .wn−1]

I Then Span(W) = Span(Vn) is referred to as the signal
subspace

I In the same way, Span(W⊥) is referred to as the noise
subspace

I The poles {zk}k∈{0...K−1} are the solutions of equation∥∥WH
⊥v(z)

∥∥2 = 0, where v(z) = [1,z , . . . ,zn−1]

I The MUSIC method consists in solving this equation

I The Spectral-MUSIC method consists in detecting the K
highest peaks in function z 7→ 1

‖WH
⊥v(z)‖2

.
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Spectral MUSIC method

Test signal:

I Sampling frequency: 8000 Hz

I First sinusoid: 440 Hz (A)

I Second sinusoid: 415,3 Hz (G#)

I No damping, all amplitudes equal to 1

I Length of the rectangular window: N = 128 (16 ms)

I Length of the transform: 1024 samples
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Spectral MUSIC method
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Spectral MUSIC method

MUSIC pseudo-spectrum
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ESPRIT method

I Rotational invariance property of Vn:
1 . . . 1
z0 . . . zK−1
... . . .

...
z0

n−2. . .zK−1
n−2

z0
n−1. . .zK−1

n−1


︸ ︷︷ ︸

Vn

n×K

I Rotational invariance property of Vn: Vn
↑ = Vn

↓D
I Change of basis: Vn = WG
I Rotational invariance of W: W↑ = W↓Φ

where Φ = GDG−1 is referred to as the spectral matrix
I The eigenvalues of Φ are the poles {zk}k∈{0...K−1}
I Matrix Φ is such that Φ =

(
WH
↓ W↓

)−1
WH
↓ W↑

I ESPRIT algorithm:

I compute the estimator R̂xx of matrix Rxx ,
I diagonalize it and extract matrix W,

I compute Φ =
(

WH
↓ W↓

)−1
WH
↓ W↑,

I diagonalize Φ and get the poles {zk}k∈{0...K−1}.
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14/17 Une école de l’IMT High resolution methods



ESPRIT method

I Rotational invariance property of Vn:

I Rotational invariance property of Vn: Vn
↑ = Vn

↓D

I Change of basis: Vn = WG

I Rotational invariance of W: W↑ = W↓Φ
where Φ = GDG−1 is referred to as the spectral matrix

I The eigenvalues of Φ are the poles {zk}k∈{0...K−1}
I Matrix Φ is such that Φ =

(
WH
↓ W↓

)−1
WH
↓ W↑

I ESPRIT algorithm:
I compute the estimator R̂xx of matrix Rxx ,

I diagonalize it and extract matrix W,

I compute Φ =
(

WH
↓ W↓

)−1
WH
↓ W↑,

I diagonalize Φ and get the poles {zk}k∈{0...K−1}.
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14/17 Une école de l’IMT High resolution methods



Estimation of the amplitudes and phases

I Let x be the vector [x [0], x [1], . . . , x [N−1]]T of dimension N

I Let VN denote the Vandermonde matrix with N rows

I Let α = [α0, α1, . . . , αK−1]T denote the vector of complex
amplitudes that we aim to estimate

I The maximum likelihood principle leads to using the lest

squares method: α̂ = argmin
β

∥∥x−VN
β
∥∥2

I The solution is α̂ =
(

VNH
VN
)−1

VNH
x

I We finally get âk = |α̂k | and φ̂k = arg(α̂k)
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15/17 Une école de l’IMT High resolution methods



Estimation of the amplitudes and phases

I Let x be the vector [x [0], x [1], . . . , x [N−1]]T of dimension N

I Let VN denote the Vandermonde matrix with N rows

I Let α = [α0, α1, . . . , αK−1]T denote the vector of complex
amplitudes that we aim to estimate

I The maximum likelihood principle leads to using the lest

squares method: α̂ = argmin
β

∥∥x−VN
β
∥∥2

I The solution is α̂ =
(

VNH
VN
)−1

VNH
x
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Part III

Signals to be processed
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