

High resolution methods

Roland Badeau, roland.badeau@telecom-paris.fr

M2 MVA Audio signal analysis, indexing and transformation

 Sounds that generate pitch perception have a quasi-periodic waveform

😥 IP PARIS

•	117	
Ζ.		
-7		

- Sounds that generate pitch perception have a quasi-periodic waveform
- Spectrum made of harmonic multiples of the fundamental frequency:

😥 IP PARIS

2/17			
------	--	--	--

- Sounds that generate pitch perception have a quasi-periodic waveform
- Spectrum made of harmonic multiples of the fundamental frequency:
 - voiced speech sounds, produced by quasi-periodic vibration of the vocal cords

2,	/17	

- Sounds that generate pitch perception have a quasi-periodic waveform
- Spectrum made of harmonic multiples of the fundamental frequency:
 - voiced speech sounds, produced by quasi-periodic vibration of the vocal cords
 - sounds produced by string or wind instruments

🔁 IP PARIS

	14	-		
4/	1	4		

- Sounds that generate pitch perception have a quasi-periodic waveform
- Spectrum made of harmonic multiples of the fundamental frequency:
 - voiced speech sounds, produced by quasi-periodic vibration of the vocal cords
 - sounds produced by string or wind instruments
- The harmonicity property does not always hold:

- Sounds that generate pitch perception have a quasi-periodic waveform
- Spectrum made of harmonic multiples of the fundamental frequency:
 - voiced speech sounds, produced by quasi-periodic vibration of the vocal cords
 - sounds produced by string or wind instruments
- The harmonicity property does not always hold:
 - Some instruments are slightly inharmonic

- Sounds that generate pitch perception have a quasi-periodic waveform
- Spectrum made of harmonic multiples of the fundamental frequency:
 - voiced speech sounds, produced by quasi-periodic vibration of the vocal cords
 - sounds produced by string or wind instruments
- The harmonicity property does not always hold:
 - Some instruments are slightly inharmonic
 - Polyphony: overlap of harmonic combs

- Sounds that generate pitch perception have a quasi-periodic waveform
- Spectrum made of harmonic multiples of the fundamental frequency:
 - voiced speech sounds, produced by quasi-periodic vibration of the vocal cords
 - sounds produced by string or wind instruments
- ► The harmonicity property does not always hold:
 - Some instruments are slightly inharmonic
 - Polyphony: overlap of harmonic combs
 - Presence of pairs or triplets of close frequencies:

S IP PARE

- Sounds that generate pitch perception have a quasi-periodic waveform
- Spectrum made of harmonic multiples of the fundamental frequency:
 - voiced speech sounds, produced by quasi-periodic vibration of the vocal cords
 - sounds produced by string or wind instruments
- The harmonicity property does not always hold:
 - Some instruments are slightly inharmonic
 - Polyphony: overlap of harmonic combs
 - Presence of pairs or triplets of close frequencies:
 - asymmetry in a bell geometry

- Sounds that generate pitch perception have a quasi-periodic waveform
- Spectrum made of harmonic multiples of the fundamental frequency:
 - voiced speech sounds, produced by quasi-periodic vibration of the vocal cords
 - sounds produced by string or wind instruments
- The harmonicity property does not always hold:
 - Some instruments are slightly inharmonic
 - Polyphony: overlap of harmonic combs
 - Presence of pairs or triplets of close frequencies:
 - asymmetry in a bell geometry
 - coupling between the strings and bridge (chevalet) in a guitar

- Sounds that generate pitch perception have a quasi-periodic waveform
- Spectrum made of harmonic multiples of the fundamental frequency:
 - voiced speech sounds, produced by quasi-periodic vibration of the vocal cords
 - sounds produced by string or wind instruments
- The harmonicity property does not always hold:
 - Some instruments are slightly inharmonic
 - Polyphony: overlap of harmonic combs
 - Presence of pairs or triplets of close frequencies:
 - asymmetry in a bell geometry
 - coupling between the strings and bridge (chevalet) in a guitar
 - pairs or triplets of strings in a piano, plus coupling of the vertical and horizontal vibration modes

Part I

Parametric signal model

🚫 IP PARIS

-		-		
	1	н	7	1
		е.		

 Exponential amplitude modulation to model the natural damping of free vibrating systems

🙆 IP PARIS

Л	/17	
٠,	11	

- Exponential amplitude modulation to model the natural damping of free vibrating systems
- Real model: $s[t] = \sum_{k=0}^{K-1} a_k e^{\delta_k t} \cos(2\pi f_k t + \phi_k)$

🔁 IP PARIS

4/17	Une école de l'IMT	
------	--------------------	--

- Exponential amplitude modulation to model the natural damping of free vibrating systems
- Real model: $s[t] = \sum_{k=0}^{K-1} a_k e^{\delta_k t} \cos(2\pi f_k t + \phi_k)$
- Complex model: $s[t] = \sum_{k=0}^{K-1} a_k e^{\delta_k t} e^{i(2\pi f_k t + \phi_k)}$

1	/1	7		
7	-			

- Exponential amplitude modulation to model the natural damping of free vibrating systems
- Real model: $s[t] = \sum_{k=0}^{K-1} a_k e^{\delta_k t} \cos(2\pi f_k t + \phi_k)$
- Complex model: $s[t] = \sum_{k=0}^{K-1} a_k e^{\delta_k t} e^{i(2\pi f_k t + \phi_k)}$
- Compact form: $s[t] = \sum_{k=0}^{K-1} \alpha_k z_k^t$ where

🔁 IP PARIS

4/17	Un
------	----

- Exponential amplitude modulation to model the natural damping of free vibrating systems
- Real model: $s[t] = \sum_{k=0}^{K-1} a_k e^{\delta_k t} \cos(2\pi f_k t + \phi_k)$
- Complex model: $s[t] = \sum_{k=0}^{K-1} a_k e^{\delta_k t} e^{i(2\pi f_k t + \phi_k)}$
- Compact form: $s[t] = \sum_{k=0}^{K-1} \alpha_k z_k^t$ where

• $\alpha_k = a_k e^{i\phi_k}$ is a complex amplitude,

😒 IP PARI

4/17	Une école de l'IMT	High resolution methods
------	--------------------	-------------------------

- Exponential amplitude modulation to model the natural damping of free vibrating systems
- Real model: $s[t] = \sum_{k=0}^{K-1} a_k e^{\delta_k t} \cos(2\pi f_k t + \phi_k)$
- Complex model: $s[t] = \sum_{k=0}^{K-1} a_k e^{\delta_k t} e^{i(2\pi f_k t + \phi_k)}$
- Compact form: $s[t] = \sum_{k=0}^{K-1} \alpha_k z_k^t$ where
 - $\alpha_k = a_k e^{i\phi_k}$ is a complex amplitude,
 - $z_k = e^{\delta_k + i2\pi f_k}$ is a complex pole.

D IP PARIS

- Exponential amplitude modulation to model the natural damping of free vibrating systems
- Real model: $s[t] = \sum_{k=0}^{K-1} a_k e^{\delta_k t} \cos(2\pi f_k t + \phi_k)$
- Complex model: $s[t] = \sum_{k=0}^{K-1} a_k e^{\delta_k t} e^{i(2\pi f_k t + \phi_k)}$
- Compact form: $s[t] = \sum_{k=0}^{K-1} \alpha_k z_k^t$ where
 - $\alpha_k = a_k e^{i\phi_k}$ is a complex amplitude, • $z_k = e^{\delta_k + i2\pi f_k}$ is a complex pole.
- Hypotheses: for all k ∈ {0...K−1}, α_k ≠ 0, z_k ≠ 0, and all poles z_k are pairwise distinct

D IP PARIS

- Exponential amplitude modulation to model the natural damping of free vibrating systems
- Real model: $s[t] = \sum_{k=0}^{K-1} a_k e^{\delta_k t} \cos(2\pi f_k t + \phi_k)$
- Complex model: $s[t] = \sum_{k=0}^{K-1} a_k e^{\delta_k t} e^{i(2\pi f_k t + \phi_k)}$
- Compact form: $s[t] = \sum_{k=0}^{K-1} \alpha_k z_k^t$ where
 - $\alpha_k = a_k e^{i\phi_k}$ is a complex amplitude,
 - $z_k = e^{\delta_k + i2\pi f_k}$ is a complex pole.
- ► Hypotheses: for all k ∈ {0...K−1}, α_k ≠ 0, z_k ≠ 0, and all poles z_k are pairwise distinct
- The observed signal x[t] is modeled as the signal s[t] plus a complex Gaussian white noise b[t] of variance σ²

D IP PARIS

Peak detection in the Fourier transform

5/17	Une éc
------	--------

- Peak detection in the Fourier transform
- Advantages

5.	/17			
J/				

- Peak detection in the Fourier transform
- Advantages
 - existence of a fast algorithm (FFT)

5,	/1	7			

- Peak detection in the Fourier transform
- Advantages
 - existence of a fast algorithm (FFT)
 - robust estimation method

🔁 IP PARIS

	 _	
77		

- Peak detection in the Fourier transform
- Advantages
 - existence of a fast algorithm (FFT)
 - robust estimation method
- Drawbacks

🔁 IP PARIS

5 /	1	7	
יי	÷		

- Peak detection in the Fourier transform
- Advantages
 - existence of a fast algorithm (FFT)
 - robust estimation method
- Drawbacks
 - spectral resolution limited by the window length

😥 IP PARIS

	11	7		
7	-			

- Peak detection in the Fourier transform
- Advantages
 - existence of a fast algorithm (FFT)
 - robust estimation method
- Drawbacks
 - spectral resolution limited by the window length
 - spectral precision limited by the length of the transform

🔁 IP PARIS

- Peak detection in the Fourier transform
- Advantages
 - existence of a fast algorithm (FFT)
 - robust estimation method
- Drawbacks
 - spectral resolution limited by the window length
 - spectral precision limited by the length of the transform
 - trade-off between the width of the principal lobe and the height of the secondary lobes induced by the window shape

S IP PARE

- Peak detection in the Fourier transform
- Advantages
 - existence of a fast algorithm (FFT)
 - robust estimation method
- Drawbacks
 - spectral resolution limited by the window length
 - spectral precision limited by the length of the transform
 - trade-off between the width of the principal lobe and the height of the secondary lobes induced by the window shape
 - widening of the peak in case of exponential damping

😒 IP PARI

Test signal:

- Sampling frequency: 8000 Hz
- First sinusoid: 440 Hz (A)
- ► Second sinusoid: 415,3 Hz (G#)
- No damping, all amplitudes equal to 1
- Length of the rectangular window: N = 128 (16 ms)
- Length of the transform: 1024 samples

5/17

Une école de l'IMT

High resolution methods

6/17

Une école de l'IMT

High resolution methods

Maximum likelihood method

 General parametric estimation principle, asymptotically unbiased, consistent and efficient

Maximum likelihood method

- General parametric estimation principle, asymptotically unbiased, consistent and efficient
- It leads to a 3-step estimation:

. /	-		
	11		
- General parametric estimation principle, asymptotically unbiased, consistent and efficient
- It leads to a 3-step estimation:
 - Estimation of the complex poles: numerical optimization of a function of K complex variables

/1	7		
1			

- General parametric estimation principle, asymptotically unbiased, consistent and efficient
- It leads to a 3-step estimation:
 - Estimation of the complex poles: numerical optimization of a function of K complex variables
 - Estimation of the complex amplitudes: by means of the least squares method

- General parametric estimation principle, asymptotically unbiased, consistent and efficient
- It leads to a 3-step estimation:
 - Estimation of the complex poles: numerical optimization of a function of K complex variables
 - Estimation of the complex amplitudes: by means of the least squares method
 - Estimation of the variance: power of the residual signal

- 7	117		
- A.	/1/		

- General parametric estimation principle, asymptotically unbiased, consistent and efficient
- It leads to a 3-step estimation:
 - Estimation of the complex poles: numerical optimization of a function of K complex variables
 - Estimation of the complex amplitudes: by means of the least squares method
 - Estimation of the variance: power of the residual signal
- Difficulties of the first step:

- General parametric estimation principle, asymptotically unbiased, consistent and efficient
- It leads to a 3-step estimation:
 - Estimation of the complex poles: numerical optimization of a function of K complex variables
 - Estimation of the complex amplitudes: by means of the least squares method
 - Estimation of the variance: power of the residual signal
- Difficulties of the first step:
 - computational complexity

- General parametric estimation principle, asymptotically unbiased, consistent and efficient
- It leads to a 3-step estimation:
 - Estimation of the complex poles: numerical optimization of a function of K complex variables
 - Estimation of the complex amplitudes: by means of the least squares method
 - Estimation of the variance: power of the residual signal
- Difficulties of the first step:
 - computational complexity
 - presence of many local maxima

- General parametric estimation principle, asymptotically unbiased, consistent and efficient
- It leads to a 3-step estimation:
 - Estimation of the complex poles: numerical optimization of a function of K complex variables
 - Estimation of the complex amplitudes: by means of the least squares method
 - Estimation of the variance: power of the residual signal
- Difficulties of the first step:
 - computational complexity
 - presence of many local maxima
- Need for specific methods for the complex poles

- General parametric estimation principle, asymptotically unbiased, consistent and efficient
- It leads to a 3-step estimation:
 - Estimation of the complex poles: numerical optimization of a function of K complex variables
 - Estimation of the complex amplitudes: by means of the least squares method
 - Estimation of the variance: power of the residual signal
- Difficulties of the first step:
 - computational complexity
 - presence of many local maxima
- Need for specific methods for the complex poles
- High resolution parametric estimation methods overcome the limits of Fourier analysis

Part II

High resolution methods

🚫 IP PARIS

ж.	
•	
_	

Principle: any signal such that s[t] − z₀ s[t − 1] = 0 is of the form s[t] = α₀ z₀^t

🐼 IP PARIS

|--|

Principle: any signal such that s[t] − z₀ s[t − 1] = 0 is of the form s[t] = α₀ z₀^t

• General case: let
$$P[z] \triangleq \prod_{k=0}^{K-1} (z-z_k) = \sum_{\tau=0}^{K} p_{\tau} z^{K-\tau}$$
.

9/17	Une école de l'IMT	High resolution methods	Ø	
------	--------------------	-------------------------	---	--

Principle: any signal such that s[t] − z₀ s[t − 1] = 0 is of the form s[t] = α₀ z₀^t

• General case: let
$$P[z] \triangleq \prod_{k=0}^{K-1} (z-z_k) = \sum_{\tau=0}^{K} p_{\tau} z^{K-\tau}$$
.

• A discrete signal $\{s[t]\}_{t \in \mathbb{Z}}$ is solution of the recursion $\sum_{\tau=0}^{K} p_{\tau} s[t-\tau] = 0 \text{ if and only if it is of the form}$ $s[t] = \sum_{k=0}^{K-1} \alpha_k z_k^{t}$

🔁 IP PARIS

Principle: any signal such that s[t] − z₀ s[t − 1] = 0 is of the form s[t] = α₀ z₀^t

• General case: let
$$P[z] \triangleq \prod_{k=0}^{K-1} (z-z_k) = \sum_{\tau=0}^{K} p_{\tau} z^{K-\tau}$$
.

• A discrete signal $\{s[t]\}_{t \in \mathbb{Z}}$ is solution of the recursion $\sum_{\tau=0}^{K} p_{\tau} s[t-\tau] = 0 \text{ if and only if it is of the form}$ $s[t] = \sum_{k=0}^{K-1} \alpha_k z_k^{t}$

Prony and Pisarenko methods:

D IP PARIS

Principle: any signal such that s[t] − z₀ s[t − 1] = 0 is of the form s[t] = α₀ z₀^t

• General case: let
$$P[z] \triangleq \prod_{k=0}^{K-1} (z-z_k) = \sum_{\tau=0}^{K} p_{\tau} z^{K-\tau}$$
.

• A discrete signal $\{s[t]\}_{t \in \mathbb{Z}}$ is solution of the recursion $\sum_{\tau=0}^{K} p_{\tau} s[t-\tau] = 0 \text{ if and only if it is of the form}$ $s[t] = \sum_{k=0}^{K-1} \alpha_k z_k^{t}$

Prony and Pisarenko methods:

Estimate polynomial P[z] by means of linear prediction

D IP PARE

Principle: any signal such that s[t] − z₀ s[t − 1] = 0 is of the form s[t] = α₀ z₀^t

• General case: let
$$P[z] \triangleq \prod_{k=0}^{K-1} (z-z_k) = \sum_{\tau=0}^{K} p_{\tau} z^{K-\tau}$$
.

• A discrete signal $\{s[t]\}_{t \in \mathbb{Z}}$ is solution of the recursion $\sum_{\tau=0}^{K} p_{\tau} s[t-\tau] = 0 \text{ if and only if it is of the form}$ $s[t] = \sum_{r=0}^{K-1} \alpha_k z_k^{t}$

Prony and Pisarenko methods:

- Estimate polynomial P[z] by means of linear prediction
- Extract the roots of this polynomial

D IP PARE

Principle: any signal such that s[t] − z₀ s[t − 1] = 0 is of the form s[t] = α₀ z₀^t

• General case: let
$$P[z] \triangleq \prod_{k=0}^{K-1} (z-z_k) = \sum_{\tau=0}^{K} p_{\tau} z^{K-\tau}$$
.

- A discrete signal $\{s[t]\}_{t \in \mathbb{Z}}$ is solution of the recursion $\sum_{\tau=0}^{K} p_{\tau} s[t-\tau] = 0 \text{ if and only if it is of the form}$ $s[t] = \sum_{k=0}^{K-1} \alpha_k z_k^{t}$
- Prony and Pisarenko methods:
 - ▶ Estimate polynomial *P*[*z*] by means of linear prediction
 - Extract the roots of this polynomial
- Drawback: mediocre performance in presence of noise

D IP PARE

• Observation horizon: $t \in \{0 \dots N - 1\}$, where N > 2K

🐼 IP PARIS

|--|

- ▶ Observation horizon: $t \in \{0..., N-1\}$, where N > 2K
- Data matrix (n > K, l > K and N = n + l 1):

$$\mathbf{S} = \begin{bmatrix} s[0] & s[1] & \dots & s[l-1] \\ s[1] & s[2] & \dots & s[l] \\ \vdots & \vdots & \vdots & \vdots \\ s[n-1] & s[n] & \dots & s[N-1] \end{bmatrix}$$

10/17	Une école de l'IMT	High resolution methods	Ø	
-------	--------------------	-------------------------	---	--

▶ Observation horizon: $t \in \{0..., N-1\}$, where N > 2K

• Data matrix (n > K, l > K and N = n + l - 1):

$$\mathbf{S} = \begin{bmatrix} s[0] & s[1] & \dots & s[l-1] \\ s[1] & s[2] & \dots & s[l] \\ \vdots & \vdots & \vdots & \vdots \\ s[n-1] & s[n] & \dots & s[N-1] \end{bmatrix}$$

Factorization of matrix \mathbf{S} : $\mathbf{S} = \mathbf{V}^n \mathbf{A} {\mathbf{V}'}^T$, where

D IP PARIS

10/17

- Observation horizon: $t \in \{0 \dots N-1\}$, where N > 2K
- Data matrix (n > K, l > K and N = n + l 1):

$$\mathbf{S} = \begin{bmatrix} s[0] & s[1] & \dots & s[l-1] \\ s[1] & s[2] & \dots & s[l] \\ \vdots & \vdots & \vdots & \vdots \\ s[n-1] & s[n] & \dots & s[N-1] \end{bmatrix}$$

• Factorization of matrix $\mathbf{S}: \mathbf{S} = \mathbf{V}^n \mathbf{A} \mathbf{V}^{\prime \prime}$, where

• \mathbf{V}^n is the Vandermonde matrix of dimension $n \times K$,

$$\mathbf{V}^{n} = \begin{bmatrix} 1 & 1 & \dots & 1 \\ z_{0} & z_{1} & \dots & z_{K-1} \\ z_{0}^{2} & z_{1}^{2} & \dots & z_{K-1}^{2} \\ \vdots & \vdots & \vdots & \vdots \\ z_{0}^{n-1} & z_{1}^{n-1} & \dots & z_{K-1}^{n-1} \end{bmatrix}$$

- ▶ Observation horizon: $t \in \{0..., N-1\}$, where N > 2K
- Data matrix (n > K, l > K and N = n + l 1):

$$\mathbf{S} = \begin{bmatrix} s[0] & s[1] & \dots & s[l-1] \\ s[1] & s[2] & \dots & s[l] \\ \vdots & \vdots & \vdots & \vdots \\ s[n-1] & s[n] & \dots & s[N-1] \end{bmatrix}$$

- Factorization of matrix **S**: $\mathbf{S} = \mathbf{V}^n \mathbf{A} \mathbf{V}^{\prime \prime}$, where
 - \mathbf{V}^n is the Vandermonde matrix of dimension $n \times K$,
 - \mathbf{V}^{I} is the Vandermonde matrix of dimension $I \times K$,

- ▶ Observation horizon: $t \in \{0..., N-1\}$, where N > 2K
- Data matrix (n > K, l > K and N = n + l 1):

$$\mathbf{S} = \begin{bmatrix} s[0] & s[1] & \dots & s[l-1] \\ s[1] & s[2] & \dots & s[l] \\ \vdots & \vdots & \vdots & \vdots \\ s[n-1] & s[n] & \dots & s[N-1] \end{bmatrix}$$

• Factorization of matrix **S**: $\mathbf{S} = \mathbf{V}^n \mathbf{A} {\mathbf{V}'}^T$, where

- \mathbf{V}^n is the Vandermonde matrix of dimension $n \times K$,
- \mathbf{V}^{I} is the Vandermonde matrix of dimension $I \times K$,
- $\mathbf{A} = \operatorname{diag}(\alpha_0, \alpha_1, \dots, \alpha_{K-1})$ is a diagonal matrix of dimension $K \times K$.

🔁 IP PARIS

• Let us define the empirical covariance matrix $\mathbf{R}_{ss} = \frac{1}{7} \mathbf{S} \mathbf{S}^{H}$

🐼 IP PARIS

• Let us define the empirical covariance matrix $\mathbf{R}_{ss} = \frac{1}{I} \mathbf{S} \mathbf{S}^{H}$

► Then
$$\mathbf{R}_{ss} = \mathbf{V}^n \mathbf{P} \mathbf{V}^{nH}$$
, where $\mathbf{P} = \frac{1}{l} \mathbf{A} \mathbf{V}^{lT} \mathbf{V}^{l*} \mathbf{A}^{H}$

🐼 IP PARIS

• Let us define the empirical covariance matrix $\mathbf{R}_{ss} = \frac{1}{I} \mathbf{S} \mathbf{S}^{H}$

► Then
$$\mathbf{R}_{ss} = \mathbf{V}^n \mathbf{P} \mathbf{V}^{nH}$$
, where $\mathbf{P} = \frac{1}{l} \mathbf{A} \mathbf{V}^{lT} \mathbf{V}^{l*} \mathbf{A}^{H}$

Matrix R_{ss} has rank K

D IP PARIS

methods

11/17	Une école de l'IMT	High resolution
-------	--------------------	-----------------

• Let us define the empirical covariance matrix $\mathbf{R}_{ss} = \frac{1}{I} \mathbf{S} \mathbf{S}^{H}$

► Then
$$\mathbf{R}_{ss} = \mathbf{V}^n \mathbf{P} \mathbf{V}^{nH}$$
, where $\mathbf{P} = \frac{1}{l} \mathbf{A} \mathbf{V}^{lT} \mathbf{V}^{l*} \mathbf{A}^{H}$

- Matrix R_{ss} has rank K
- ▶ \mathbf{R}_{ss} is diagonalizable in an orthonormal basis { $\mathbf{w}_0 \dots \mathbf{w}_{n-1}$ }

😒 IP PARIS

11/17	Une école de l'IMT	High resolution methods
-------	--------------------	-------------------------

- Let us define the empirical covariance matrix $\mathbf{R}_{ss} = \frac{1}{I} \mathbf{S} \mathbf{S}^{H}$
- Then $\mathbf{R}_{ss} = \mathbf{V}^n \mathbf{P} \mathbf{V}^{nH}$, where $\mathbf{P} = \frac{1}{l} \mathbf{A} {\mathbf{V}'}^T {\mathbf{V}'}^* \mathbf{A}^H$
- Matrix R_{ss} has rank K
- ▶ \mathbf{R}_{ss} is diagonalizable in an orthonormal basis { $\mathbf{w}_0 \dots \mathbf{w}_{n-1}$ }
- ▶ Its eigenvalues $\lambda_0 \ge \lambda_1 \ge \ldots \ge \lambda_{n-1} \ge 0$ are such that

😒 IP PARIS

11/17	Une école de l'IMT	High resolution methods
-------	--------------------	-------------------------

- Let us define the empirical covariance matrix $\mathbf{R}_{ss} = \frac{1}{I} \mathbf{S} \mathbf{S}^{H}$
- Then $\mathbf{R}_{ss} = \mathbf{V}^n \mathbf{P} \mathbf{V}^{nH}$, where $\mathbf{P} = \frac{1}{l} \mathbf{A} {\mathbf{V}'}^T {\mathbf{V}'}^* \mathbf{A}^H$
- Matrix R_{ss} has rank K
- ▶ \mathbf{R}_{ss} is diagonalizable in an orthonormal basis { $\mathbf{w}_0 \dots \mathbf{w}_{n-1}$ }
- ▶ Its eigenvalues $\lambda_0 \ge \lambda_1 \ge \ldots \ge \lambda_{n-1} \ge 0$ are such that

►
$$\forall i \in \{0..., K-1\}, \lambda_i > 0;$$

D IP PARIS

- Let us define the empirical covariance matrix $\mathbf{R}_{ss} = \frac{1}{I} \mathbf{S} \mathbf{S}^{H}$
- Then $\mathbf{R}_{ss} = \mathbf{V}^n \mathbf{P} \mathbf{V}^{nH}$, where $\mathbf{P} = \frac{1}{l} \mathbf{A} {\mathbf{V}'}^T {\mathbf{V}'}^* \mathbf{A}^H$
- Matrix R_{ss} has rank K
- ▶ \mathbf{R}_{ss} is diagonalizable in an orthonormal basis { $\mathbf{w}_0 \dots \mathbf{w}_{n-1}$ }
- ▶ Its eigenvalues $\lambda_0 \ge \lambda_1 \ge \ldots \ge \lambda_{n-1} \ge 0$ are such that

►
$$\forall i \in \{0..., K-1\}, \lambda_i > 0;$$

$$\lor \forall i \in \{K \dots n-1\}, \ \lambda_i = 0.$$

D IP PARIS

• Let us define the empirical covariance matrix $\mathbf{R}_{ss} = \frac{1}{I} \mathbf{S} \mathbf{S}^{H}$

► Then
$$\mathbf{R}_{ss} = \mathbf{V}^n \mathbf{P} \mathbf{V}^{nH}$$
, where $\mathbf{P} = \frac{1}{l} \mathbf{A} \mathbf{V}^{lT} \mathbf{V}^{l*} \mathbf{A}^{H}$

- Matrix R_{ss} has rank K
- ▶ \mathbf{R}_{ss} is diagonalizable in an orthonormal basis { $\mathbf{w}_0 \dots \mathbf{w}_{n-1}$ }
- ▶ Its eigenvalues $\lambda_0 \geq \lambda_1 \geq \ldots \geq \lambda_{n-1} \geq 0$ are such that

►
$$\forall i \in \{0...K-1\}, \lambda_i > 0;$$

$$\flat \quad \forall i \in \{K \dots n-1\}, \ \lambda_i = 0$$

• Let
$$\widehat{\mathbf{R}}_{bb} = \frac{1}{l} \mathbf{B} \mathbf{B}^{H}$$
 and $\mathbf{R}_{bb} = \mathbb{E} \left[\widehat{\mathbf{R}}_{bb} \right] = \sigma^2 \mathbf{I}_{n}$.

🔁 IP PARIS

• Let us define the empirical covariance matrix $\mathbf{R}_{ss} = \frac{1}{I} \mathbf{S} \mathbf{S}^{H}$

► Then
$$\mathbf{R}_{ss} = \mathbf{V}^n \mathbf{P} \mathbf{V}^{nH}$$
, where $\mathbf{P} = \frac{1}{l} \mathbf{A} \mathbf{V}^{lT} \mathbf{V}^{l*} \mathbf{A}^{H}$

- Matrix R_{ss} has rank K
- ▶ \mathbf{R}_{ss} is diagonalizable in an orthonormal basis { $\mathbf{w}_0 \dots \mathbf{w}_{n-1}$ }
- ▶ Its eigenvalues $\lambda_0 \ge \lambda_1 \ge \ldots \ge \lambda_{n-1} \ge 0$ are such that

$$\bullet \quad \forall i \in \{0 \dots K - 1\}, \ \lambda_i > 0;$$

$$\flat \quad \forall i \in \{K \dots n-1\}, \ \lambda_i = 0$$

• Let
$$\widehat{\mathbf{R}}_{bb} = \frac{1}{l} \mathbf{B} \mathbf{B}^{H}$$
 and $\mathbf{R}_{bb} = \mathbb{E} \left[\widehat{\mathbf{R}}_{bb} \right] = \sigma^{2} \mathbf{I}_{n}$.

► In the same way, let
$$\widehat{\mathbf{R}}_{xx} = \frac{1}{7} \mathbf{X} \mathbf{X}^H$$
 and $\mathbf{R}_{xx} = \mathbb{E}\left[\widehat{\mathbf{R}}_{xx}\right]$

• Let us define the empirical covariance matrix $\mathbf{R}_{ss} = \frac{1}{I} \mathbf{S} \mathbf{S}^{H}$

► Then
$$\mathbf{R}_{ss} = \mathbf{V}^n \mathbf{P} \mathbf{V}^{nH}$$
, where $\mathbf{P} = \frac{1}{l} \mathbf{A} \mathbf{V}^{lT} \mathbf{V}^{l*} \mathbf{A}^{H}$

- Matrix R_{ss} has rank K
- ▶ \mathbf{R}_{ss} is diagonalizable in an orthonormal basis { $\mathbf{w}_0 \dots \mathbf{w}_{n-1}$ }
- ▶ Its eigenvalues $\lambda_0 \ge \lambda_1 \ge \ldots \ge \lambda_{n-1} \ge 0$ are such that

$$\forall i \in \{0 \dots K - 1\}, \ \lambda_i > 0;$$

$$\flat \quad \forall i \in \{K \dots n-1\}, \ \lambda_i = 0$$

► Let
$$\widehat{\mathbf{R}}_{bb} = \frac{1}{7} \mathbf{B} \mathbf{B}^{H}$$
 and $\mathbf{R}_{bb} = \mathbb{E} \left[\widehat{\mathbf{R}}_{bb} \right] = \sigma^2 \mathbf{I}_n$.

► In the same way, let $\widehat{\mathbf{R}}_{xx} = \frac{1}{7} \mathbf{X} \mathbf{X}^H$ and $\mathbf{R}_{xx} = \mathbb{E} \left[\widehat{\mathbf{R}}_{xx} \right]$.

• Then
$$\mathbf{R}_{xx} = \mathbf{R}_{ss} + \sigma^2 \mathbf{I}_n$$

🔁 IP PARIS

For all i ∈ {0...n−1}, w_i is also an eigenvector of R_{xx} corresponding to the eigenvalue λ_i' = λ_i + σ². Therefore,

🐼 IP PARIS

2/17	•	14.	-	
	21	Δ.	(

- For all i ∈ {0...n−1}, w_i is also an eigenvector of R_{xx} corresponding to the eigenvalue λ_i' = λ_i + σ². Therefore,
 - $\forall i \in \{0..., K-1\}, \ \lambda'_i > \sigma^2;$

🔁 IP PARIS

2	/17	
۷,	11	

- For all i ∈ {0...n−1}, w_i is also an eigenvector of R_{xx} corresponding to the eigenvalue λ_i' = λ_i + σ². Therefore,
 - $\forall i \in \{0..., K-1\}, \lambda'_i > \sigma^2;$
 - $\lor \forall i \in \{K \dots n-1\}, \ \lambda'_i = \sigma^2.$

- For all i ∈ {0...n−1}, w_i is also an eigenvector of R_{xx} corresponding to the eigenvalue λ_i' = λ_i + σ². Therefore,
 - $\forall i \in \{0 \dots K 1\}, \lambda'_i > \sigma^2;$
 - $\lor \forall i \in \{K \dots n-1\}, \ \lambda'_i = \sigma^2.$

• Let $\mathbf{W} = [\mathbf{w}_0 \dots \mathbf{w}_{K-1}]$, and $\mathbf{W}_{\perp} = [\mathbf{w}_K \dots \mathbf{w}_{n-1}]$

😒 IP PARI

12/17	Une école de l'IMT	High resolution methods
		U
- For all i ∈ {0...n−1}, w_i is also an eigenvector of R_{xx} corresponding to the eigenvalue λ_i' = λ_i + σ². Therefore,
 - $\forall i \in \{0 \dots K 1\}, \lambda'_i > \sigma^2;$
 - $\lor \forall i \in \{K \dots n-1\}, \ \lambda'_i = \sigma^2.$
- Let $\mathbf{W} = [\mathbf{w}_0 \dots \mathbf{w}_{K-1}]$, and $\mathbf{W}_{\perp} = [\mathbf{w}_K \dots \mathbf{w}_{n-1}]$
- ► Then Span(W) = Span(Vⁿ) is referred to as the signal subspace

.2/17

- For all i ∈ {0...n−1}, w_i is also an eigenvector of R_{xx} corresponding to the eigenvalue λ_i' = λ_i + σ². Therefore,
 - $\forall i \in \{0 \dots K 1\}, \lambda'_i > \sigma^2_i;$
 - $\lor \forall i \in \{K \dots n-1\}, \ \lambda'_i = \sigma^2.$
- Let $\mathbf{W} = [\mathbf{w}_0 \dots \mathbf{w}_{K-1}]$, and $\mathbf{W}_{\perp} = [\mathbf{w}_K \dots \mathbf{w}_{n-1}]$
- ► Then Span(W) = Span(Vⁿ) is referred to as the signal subspace
- In the same way, Span(W⊥) is referred to as the noise subspace

10	117	
· Z .		
_	_	

- For all i ∈ {0...n−1}, w_i is also an eigenvector of R_{xx} corresponding to the eigenvalue λ_i' = λ_i + σ². Therefore,
 - $\forall i \in \{0 \dots K 1\}, \lambda'_i > \sigma^2_i;$
 - $\flat \quad \forall i \in \{K \dots n-1\}, \ \lambda'_i = \sigma^2.$
- Let $\mathbf{W} = [\mathbf{w}_0 \dots \mathbf{w}_{K-1}]$, and $\mathbf{W}_{\perp} = [\mathbf{w}_K \dots \mathbf{w}_{n-1}]$
- ► Then Span(W) = Span(Vⁿ) is referred to as the signal subspace
- In the same way, Span(W⊥) is referred to as the noise subspace
- ► The poles $\{z_k\}_{k \in \{0...K-1\}}$ are the solutions of equation $\|\mathbf{W}_{\perp}^H \mathbf{v}(z)\|^2 = 0$, where $\mathbf{v}(z) = [1, z, ..., z^{n-1}]$

- For all i ∈ {0...n−1}, w_i is also an eigenvector of R_{xx} corresponding to the eigenvalue λ_i' = λ_i + σ². Therefore,
 - $\forall i \in \{0 \dots K 1\}, \lambda'_i > \sigma^2_i;$
 - $\flat \quad \forall i \in \{K \dots n-1\}, \ \lambda'_i = \sigma^2.$
- Let $\mathbf{W} = [\mathbf{w}_0 \dots \mathbf{w}_{K-1}]$, and $\mathbf{W}_{\perp} = [\mathbf{w}_K \dots \mathbf{w}_{n-1}]$
- ► Then Span(W) = Span(Vⁿ) is referred to as the signal subspace
- In the same way, Span(W⊥) is referred to as the noise subspace
- ► The poles $\{z_k\}_{k \in \{0...K-1\}}$ are the solutions of equation $\|\mathbf{W}_{\perp}^H \mathbf{v}(z)\|^2 = 0$, where $\mathbf{v}(z) = [1, z, ..., z^{n-1}]$
- The MUSIC method consists in solving this equation

- For all i ∈ {0...n−1}, w_i is also an eigenvector of R_{xx} corresponding to the eigenvalue λ_i' = λ_i + σ². Therefore,
 - $\forall i \in \{0 \dots K 1\}, \lambda'_i > \sigma^2_i;$
 - $\lor \forall i \in \{K \dots n-1\}, \ \lambda'_i = \sigma^2.$
- Let $\mathbf{W} = [\mathbf{w}_0 \dots \mathbf{w}_{K-1}]$, and $\mathbf{W}_{\perp} = [\mathbf{w}_K \dots \mathbf{w}_{n-1}]$
- ► Then Span(W) = Span(Vⁿ) is referred to as the signal subspace
- In the same way, Span(W⊥) is referred to as the noise subspace
- ► The poles $\{z_k\}_{k \in \{0...K-1\}}$ are the solutions of equation $\|\mathbf{W}_{\perp}^H \mathbf{v}(z)\|^2 = 0$, where $\mathbf{v}(z) = [1, z, ..., z^{n-1}]$
- The MUSIC method consists in solving this equation
- ► The Spectral-MUSIC method consists in detecting the *K* highest peaks in function $z \mapsto \frac{1}{\|\mathbf{W}_{+}^{H}\mathbf{v}(z)\|^{2}}$.

Test signal:

- Sampling frequency: 8000 Hz
- First sinusoid: 440 Hz (A)
- ► Second sinusoid: 415,3 Hz (G#)
- No damping, all amplitudes equal to 1
- Length of the rectangular window: N = 128 (16 ms)
- ▶ Length of the transform: 1024 samples

2	/17	
	/ 1 /	
_		

🚫 IP PARIS

2	117	
.ວ/	11	

😵 IP PARIS

ľIMT

🚫 IP PARIS

▶ Rotational invariance property of **V**ⁿ:

$$\underbrace{\begin{bmatrix} 1 & \dots & 1 \\ z_0 & \dots & z_{K-1} \\ \vdots & \dots & \vdots \\ z_0^{n-2} \dots z_{K-1}^{n-2} \\ z_0^{n-1} \dots z_{K-1}^{n-1} \end{bmatrix}}_{\mathbf{V}^n}_{\mathbf{n} \times \mathbf{K}}$$

14/17	Une école de l'IMT	High resolution methods	🛞 IP PARIS
-------	--------------------	-------------------------	------------

▶ Rotational invariance property of **V**ⁿ:

$$\underbrace{\begin{bmatrix} 1 & \dots & 1 \\ z_0 & \dots & z_{K-1} \\ \vdots & \dots & \vdots \\ z_0^{n-2} \dots z_{K-1}^{n-2} \\ z_0^{n-1} \dots z_{K-1}^{n-1} \end{bmatrix}}_{\mathbf{V}^n \uparrow} \underbrace{(n-1) \times K}$$

🚫 IP PARIS

14/17	Une école de l'IMT	High resolution methods
-------	--------------------	-------------------------

► Rotational invariance property of **V**^{*n*}:

14/17	Une école de l'IMT	High resolution methods	
			1.44.15

▶ Rotational invariance property of **V**^{*n*}:

IP PARE

14/17	Une école de l'IMT	High resolution methods	Ø

▶ Rotational invariance property of **V**ⁿ:

14/17	Une école de l'IMT	High resolution methods	🛞 IP PARI
-------	--------------------	-------------------------	-----------

▶ Rotational invariance property of \mathbf{V}^n : $\mathbf{V}^n_{\uparrow} = \mathbf{V}^n_{\downarrow} \mathbf{D}$

🐼 IP PARIS

4/17	
------	--

- ▶ Rotational invariance property of \mathbf{V}^n : $\mathbf{V}^n_{\uparrow} = \mathbf{V}^n_{\downarrow} \mathbf{D}$
- Change of basis: $\mathbf{V}^n = \mathbf{W} \mathbf{G}$

🐼 IP PARIS

л.	/17	
47	11	

- ▶ Rotational invariance property of \mathbf{V}^n : $\mathbf{V}^n_{\uparrow} = \mathbf{V}^n_{\downarrow} \mathbf{D}$
- Change of basis: Vⁿ = WG
- ► Rotational invariance of W: $W_{\uparrow} = W_{\downarrow} \Phi$ where $\Phi = GDG^{-1}$ is referred to as the spectral matrix

								17	/1	4,	1	
--	--	--	--	--	--	--	--	----	----	----	---	--

- ▶ Rotational invariance property of \mathbf{V}^n : $\mathbf{V}^n_{\uparrow} = \mathbf{V}^n_{\downarrow} \mathbf{D}$
- Change of basis: Vⁿ = WG
- ► Rotational invariance of W: $W_{\uparrow} = W_{\downarrow} \Phi$ where $\Phi = GDG^{-1}$ is referred to as the spectral matrix
- The eigenvalues of $\mathbf{\Phi}$ are the poles $\{z_k\}_{k \in \{0...K-1\}}$

14/17	Une école de l'IMT	High resolution methods	🛞 IP PARI
-------	--------------------	-------------------------	-----------

- ▶ Rotational invariance property of \mathbf{V}^n : $\mathbf{V}^n_{\uparrow} = \mathbf{V}^n_{\downarrow} \mathbf{D}$
- Change of basis: Vⁿ = WG
- ► Rotational invariance of W: $W_{\uparrow} = W_{\downarrow} \Phi$ where $\Phi = G D G^{-1}$ is referred to as the spectral matrix
- The eigenvalues of $\mathbf{\Phi}$ are the poles $\{z_k\}_{k \in \{0...K-1\}}$
- Matrix $\mathbf{\Phi}$ is such that $\mathbf{\Phi} = \left(\mathbf{W}_{\downarrow}^{H}\mathbf{W}_{\downarrow}\right)^{-1}\mathbf{W}_{\downarrow}^{H}\mathbf{W}_{\uparrow}$

	/17	
4	/ / /	
	· • •	

- ▶ Rotational invariance property of \mathbf{V}^n : $\mathbf{V}^n_{\uparrow} = \mathbf{V}^n_{\downarrow} \mathbf{D}$
- Change of basis: Vⁿ = WG
- ► Rotational invariance of W: $W_{\uparrow} = W_{\downarrow} \Phi$ where $\Phi = G D G^{-1}$ is referred to as the spectral matrix
- The eigenvalues of $\mathbf{\Phi}$ are the poles $\{z_k\}_{k \in \{0...K-1\}}$
- Matrix $\mathbf{\Phi}$ is such that $\mathbf{\Phi} = \left(\mathbf{W}_{\downarrow}^{H}\mathbf{W}_{\downarrow}\right)^{-1}\mathbf{W}_{\downarrow}^{H}\mathbf{W}_{\uparrow}$
- ESPRIT algorithm:

🐼 IP PARIS

- ▶ Rotational invariance property of \mathbf{V}^n : $\mathbf{V}^n_{\uparrow} = \mathbf{V}^n_{\downarrow} \mathbf{D}$
- Change of basis: Vⁿ = WG
- ► Rotational invariance of W: $W_{\uparrow} = W_{\downarrow} \Phi$ where $\Phi = G D G^{-1}$ is referred to as the spectral matrix
- The eigenvalues of $\mathbf{\Phi}$ are the poles $\{z_k\}_{k \in \{0...K-1\}}$
- Matrix $\mathbf{\Phi}$ is such that $\mathbf{\Phi} = \left(\mathbf{W}_{\downarrow}^{H}\mathbf{W}_{\downarrow}\right)^{-1}\mathbf{W}_{\downarrow}^{H}\mathbf{W}_{\uparrow}$
- ESPRIT algorithm:
 - compute the estimator $\widehat{\mathbf{R}}_{xx}$ of matrix \mathbf{R}_{xx} ,

- ▶ Rotational invariance property of \mathbf{V}^n : $\mathbf{V}^n_{\uparrow} = \mathbf{V}^n_{\downarrow} \mathbf{D}$
- Change of basis: Vⁿ = WG
- ► Rotational invariance of W: $W_{\uparrow} = W_{\downarrow} \Phi$ where $\Phi = G D G^{-1}$ is referred to as the spectral matrix
- The eigenvalues of $\mathbf{\Phi}$ are the poles $\{z_k\}_{k \in \{0...K-1\}}$
- Matrix $\mathbf{\Phi}$ is such that $\mathbf{\Phi} = \left(\mathbf{W}_{\downarrow}^{H}\mathbf{W}_{\downarrow}\right)^{-1}\mathbf{W}_{\downarrow}^{H}\mathbf{W}_{\uparrow}$
- ESPRIT algorithm:
 - compute the estimator $\widehat{\mathbf{R}}_{xx}$ of matrix \mathbf{R}_{xx} ,
 - diagonalize it and extract matrix W,

- ▶ Rotational invariance property of \mathbf{V}^n : $\mathbf{V}^n_{\uparrow} = \mathbf{V}^n_{\downarrow} \mathbf{D}$
- Change of basis: Vⁿ = WG
- ► Rotational invariance of W: $W_{\uparrow} = W_{\downarrow} \Phi$ where $\Phi = G D G^{-1}$ is referred to as the spectral matrix
- The eigenvalues of $\mathbf{\Phi}$ are the poles $\{z_k\}_{k \in \{0...K-1\}}$
- Matrix $\mathbf{\Phi}$ is such that $\mathbf{\Phi} = \left(\mathbf{W}_{\downarrow}^{H}\mathbf{W}_{\downarrow}\right)^{-1}\mathbf{W}_{\downarrow}^{H}\mathbf{W}_{\uparrow}$
- ESPRIT algorithm:
 - compute the estimator $\widehat{\mathbf{R}}_{xx}$ of matrix \mathbf{R}_{xx} ,
 - diagonalize it and extract matrix W,

► compute
$$\mathbf{\Phi} = \left(\mathbf{W}_{\downarrow}^{H}\mathbf{W}_{\downarrow}\right)^{-1}\mathbf{W}_{\downarrow}^{H}\mathbf{W}_{\uparrow}$$
,

- ▶ Rotational invariance property of \mathbf{V}^n : $\mathbf{V}^n_{\uparrow} = \mathbf{V}^n_{\downarrow} \mathbf{D}$
- Change of basis: Vⁿ = WG
- ► Rotational invariance of W: $W_{\uparrow} = W_{\downarrow} \Phi$ where $\Phi = G D G^{-1}$ is referred to as the spectral matrix
- The eigenvalues of $\mathbf{\Phi}$ are the poles $\{z_k\}_{k \in \{0...K-1\}}$
- Matrix $\mathbf{\Phi}$ is such that $\mathbf{\Phi} = \left(\mathbf{W}_{\downarrow}^{H}\mathbf{W}_{\downarrow}\right)^{-1}\mathbf{W}_{\downarrow}^{H}\mathbf{W}_{\uparrow}$
- ESPRIT algorithm:
 - compute the estimator $\widehat{\mathbf{R}}_{xx}$ of matrix \mathbf{R}_{xx} ,
 - diagonalize it and extract matrix W,
 - ► compute $\mathbf{\Phi} = \left(\mathbf{W}_{\downarrow}^{H}\mathbf{W}_{\downarrow}\right)^{-1}\mathbf{W}_{\downarrow}^{H}\mathbf{W}_{\uparrow}$,
 - diagonalize Φ and get the poles $\{z_k\}_{k \in \{0...K-1\}}$.

• Let **x** be the vector $[x[0], x[1], \ldots, x[N-1]]^T$ of dimension N

😥 IP PARIS

|--|--|

- ▶ Let **x** be the vector $[x[0], x[1], ..., x[N-1]]^T$ of dimension N
- Let \mathbf{V}^N denote the Vandermonde matrix with N rows

IP PARIS

|--|

- ▶ Let **x** be the vector $[x[0], x[1], ..., x[N-1]]^T$ of dimension N
- Let \mathbf{V}^N denote the Vandermonde matrix with N rows
- Let α = [α₀, α₁,..., α_{K-1}]^T denote the vector of complex amplitudes that we aim to estimate

S IP PARE

-	117	
Э,		
- /		

- ▶ Let **x** be the vector $[x[0], x[1], ..., x[N-1]]^T$ of dimension N
- Let \mathbf{V}^N denote the Vandermonde matrix with N rows
- ► Let $\alpha = [\alpha_0, \alpha_1, ..., \alpha_{K-1}]^T$ denote the vector of complex amplitudes that we aim to estimate
- ► The maximum likelihood principle leads to using the lest squares method: $\hat{\alpha} = \underset{\beta}{\operatorname{argmin}} \|\mathbf{x} \mathbf{V}^N \beta\|^2$

- ▶ Let **x** be the vector $[x[0], x[1], ..., x[N-1]]^T$ of dimension N
- Let \mathbf{V}^N denote the Vandermonde matrix with N rows
- ► Let $\alpha = [\alpha_0, \alpha_1, ..., \alpha_{K-1}]^T$ denote the vector of complex amplitudes that we aim to estimate
- ► The maximum likelihood principle leads to using the lest squares method: $\hat{\alpha} = \underset{\beta}{\operatorname{argmin}} \|\mathbf{x} \mathbf{V}^N \beta\|^2$

► The solution is
$$\widehat{\alpha} = \left(\mathbf{V}^{NH} \mathbf{V}^{N} \right)^{-1} \mathbf{V}^{NH} \mathbf{x}$$

- ▶ Let **x** be the vector $[x[0], x[1], ..., x[N-1]]^T$ of dimension N
- Let \mathbf{V}^N denote the Vandermonde matrix with N rows
- Let α = [α₀, α₁,..., α_{K-1}]^T denote the vector of complex amplitudes that we aim to estimate
- ► The maximum likelihood principle leads to using the lest squares method: $\hat{\alpha} = \underset{\beta}{\operatorname{argmin}} \|\mathbf{x} \mathbf{V}^N \beta\|^2$
- ► The solution is $\widehat{\alpha} = \left(\mathbf{V}^{NH}\mathbf{V}^{N}\right)^{-1}\mathbf{V}^{NH}\mathbf{x}$
- We finally get $\widehat{a}_k = |\widehat{\alpha}_k|$ and $\widehat{\phi}_k = \arg(\widehat{\alpha}_k)$

Part III Signals to be processed

🚫 IP PARIS

	-	1.	
н	D		
	-		

Bell sound

😵 IP PARIS

7/17