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Abstract This chapter provides an overview of how deep learning tech-
niques can be used for audio signals. We first review the main DNN architec-
tures, meta-architectures and training paradigms used for audio processing.
By highlighting the specifies of the audio signal, we discuss the various possi-
ble audio representations to be used as input of a DNN — time and frequency
representations, waveform representations and knowledge-driven representa-
tions — and discuss how the first layers of a DNN can be set to take into
account these specificity’s. We then review a set of applications for three main
classes of problems: audio recognition, audio processing and audio generation.
We do this considering two types of audio content which are less commonly
addressed in the literature: music and environmental sounds.

1 Introduction

As in computer vision (CV) or natural language processing (NLP), deep
learning has now become the dominant paradigm to model and process audio
signals. While the term ”deep learning” can designate any algorithm that
performs deep processing, we define it here as a deep stack of non-linear
projections, obtained by non-linearly connecting layers of neurons; a process
vaguely inspired by biological neural networks. Such algorithms were denoted
by Artificial Neural Network (ANN) in the past and by Deep Neural Network
(DNN) since [HOT06].

Deep Learning encompasses a large set of different architectures and train-
ing paradigms, distinguishing the way neurons are connected to each others,
how spatial or temporal information is taken into account, which criteria
are being optimized, for which task the network is supposed to be used for.
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This is often considered as a “zoo” of possible architectures. However most of
these architectures share the common use of the back-propagation algorithms
[RHW86] to estimate the best parameters of the non-linear projections. In
this chapter, we describe the DNN building blocks used for audio processing.
While some of them are audio translations of CV or NLP networks, others
are specific to audio processing.

We focus on two types of audio content which are less commonly addressed
in the literature: music and environmental sounds. For a recent and good
overview of DNN applied to speech processing we refer the reader to [KLW19].

Differences between speech, music and environmental sounds.
While a speech audio signal usually contains a single speaker (single source),
both music and environmental sounds audio signals are made of several si-
multaneous sources. In the case of music, some sources are polyphonic (as the
piano) and can then produce several pitches simultaneously. This makes the
analysis of music and environmental sounds particularly challenging. Speech
is highly structured over time (or horizontally in reference to the commonly
used conventions in time-frequency representations of audio signals). This
structure arises from the use of a vocabulary and a grammar specific to a
language. Music is also highly structured both horizontally (over time) and
vertically (various simultaneous sound events). This structure arises from
the music composition rules specific to a culture (harmony for Western mu-
sic, modes/raga for Eastern/Indian music). In the opposite, environmental
sounds have no specific temporal structure.

Deep learning for music processing. Music processing is associated
with an interdisciplinary research field known as Music Information Re-
search (MIR)1. This field is dedicated to the understanding, processing and
generation of music. It combines theories, concepts, and techniques from mu-
sic theory, computer science, signal processing perception, and cognition. MIR
deals with the development of algorithms for

• describing the content of the music from the analysis of its audio sig-
nal. Examples of this are the estimation of the various pitches, chords,
rhythm, the identification of the instruments being used in a music, the
assignment of “tags” to a music (such as genres, mood or usage) allowing
to recommend music from catalogues, the detection of cover/plagiarism in
catalogue or in user-generated contents.

• processing the content of the music. Examples of this are enhancement,
source separation.

• generating new audio signals or music pieces, or transferring properties
from one signal to another.

Deep learning for environmental sounds processing. Environmental
sound processing is associated with the research field known as Detection and

1 http://ismir.net
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Classification of Acoustic Scenes and Events (DCASE)2. The latter deals with
the development of algorithms for

• classifying acoustic scenes (identify where a recording was made – for
example in a metro station, in an office or in a street –),

• detecting sound events (detect which events occur over time in an audio
scene – a dog barking, a car passing, an alarm ringing –),

• locating these events in space (in azimuth and elevation angles).

Historical perspectives. Using DNN algorithms to represent the audio
signal has been proposed as early as [WHH+90] where Time-Delay Neural
Network (TDNN) where proposed to allow the representation of the time-
varying natures of phonemes in speech. Later, [BM94] in their “connectionist
speech recognition” convincingly demonstrated the use of the discriminative
projection capabilities of DNN to extract audio features. This has lead, among
others, to the development of the “tandem features” [HES00] which use the
posterior probabilities of a trained Multi-Layer-Perceptron (MLP) as audio
features or the “bottleneck features” [GKKC07] extracted from the bottleneck
part of a MLP. This has lead today to the end-to-end speech recognition
systems which inputs are directly the raw audio waveforms and the output
the transcribed text [SWS+15, SVSS15]. As 2012 is considered a landmark
year for CV (with the AlexNet [KSH12] network wining the ImageNet Large
Scale Visual Recognition Challenge), it is also one for speech recognition
with the publication of the seminal paper [HDY+12], jointly written by the
research groups of the University of Toronto, Microsoft-Research, Google, and
IBM-Research demonstrating the benefits of DNN architectures for speech
processing.

The same year [HBL12] published a manifesto promoting the use of
DNN for non-speech audio processing (MIR and DCASE). In this paper,
the authors demonstrated that any hand-crafted feature (such as MFCC or
Chroma) or algorithms (such as pitch, chord or tempo estimation) used so
far are just layers of non-linear projections and pooling operations and can
therefore be profitably replaced by the trainable non-linear projections of
DNN. DNN has now become the dominant paradigm in MIR and DCASE .

Chapter organization. In part 2, we first review the commonly used
DNN architectures, meta-architectures and training paradigms used for audio
processing. In part 3, we review the various types of audio representations
used as input to DNN and the proposals made to adapt the first layers of the
DNN to take into account the audio specificities. In part 4, we present a set
of common MIR and DCASE applications for content description, processing
and generation. We also discuss how Semi-Supervised Learning and Self-
Supervised Learning are currently developed in these fields to face the lack
of large annotated datasets. Finally, in part 5, we discuss future directions
for deep learning applied to audio processing.

2 http://dcase.community
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2 DNN architectures for audio processing

A DNN architecture defines a function f with parameters θ which output ŷ =
fθ(x) approximates a ground-truth value y according to some measurements.
The parameters θ are (usually) trained in a supervised way using a set of of
N inputs/outputs pairs (x(i), y(i)) i ∈ {1, . . . , N}. The parameters θ are then
estimated using one variant of the Steepest Gradient Descent algorithm, using
the well-known back-propagation algorithm to compute the gradient of a Loss
function w.r.t. to the parameters. The function f defines the architecture of
the network. We first review the most popular architectures.

2.1 DNN architectures

Multi-Layer-Perceptron (MLP). An MLP is an extension of the Per-
ceptron [Ros57] in which many perceptrons3 are organized into layers in a

Fully-Connected (FC) way. FC denotes the fact that each neuron a
[l]
j of a

layer [l] is connected to all neurons a
[l−1]
i of the previous layer [l − 1]. The

connection is done through multiplication by weights w
[l]
ij , addition of a bias

b
[l]
j and passing through a non-linearity activation g (the common sigmoid,

tanh or ReLu functions): a
[l]
j = g(~a[l−1] ~w

[l]
j + b

[l]
j ). Each ~w

[l]
j therefore defines

a specific projection j of the neurons of the previous layers.
Convolutional Neural Network (CNN). The FC architecture does

not assume any specific organisation between the neurons of a given layer
[l]. This is in contract with Vision where neurons representing nearby pixels
are usually correlated (the adjacent pixels that form a “cat’s ear”) and far
away ones uncorrelated. It would therefore be beneficial to consider a local
connectivity of the neurons i. Also in the FC architecture the weights are
specific to each connection and never re-used. This is in contrast with Vision
where the neurons representing the two “cat’s ears” would benefit from having
the same projection, hence from sharing their weights. These two properties
led to the development of the CNN architecture [FM82, LBBH98]. In this,

the projections are defined by J small filters/kernels ~Wj (which size (h,w) is
usually (3,3) or (5,5)) which are convolved along the two spatial dimensions

(height and width) of the input images ~X (or previous layer output ~A[l−1]).
These filters are the trainable parameters of the network. In classic CV, such
filters would allow to detect edges or corners. The output of the convolution

is a new set of J images ~A
[l]
j considered as a 3D tensor ~A[l] of depth J .

This tensor then serves as input to the following layers: ~A
[l+1]
j′ = g( ~A[l] ~

3 While the Perceptron uses a Heaviside step function, MLP uses non-linear derivable
functions.
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~W
[l+1]
j′ + b

[l+1]
j′ ) (where g denotes a non-linear activation, ~ the convolution

operator, ~W
[l+1]
j′ is a tensor of dimensions (h,w, J)). Spatial invariance (such

as detecting the presence of a “cat’s ear” independently of its position in the
image) is achieved by applying pooling operators. The most popular pooling
operator is the max-pooling which only keeps the maximum value over a
spatial region. CNN is the most popular architecture in CV.

Temporal Convolutional Networks (TCN). While attempts have
been made to apply CNN to a 2D representation of the audio signal (such
as its spectrogram), recent approaches [DS14] use 1D-Convolution directly

applied on the raw audio waveform x(n). The filters ~Wj′ have then only one
dimension (the time) and are convolved only over the time axis of the input
waveform. The motivation of using such convolution is to learn better filters
than the ones of usual spectral transforms (for example the sinus and cosinus
of the Fourier transform). However, compared to images, audio waveforms
are of much higher dimensional. To understand this we consider their respec-
tive Receptive field (RC). The RC is defined as the portion of the input data
to which a given neuron responds. Because images are usually low dimen-
sional (256x256 pixels), only a few layers is necessary in CV to make the RC
of a neuron cover the whole input image. In contrast, because input audio
waveform are very high dimensional (1 second of audio leads to 44100 sam-
ples), the number of layers to make the RC cover the whole signal becomes
very large (as the number of parameters to be trained). To solve this issue,
[vdODZ+16] have proposed in their WaveNet model the use of 1D-Dilated-
Convolutions (also named convolution-with-holes or atrous-convolution).
For a 1D-filter w of size l and a sequence x(n), the usual convolution is writ-

ten (x~w)(n) =
∑l−1
i=0 w(i)x(n− i); the dilated convolution with a dilatation

factor d is written (x ~d w)(n) =
∑l−1
i=0 w(i)x(n − (d · i)), i.e. the filter is

convolved with the signal only considering one over d values. This allows to
largely extend the RC and then allows the model to capture the correlations
over longer time ranges of audio samples. The 1D-Dilated-Convolutions is at
the heart of the Temporal Convolutional Networks (TCN) [BKK18]
which is very popular in audio today. The TCN adds a causality constraint
(only data from the past are used in the convolution) and, similar to the
ResNet cells, stacks two dilated-convolutions on top of each other (each fol-
lowed by a weight normalization, ReLu and DropOut) with a parallel residual
path.

Recurrent Neural Network (RNN). While CNN allows represent-
ing the spatial correlations of the data, they do not allow to represent the
sequential aspect of the data (such as the succession of words in a text,
or of images in a video). RNN [RHW86] is a type of architecture, close
to the Hopfield networks, in which the internal/hidden representation of
the data at time t, ~a<t>, does not only depend on the input data ~x<t>

but also on the internal/hidden representation at the previous time ~a<t−1>:

~a<t> = g(~x<t> ~Wxa + ~a<t−1> ~Waa +~ba). Because of this, RNN architectures
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have become the standard for processing sequences of words in NLP tasks4.
While RNN can theoretically represent long-term dependencies, because of
a problem known as the vanishing gradient through time, they cannot in
practice. For this reason, they have been replaced by the more sophisti-
cated cells Long Short Term Memory (LSTM)[HS97] or Gated Recurrent
Units (GRU)[CVMG+14] in which a set of gates (sigmoids) allow the storage
and delivery of information from a memory over time.

2.2 DNN meta-architectures

The above MLP, CNN and RNN architectures can then be combined in
“meta-architectures” which we describe here.

Auto-Encoder (AE). AE is a type of network made of two sub-networks.
The encoding network φe projects the input data ~x ∈ RM in a latent space
~z ∈ Rd of smaller dimensionality (d << M): ~z = φe(~x). The decoder network

then attempts to reconstruct the input data from the latent dimension ~̂y =
φd(~z). The encoding and decoding networks can be any of the architectures
described above (MLP, CNN, RNN). The training is considered unsupervised
since it does not necessitate ground-truth labels. We train the network such
that ~̂y is a good reconstruction (usually according to a Mean Square Error
(MSE) loss) of the input ~x: arg minφe,φd

||~x − (φd ◦ φe(~x))||2. AEs are often
used for feature learning (learning a representation, a latent space, of the
input data). Many variations of this vanilla AE have been proposed which
allow improving the properties of the latent space, such as Denoising AE,
Sparse AE or Contractive AE.

Variational Auto-Encoder (VAE). For generation, the most popular
form of AE is probably today the VAE [KW14a]. In contrast to the vanilla AE,
the VAE is a generative model, i.e. a model in which one can sample points
~z in the latent space to generate new data ŷ. In a VAE, the encoder models
the posterior pθ(~z|~x) while the decoder (the generative network) models the
likelihood pθ(~x|~z). However because pθ(~z|~x) is untractable, it is approximated
by qφ(z|x) (variational Bayesian approach) which is set (for mathematical

simplicity) to a Gaussian distribution which parameters ~µ and ~Σ are the
outputs of the encoder. Minimizing the Kullback-Leibler divergence between
qφ(z|x) and pθ(~z|~x) is mathematically equivalent to maximizing an ELBO
(Evidence Lower BOund) criteria. For the later, a prior pθ(~z) needs to be set.
It is set (again for mathematical simplicity) to N (0, 1). The goal is then to
maximize Eq[log p(x|z)]. This can be estimated using a Monte-Carlo method,
i.e. maximizing log p(x|z) (the reconstruction error) over samples z ∼ qφ(z|x)

4 They are then often combined with representation of the vocabulary using word-

embedding techniques
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given to the decoder. Given the smoothness of the latent space ~z obtained (in
contrast to the one of vanilla AE) it is adequate for sampling and generation.

Generative Adversarial Network (GAN). Another popular type of
network for generation is the GAN [GPAM+14]. GAN only contains the de-
coder part of an AE here named “Generator” G. Contrary to the VAE, z
is here explicitly sampled from a chosen distribution p(z). Since z does not
arise from any existing real data, the Generator G(z) must learn to generate
data that look real, i.e. the distribution of the generated data pG should look
similar to the ones of real data pdata. Rather than imposing a distribution (as
in VAE), this is achieved here by defining a second network, the “Discrimi-
nator” D, which goal is to discriminate between real and fake (the generated
ones) data. D and G are trained in turn using a minmax optimisation. For G
fixed, D is trained to recognize real data from fake ones (the ones generated
by G)5. For D fixed, G is then trained to fool D6.

Encoder/Decoder (ED). While the goal of AE is to encode the data into
a latent space ~z such that it allows reconstructing the input, ED [CVMG+14]
or Sequence-to-Sequence [SVL14] architectures aim at encoding an input se-
quence {~x<1> . . . ~x<t> . . . ~x<Tx>} into ~z which then serves as initialization for
decoding a sequence {~y<1> . . . ~y<τ> . . . ~y<τy>} into another domain. Such ar-
chitectures are for example used for machine translation where an input En-
glish sentence is translated into an output French sentence. Both sequences
have usually different length Tx 6= τy. In machine translation both encoder
and decoder are RNNs (or their LSTM or GRU versions). In image caption-
ing [VTBE15], a deep CNN is used to encode an input image into ~z; ~z then
serves as initialization of a RNN decoder trained to generate the text of image
captions.

Attention Mechanism. In the original ED for machine translation
[CVMG+14], ~z is defined as the internal states of the RNN after process-
ing the whole input sequences, i.e. at the last encoding time step ~a<Tx>.
It quickly appeared that doing so prevents from correctly translating long
sentences. [BCB14] therefore proposed to add to the ED architecture, an at-
tention mechanism. The latter provides a mechanism to let the decoder chose
at each decoding time τ the most informative times t of the encoding internal
states ~a<t>. This mechanism is a small network trained to align encoding and
decoding internal states.

Transformer. Recently it has been shown [VSP+17] that only the atten-
tion mechanism was necessary to perform machine translation. The trans-
former still has an encoder and a decoder part but those are now simple stacks
of so-called self-attention mechanisms coupled with a FC. At each layer, the
self-attention mechanisms encode each element of the sequence taking into
account its relationship with the other elements of the sequence. This is done

5 D(x ∼ pdata) should output “real” while D(G(z)) should output “fake”
6 D(G(z)) should output “real”
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using a simple query, key and value mechanism. The transformer has become
very popular for sequence processing.

2.3 DNN training paradigms and losses

The most popular training paradigms for DNN are classification, reconstruc-
tion and metric learning.

Classification. The simplest case of classification, is the binary classi-
fication. In this, the network has a single output neuron (with sigmoid ac-
tivation) with predicts the likelihood of the positive class ŷ = p(y = 1|x).
The training of the network is achieved by minimizing the Binary-Cross-
Entropy (BCE) between y and ŷ over the N training examples: L =

−
∑N
i=1[y(i) log(ŷ(i)) + (1 − y(i)) log(1 − ŷ(i))]. The goal of multi-class clas-

sification is to predict a given class c among C mutually exclusive classes.
Each class c is represented by an output neuron yc (with a softmax activa-
tion) which predicts ŷc = p(y = c|x) The training of the network is then
achieved by minimizing the general cross-entropy between the yc and the ŷc.
The goal of multi-label classification is to predict a set of class {ci} among
C non-mutually exclusive classes. The most usual solution to this problem
is to consider each class c as an independent binary classifier (with sigmoid
activation) and then train the network by minimizing the sum of the BCE of
each class c.

Reconstruction. When the goal of the network is to reconstruct the input
data (such as with AE), the simple MSE between the output and input data

is used: MSE =
∑N
i=1 ||~x(i) − ~̂y(i)||2.

Metric Learning. Metric learning aims at automatically constructing
distance metrics from data, in a machine-learning way. DNN provides a nice
framework for this. In this, the parameters θ of a network are learnt such that
a distance function g(fθ(x), fθ(y)) is minimized for similar training samples
x and y and maximized for dissimilar samples. Methods proposed for that,
mainly differ on the way these two constrains are represented: they are repre-
sented in turns in Siamese networks [BGL+94] and contrastive loss [HCL06],
they are represented simultaneously in the triplet loss [SKP15]). In the later,
three data are simultaneously considered: an anchor a, a positive p (similar
to a) and a negative n (dissimilar to a). The goal is to train the network
such that P = fθ(p) will be closer to A = fθ(a) than N = fθ(n) is to A. For
safety a margin α is added leading to the definition of the triplet loss to be
minimized L = max(0, g(A,P ) + α − g(A,N). g can be a simple Euclidean
distance.
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3 DNN inputs for audio processing

A wide variety of audio representations are used as input for DNN. These
representations can be broadly classified in 1) time and frequency representa-
tions; 2) waveform representations 3) knowledge-driven representations and
4) perceptual-driven representation. The latter is not discussed in details in
this chapter but the interested readers are referred to [RSN13] for an overview
of popular perceptually-based representations for audio classification tasks.

3.1 Using time and frequency representations as input

A recorded audio signal x(t) represents the evolution of the sound pressure
x over time t. In its discrete version, the time dimension is discretized in
samples m resulting in a discrete sequence x(m). The number of samples
sampled from x during one second is named “sampling rate”. A common
value for it is 44100 Hz. One second of audio signal is then represented by
the sequence {x(1), . . . x(44100)}. To represent a piece of music of 4 minutes
duration, this would lead to a very high number of values .

For a discrete non-periodic signal, the Discrete-Fourier-Transform (DFT)
is used to represent x(m) over discrete frequencies k ∈ [0, N − 1]:

X(k) =

N−1∑
m=0

x(m)e−j2π
k
Nm

Since the content of the audio signal varies over time (for example it is as-
sumed that the phoneme rate in speech is around 4Hz), DFTs are computed
over successive time frames of the signal (obtained through multiplication
with an analysis window h(m)) leading to the well-known Short-Time Fourier
Transform (STFT):

X(k, n) =

N−1∑
m=0

x(m)h(n−m)e−j2π
k
Nm

X(k, n) represents the content of the audio signal at frequency k and around
time n.

The complex value STFT matrix X(k, n), can be represented by its real
and imaginary parts or by its amplitude (which represents the amount of
periodicity at a given frequency) and phase (which represents the location at a
given frequency). Most approaches that use the STFT to represent the audio,
only consider its amplitude. It is then often denoted as the spectrogram.
Since the later can be displayed as an “image”, the first audio-DNN used
standard computer vision CNNs applied to this spectrogram-image.



10 Geoffroy Peeters and Gaël Richard

Recently, it has been proposed to use directly the complex STFT as input
to DNN with the goal of benefiting from the location information contained in
the phase. For this, either a (real,imaginary) or a (amplitude, instantaneous
frequency) representation have been tested.

Before the rise of deep learning for audio, the most popular audio repre-
sentation for speech tasks (recognition/ identification/ diarization), MIR or
DCASE tasks was the Mel-Frequency-Cepstral-Coefficients (MFCC)s.
Those are obtained by computing the real cepstrum representation (Discrete
Cosine Transform (DCT) applied to the logarithm-amplitude of the DFT) on
a Mel-scale representation7. It can be shown that in the case of a source-filter
sound production model (see section 3.3), the cepstrum allows to separate
the contribution of the filter (the lowest coefficients of the cepstrum) from
the source (highest coefficients). These lowest coefficients are therefore usu-
ally used to obtain a compact representation of the spectrum envelope (or
formants of the various vowels in vocal signals or the timbre of musical instru-
ments) independently of their pitch. In the MFCCs computation, the DCT
is used to make the various dimensions of the MFCC somehow decorrelated.
This is needed since those are often represented in speech acoustical models
using Gaussian mixture distributions with diagonal covariance matrices. Be-
cause this de-correlation of the input is not required in the case of DNN, the
Log-Mel-Spectrogram (LMS) (hence without the DCT de-correlation)
has been widely adopted. This leads to a time versus mel-band-frequency
matrix representation.

In the DFT, the time and frequency resolution (we mean by resolution the
possibility provided by the representation to distinguish two adjacent time or
frequency components) remains constant over time and frequency. This lim-
itation led to the development of the wavelet analysis [Mal89] which allows
for a finer spectral resolution at low-frequencies and finer temporal resolu-
tion at high-frequency. The Constant-Q-Transform (CQT) [Bro91] has
been proposed as a form of wavelet analysis adapted to musical signals, i.e.
which allows distinguishing the various possible pitches of the musical scale.
As for the wavelet representation, this is achieved by using analysis windows
h(m) which durations are inversely proportional to the various musical pitch
frequencies. The CQT follows a logarithmic frequency scale (as the musical
pitches). It is therefore said to be shift-invariance in pitch, i.e. transposing
a note (changing its pitch) simply results in a shift of its harmonic pattern
(the sequence of its harmonics) along the log-frequency axis. This is how-
ever not entirely true as we will discuss later considering the source/filter
decomposition.

7 The Mel scale is a perceptual scale of pitch height perception. A mel-filter bank is then

a set of filters whose bandwidth center frequencies are equally spaced on the Mel scale (or
logarithmically spaced in Hertz).
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Spectrogram images versus natural images

While spectrograms are often processed using CNN and hence considered as
images, there is a large difference between this image and a natural image,
such as a cat picture.

In natural images (see Figure 3.1 left), the two axis x and y represent
the same concept (spatial position). The elements of an image (such as a cat’
ear) have the same meaning independently of their positions over x and y.
Also neighboring pixels of an image are usually highly correlated and often
belong to the same object (such as the cat’s ear). The use of CNN, and its
inherent properties (hidden neurons are only locally connected to the input
image, parameters are shared between the various hidden neurons of a same
feature map and max pooling allows spatial invariance) are therefore highly
appropriate to process such data.

In time-frequency audio representations (such as the spectrogram,
the LMS or the CQT) (see Figure 3.1 right), the two axis x and y represent
profoundly different concepts (time and frequency). The elements of a spec-
trogram (such as a time-frequency area representing a sound source) has the
same meaning independently of its position over time but not over frequency.
There is therefore no invariance over y, even in the case of log-frequencies.
Neighboring pixels of a spectrogram are not necessarily correlated since a
given sound source (such has an harmonic sound) can be distributed over
the whole frequency in a sparse way (the harmonics of a given sound can be
spread over the whole frequency axis). It is therefore difficult to find a local
structure using a CNN.

Fig. 1 [Left part] Natural image of cats, [Right part] image of a spectrogram

DNN models for time and frequency representations as inputs

It is generally considered that DNNs learn a hierarchical feature representa-
tion of the input. However one can easily consider that the first layers are
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more associated with this feature learning while the last layers to the task
at hand, e.g. a classification task. We review here which choices have been
made so far to allow these first layers to deal with audio inputs as time and
frequency representations.

In speech, one of the first attempt to apply DNN to the audio signal
is using a so-called Time-Delay Neural Network (TDNN) [WHH+90]. This
architecture is similar to a 1-D convolution operating only over time. In
[WHH+90], this convolution is applied to a Mel-gram (16 normalized Mel-
scale spectral coefficients). No convolution are performed over the frequency
axis. In the works following the “connectionist speech recognition” approaches
[BM94] (“tandem features” [HES00] or “bottleneck features” [GKKC07]),
a context window of several successive frames of a feature vector (such as
MFCC) is used as input to an MLP. Here the convolutions over time is re-
placed by a context-window. No convolution are performed over the frequency
axis. In [LPLN09], a Convolutional Deep Belief Networks (CDBN)8 is used
to process the audio input. The audio input is a 160 dimensional spectrogram
which is then PCA-whitened to 80 dimensions9. The filters (named bases in
[LPLN09]) of the first and second layers are of length 6 and are convolved
over the PCA-whitened spectrogram. By visual comparison, it is shown that
the learned filters (bases) are related to the different phonemes of speech. Fol-
lowing this, the seminal paper [HDY+12] defines the new baseline for speech
recognition system as the DNN-HMM model. In this, the acoustic model part
of the system is defined as a DNN model (more precisely as stacked RBMs).

In music, [Die14] also consider a 1D-convolution operating only over time.
For a task of predicting latent representation10 of music tracks (a regression
problem), they use as input of a 1D-CNN a Mel-Spectrogram (MS) of 128 fre-
quency bins. The filters of the first layer are of shape (time=4,frequency=128)
and only convolved over time.

In the opposite [CFS16] consider time/frequency representation as natural
images and apply a computer vision CNN to it. The network is a VGG-
Net [SZ15], i.e. a deep stack of convolution layers with small (3,3) filters
convolved over the time and frequency axis. With this architecture, they
show that using MS as input performs better than STFT or MFCC.

However, as described in part 3.1, time/frequency representations cannot
be considered as a natural image. When using CNN architectures, one should
carefully choose the shape of the filters and the axis along which the convo-
lution is performed.

One of the first work to deal with this necessary adaptation is [SB13]. For a
task of onset detection (detecting the start of a musical events) they carefully
design the filters to allow highlighting mid-duration variations over small-

8 A CDBN is a stack of Restricted Boltzman Machine (RBM) with convolutions operations,

hence trained in an unsupervised way.
9 Each of the whitened dimension is therefore a combination of the initial 160 dimensions

of the spectrogram.
10 The latent representation resulting from a collaborative filtering model.
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frequency ranges. For this, they specify filters of shape (time=7,frequency=3).
An LMS representation is then convolved over time and frequency with these
filters. Another specificity of their approach is to allow the representation of
multi-scale analysis, i.e. STFT computed using various window durations (23
ms, 46 ms and 93 ms) to better face the time/frequency resolution trade-off.
They use the depth of the input layer11 to represent the various scales. The
resulting onset detection algorithm has remain the state-of-the-art for a long
time.

The work presented in [PLS16] is entirely devoted to this musically-
motivated filter design. In their work, the shapes of the CNN filters are
carefully chosen to allow representing the timbre (vertical filters extending
over the frequency axis) or the rhythm (horizontal filters extending over the
time axis) content of a music track. They show that carefully choosing the
shape of the filters allows to obtain equivalent performances than the CV-
based approach of [CFS16] (here renamed “black-box”) but with much less
parameters.

3.2 Using waveform representations as input

While musically-motivated CNN filter shape is a promising path, one still has
to manually design this shape for a given application. Also one has to decide
what is the most appropriate 2D representation (STFT, LMS or CQT) and its
parameters (window size, hop size, number of bands) for a given application.

For these reasons, the so-called “end-to-end” approaches have been devel-
oped. Those consider directly the raw audio waveform as input.

In speech, one of the first end-to-end approaches is the one of [JH11]
where a RBM is used to model the raw speech signals.

In music, one of the first end-to-end approaches is the one of [DS14] who
proposed, for a music auto-tagging task, to use 1D-convolution (a convolution
over time with 1D-filters) on the waveform as a replacement to the spectro-
gram input. To compare both, [DS14] actually reproduce the computation
of the spectrogram using 1D-convolution. While a spectrogram is computed
using a succession of DFTs each computed on an audio frame of length N
and each separated by a hop size S, the 1D-convolution is computed using
1D-filters of length N12 and a stride of S13. However, their “end-to-end” ap-
proach under-performed the traditional spectrogram-based one. This may be
due to the lack of Time Translation Invariance (TTI) of their representation.

Time Translation Invariance (TTI) is a property of a transform that makes
it insensitive to time translation (or phase shift) of the input. The amplitude

11 In CV the depth is used to represent the RGB channels of an image.
12 In his experiments N ∈ 256, 512, 1024 for a sampling rate of 16 kHz.
13 S ∈ 256, 512, 1024.



14 Geoffroy Peeters and Gaël Richard

of the DFT (as used in the spectrogram) is TTI. This is because the DFT
projects the waveform on orthogonal cosinus and sinus basis, and the modulus
of the resulting vectors remain invariant to time translation (the phase of the
vectors are however shifted according to the time translation). Mimicking
this property with 1D-convolution would require (a) reducing the stride to
S=1 (and using a very high sampling rate) or (b) having a different 1D-
filter for each possible time translation. One will still needs to perform a
max-pooling over time-steps for (a) or over filters for (b). Both are however
computationally prohibitive.

Sample-CNN: One way to improve the TTI is to reduce the size of the
1D-convolution filters (hence also the stride). If the filters are smaller, then
the number of time translation to be learned is also reduced. This is the idea
developed in the Sample-CNN [LPKN17] [KLN18] network. The later can be
considered as an equivalent to the VGG-Net for 1D-convolution applied to
waveforms. It is a deep stack of 1D-convolution of small (3,1) filters applied to
the waveform. Sample-CNN was shown to slightly outperforms the 2D-CNN
on the spectrogram.

Multi-Scale: When computing a spectrogram, the choice of the window
size fixes the trade-off between time and frequency resolution. One can think
of the same for the choice of the filter size N of 1D-convolution. To get around
this choice, [ZEH16] propose a multi-scale approach where the waveform is
simultaneously convolved in parallel with filters of different sizes (1ms, 5ms
and 10ms). The resulting outputs are then concatenated. This idea follows
the one of the Inception network [SLJ+15] in computer vision.

3.3 Using knowledge-driven representations as input

When one has some knowledge of the sound production process it is possi-
ble to use this knowledge to better shape the input and/or the first layer
of the network. Such commonly used sound production processes are the
source/filter and the harmonic models. The source/filter model considers that
the sound x(t) results from the convolution of a periodic (excitation) source
signal e(t) (such as the glottal pulses in the case of voice) with a filter v(t)
(such as the vocal track in the case of voice): x(t) = (v~e)(t). The harmonic
model considers that a sound with a pitch f0 can be represented in the spec-
tral domain as the sum of harmonically related components at frequencies
hf0, h ∈ N+ with amplitudes ah.

[LC16] were among the first to use such models for a task of musical
instrument recognition. Below a cut-off frequency, they consider the harmonic
model: the spectrum of harmonic sounds is sparse and co-variant with pitch.
It is therefore processed using convolution filters which only have values at
octave intervals (mimicking Shepard pitch spiral array). Above this cut-off
frequency, they consider the source/filter model: the spectrum is dense and
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independent of pitch (according to the source/filter model, transposed sounds
have similar spectra). It is therefore processed with filters that extent over
the whole upper-part of the spectrum.

Harmonic CQT. [BMS+17] also use the harmonic assumption; this for
a task of dominant melody and multi-pitch estimation. Contrary to natu-
ral images (where neighboring pixels usually belong to the same source),
the harmonics of a given sound source are spread over the whole spectrum
and can moreover be interleaved with the harmonics of other sound sources.
[BMS+17] propose to bring back this vicinity of the harmonics by project-
ing each frequency f into a third dimension (the depth of the input) which
represents the values of the spectrum at the harmonics hf . Convolving this
representation with a small time and frequency filter but which extends over
the whole depth allow then to model easily the specific harmonic series of
pitched sounds hence detecting the dominant melody. This representation is
named Harmonic CQT and led to excellent results in this context. This ap-
proach has been extended with success by [FP19] for a task case of tempo
estimation. In this, pitch frequencies are replaced by tempo frequencies and
the CQT of the audio signal by the one of onset-energy-functions.

Source/Filter. Still for a task of dominant melody estimation, [BEP18]
use the source/filter assumption. Rather than considering the audio as input
to the network, they consider the output of a Non Negative Matrix Factor-
ization (NMF) model. They use the NMF source/filter model of [DRDF10]
and use the source activation matrix as input to the network. They show that
including the knowledge of the production model allows to drastically reduce
the size of the training set.

SincNet. In the end-to-end approaches mentioned above, the filters of the
1D-convolution are often difficult to interpret since their shape are not con-
strained. While being learned in the temporal domain, authors often display
them in the frequency domain to demonstrate that meaningful filters have
been learned (such as Gamma-tone filters in [Sai15]). With this in mind, the
SincNet model [RB18] proposes to define the 1D-filters as parametric func-
tions g which theoretical frequency responses are parameterizable band pass
filters. To do so g is defined in the temporal domain as the difference between
two sinc functions which learnable parameters define the low and high cutoff
frequencies of the band-pass filters. They show that not only the obtained
filters are much more interpretable but also the performances for a task of
speaker recognition is much improved. This idea has been extended recently
to the complex domain in the Complex Gabor CNN [NPM20].

HarmonicCNN. Combining the idea of SincNet with the harmonic model
lead to the HarmonicCNN of [WCNS20]. In this the 1D-convolution is per-
formed with filters constrained as for SincNet but extended to the harmonic
dimensions (stacking band-pass filters at harmonic frequencies hfc).

Neural Autoregressive models. A source/filter model x(n) = (v ~
e)(n) can be associated to an autoregressive model, i.e. the value x(n) can
be predicted as a linear combination of its P preceding values: x(n) =
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p=1 a(p)x(n − p). Neural Auto-regressive models are a non-linear form of

auto-regressive models in which the linear combination is replaced by a DNN.
The two most popular models are probably the Wavenet [vdODZ+16] and
the SampleRNN [MKG+17] architectures. In WaveNet, the conditional prob-
ability distribution p(xn|x1, . . . , xn−1) is modeled by a stack of dilated 1D
convolutions. To facilitate the training, the problem is considered as a classi-
fication problem. For this x(n) is discretized into 256 possible values (8 bits
using µ-law) considered as classes to be predicted by a softmax. The model
has been developed for speech generation and can be conditioned on side
information h such as speaker identity or text: p(xn|x1, . . . , xn−1,h). While
WaveNet relies on dilated convolutions to allow both short term and long
term dependencies in p(xn|x1, . . . , xn−1), SampleRNN, uses a stack of RNNs
each operating at a different temporal scale14.

DDSP. The recently proposed Differentiable Digital Signal Processing
(DDSP) [EHGR20] is probably the DNN models which relies the most on
the prior knowledge of the sound production process. Just as SincNet defines
the 1D-filters as parametric functions g and the training consists in find-
ing the parameters of g, DDSP defines the sound production model and the
training consists in finding its parameters. The model considered here is the
Spectral Modeling Synthesis (SMS) model [SS90]. It combines harmonic addi-
tive synthesis (adding together many harmonic sinusoidal components) with
subtractive synthesis (filtering white noise); it also adds room acoustics to
the produced sound through reverberation. In DDSP, the input audio signal
x is first encoded into its pitch f0 and a latent representation ~z. Time-varying
loudness l(t), f0(t) and ~z(t) are then fed to a decoder which estimates the
control parameters of the additive and filtered noise synthesizers.

4 Applications

4.1 Music content description

As described in part 1, Music Information Research (MIR) encompasses a
large set of tasks related to the description of the music from the analysis of
its audio signal. Since almost all possible audio front-ends and DNN algorithm
have been tested for each task, it is useless to describe them all. We rather
focus here on some iconic MIR tasks and an iconic DNN algorithm proposed
to solve each.

Beat-tracking. “Beat” or “pulse” is the basic unit of time in music. It is
often defined as the rhythm listeners would tap their foot to when listening
to a piece of music. Beat-tracking is the task of estimating the temporal po-

14 RNN layers operate at different temporal resolutions and are followed by up-sampling
for the next scale.
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sition of the beats within a music track. As far as 2011, i.e. before the rise
of deep learning for audio, [BS11] already proposed a fully DNN system to
estimate the beat positions. The input to the network is made of three Log-
Mel-Spectrogram (LMS) computed with window sizes of 23.2 ms, 46.4 ms,
92.8 ms and their corresponding positive first order median difference. Since
“beat” is a temporal phenomenon, [BS11] proposes to use an RNN archi-
tecture to estimate it. The network is made of three layers of bi-directional
LSTM units. The last layer has a softmax activation that predicts at each
time if the input time is a beat (1) or not (0). A peak-picking algorithm is
then applied on the softmax output to detect the beats. This algorithm led
to excellent results in the MIREX benchmark15.

For the estimation of more high-level rhythm concepts such as the down-
beat, which is considered to be the first beat of each bar, it is often necessary
to rely on multiple representations (or features). For example in [DBDR17],
four musical attributes contributing to the grouping of beats into a bar,
namely harmony, rhythmic pattern, bass content, and melody are estimated
by well designed representations which are in turn fed to parallel specific
CNN.

Onset detection. An “onset” denotes the starting time of a musical event
(pitched or non-pitched). Onset detection is the task of estimating the tem-
poral positions of all onsets within a music track. The system proposed by
[SB13] is a typical MIR DNN system. It uses a stack of convolution / max-
pooling layers to progressively reduce the time and frequency dimensions and
transfer those to the depth. It is then flattened and fed to a stack of FC lay-
ers with a sigmoid or a softmax output which perform the prediction. The
novel idea proposed by [SB13] is to feed the network with chunks of spectro-
gram (each chunk represents 15 successive time frames of the spectrogram)
and associate to it a single output y which represents the ground-truth for
the middle frame of the chunk (y = 1 means that the middle frame of the
chunk is an onset). These chunks can be considered as the “context win-
dows” of [HES00] but benefit for the convolutional process. Contrary to the
use of RNN, a music track is here processed as a bag of chunks which can
be independently processed in parallel. The input to the network is made of
the same three LMS computed with window sizes of 23.2 ms, 46.4 ms and
92.8 ms. This algorithm led to excellent results in the MIREX benchmark.

Music Structure: “Music Structure” denotes the global temporal orga-
nization of a music track into parts (such as intro, verse, chorus, bridge for
popular music or movements for classical music). Music boundary detection
is the task of estimating the transition times between these parts. To solve
this, [SUG14] actually follow the same idea as for the onset detection [SB13]:
a large temporal chunk is taken as input to a deep CNN which output pre-
dicts if the center frame of the chunk is a “music boundary” or not. However,
here the input of the network is different: beside the LMS input a so-called

15 MIREX (Music Information Retrieval Evaluation eXchange) is an annual evaluation

campaign for MIR algorithms
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Lag-Similarity-Matrix [Got03] is also used to better highlight the large-scale
structure of the track. This path have been followed by [CHP17] leading to
excellent results.

Dominant melody and multi-pitch estimation. Dominant melody
refers to the temporal sequence of notes played by the dominant instrument
in a music track (such as the singer in pop-music or the saxophone/trumpet
in jazz music). Multi-pitch estimation refers to the estimation of the whole
musical score (the temporal sequences of notes of each instrument). This is
one of the most studied tasks in MIR. The DNN estimation methods pro-
posed by [BMS+17] can be considered as a breakthrough. This method uses
a Harmonic-CQT (already mentioned in part 3.3) as input to a deep CNN
architecture which output is an image representing the pitch saliency of each
time and frequency bins. The network is therefore trained to construct a
“pitch saliency map” given an audio signal. A simple peak-picking or thresh-
olding method can then be used to estimate the dominant melody or the
multiple-pitches from this map.

Chord estimation. A chord is a set of multiple pitches that are heard as if
sounding simultaneously. It is a convenient reduction of the harmonic content
of a music track at a given time. Chords give rise to guitar-tabs which are
largely used by guitarist or to real-book scores used by jazz players. Their
estimation is both a segmentation task (finding the start and end time of
each chord) and a labeling task (finding the correct chord label, such a C-
Major, C7 or Cm7). Given its close relationship to speech recognition, the
first chord estimation systems [SE03] relied on an acoustic model (usually a
Gaussian Mixture Model (GMM) representation of Chroma features [Wak99])
connected to a language model (a hidden Markov model representing the
chord transition rules specific to Western music16). [MB17] has proposed to
solve the problem using a single DNN system. The specificity of this approach
is to exploit the structural relationships between chord classes, i.e. the fact
that while the label C-Major and Cm7 are different, their underlying chord
construction share a large amount of notes. To do so, a CQT input is first
encoded (using a convolutional-recurrent network architecture, i.e. a CNN
followed by a bi-GRU) into the triplet of {root, pitches and bass} labels
corresponding to the chord to be estimated. The outputs of those are then
combined with the one of the encoder to estimate the final chord label. The
authors show that constraining the training to learn the underlying structure
of chords, allows increasing the chord recognition accuracy especially for the
under-represented chord labels.

Auto-tagging. Auto-tagging is probably the most popular MIR task. It
consists on estimating a set of tags to be applied to describe a music track.
Such tags can relate to the track’s music-genre (such as rock, pop, classi-
cal), mood (such as happy, sad, romantic), instrumentation (such as piano,
trumpet, electric guitar) or in other descriptive information. Some tags can

16 For example, the “II-V-I” (two-five-one) cadential chord progression is very common

and particularly popular in jazz music
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be mutually exclusive (such as singing/instrumental) some other not (such
as piano and drum which may occur together). One of the most cited DNN
system for auto-tagging is the one of [CFS16]. The system is a Fully Convolu-
tional Network (no FC layer are used) inspired by the VGG-Net architecture
[SZ15]: it is a stack of 2D convolution layers with small (3,3) kernels followed
by max-pooling layers with small (2,4) kernels. This progressively transfers
the time dimension of the input to the depth which is finally connected to
50 sigmoid outputs (multi-label classification task). Among the various input
representations tested, the Mel-Spectrogram provides the best results. On
the Magna-Tag-A-Tune dataset [LWM+09], their approach outperforms any
pre-existing systems. While being the most cited auto-tagging paper, this
model has also been criticized by [Pon19] for its lack of consideration of the
audio specificities. It is basically a computer vision network applied to an
audio representation. Unexplainedly, it works very well.

Music recommendation by audio similarity. Music recommendation
by audio similarity aims at recommending a ranked list of music tracks to
a user. THe ranking is based on their audio similarity with a target music
track. This kind of recommendation allows to get around the “cold start”
problem17. To compute such an audio similarity, past approaches modelled
the content of a track using generative models (such as GMM) of hand-
crafted features (through MFCC). The audio similarity of two tracks was
then computed as the Earth mover’s distance - Kullback-Leibler divergence
between their respective GMMs [APS05]. This approach was computation-
ally expensive and did not allowed to reproduce a ground-truth ranked list.
Recently [PRP20] have proposed to apply DNN metric learning to this prob-
lem. Starting from ground-truth ranked lists, they first define a set of ranked
triplets Tr={anchor, positive and negative} using their relative positions in
the ranked lists. Using those, a triplet loss [SKP15] is then used to train
a CNN similar to [CFS16] (VGG-Net). It is fed with chunks of 512 CQT
frames. The network learns to project each track in a 128-dimensions “audio-
similarity embedding” space. In this, the similarity between two tracks is
obtained as their Euclidean distance.

Cover detection. “Covers” denotes the various recorded interpretations
of a musical composition (for example “Let It Be” performed by The Bea-
tles or performed by Aretha Franklin). The problem has received a lot of
attention recently due to the large amount of User-Generated Content which
necessitates scalable copyright monitoring systems. While it is hard to define
exactly why two tracks can be considered “covers” of each other, it is easy
to provide examples and counter-examples of those. This is the approach
proposed by [DP19, DP20, DYS+20]. They propose to represent the content
of a music track using jointly the CQT, the estimated dominant pitch and
estimated multi-pitch representations. Those are fed to deep CNN networks.
The networks are then trained using also a triplet loss paradigm [SKP15]

17 when no meta-data (as used for tag-based recommendation) or usage data (as used in

collaborative filtering recommendation) are available
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using sets of anchor tracks, positive examples (covers of the anchors) and
negative examples (non-covers of the anchors). The output of the networks
are considered as track embeddings and it is shown that, once trained, the
distance between the embedding of two tracks indicate their cover-ness. This
algorithms has provide a large increase in cover-detection performances.

4.2 Environmental sounds description

The research field associated to the Detection and classification of Acoustic
Scene and Events (DCASE) has received a steep growing interest with high
industrial expectations. Similarly to other fields, recent progress in environ-
mental sounds recognition has been largely fuelled by the emergence of Deep
Neural Networks (DNN) frameworks [Abe20],[VPE17],[MHB+18]. Nearly all
the concepts and architectures described above have been used on specific
DCASE problems such as Urban scene analysis (traffic events recognition,
scene recognition, etc.), bio-acoustic sounds recognition (bird songs recog-
nition, sea mammals identification, etc.) or biological sounds (deglutition,
digestion, etc.).

However, the extreme diversity of potential sounds in natural soundscapes
has favoured the development of specific methods which can more easily adapt
to this variability. An interesting strategy is to rely on feature learning
approaches which are proven to be more efficient than traditional time
or time-frequency audio representations [SBER18]. Sparse representations,
matrix factorizations and dictionary learning are some of the emblematic
examples of this strategy. For example, some methods aim to decompose
the audio scene recordings into a combination of basis components which can
be obtained using non-negative matrix factorization (NMF)[BSER17] or
shift-invariant probabilistic latent component analysis (SIPLCA) [BLD12]. In
[BSER17], it was in particular shown that such a strategy when associated
to DNN in a problem of acoustic scene classification allows to opt for simpler
neural architectures and to use smaller amount of training data.

In terms of network structure and architectures, Resnets and shallow
inception models have been shown to be particularly efficient on Acoustic
source classification [SSL20] [MG20]. Resnets are specific networks in which
each layer consists of a residual module and a skip connection bypassing this
module [HZRS16]. It was recently shown that they can be interpreted as an
ensemble of smaller networks which may be an explanation for their efficiency
[VWB16].

For applications of predictive maintenance (anomalous sound detection),
architectures based on auto-encoders are getting particularly popular due
to their capacity to be learned in an unsupervised way. This is particularly
interesting for this problem since there is usually a very low number of ob-
servations, if any, of the anomalous sounds to be detected [KSU+19].
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Another interesting avenue for environmental sound recognition is around
approaches that are suitable for few-shot learning or transfer learning such
as relation networks (prototypical networks [SSZ17] or Matching networks
[VBL+16]). Matching networks use an attention mechanism over a learned
latent space to predict classes for the unlabelled points and can be interpreted
as a weighted nearest-neighbour classifier applied within an embedding space.
In prototypical networks, the core idea is that there exists a latent space (e.g.
embedding) described by a single prototype representation for each class.
More precisely, a non-linear mapping of the input into an embedding space
is learned using a neural network and takes a class’s prototype to the mean
of its support set in the embedding space. Classification can be performed
for an embedded query point by simply finding the nearest class prototype.
The capacity of prototypical networks to go beyond more straightforward
transfer learning approaches and their efficacity for sound event recognition
are shown in [PSS19].

4.3 Content processing: source separation

Blind Audio Source Separation (BASS) is the field of research dealing with
the development of algorithms allowing the recovery of one or several source
signals sj(t) from a given mixture signal x(t) =

∑
j sj(t) without any addi-

tional information (the separation is blind). It has close relationships with
speech enhancement/denoising.

For a long time, BASS algorithms relied on the application of Computa-
tional Auditory Scene Analysis (CASA) principles [BC94] or matrix decom-
position methods. Among the latter, Independent Component Analysis (ICA)
assumes that the various sources are non-Gaussian and statistically indepen-
dent; NMF factorizes the mixture’s spectrogram as the product of a non-
negative source activation matrix with a non-negative source basis matrix
(see [PLDR18] for an overview on music source separation).

In recent years DNN methods for BASS has allowed to largely improved
the separation quality. Most of the DNN methods consider the BASS problem
as a supervised task: a DNN model is trained to transform an input mixed
signal x(t) to an output separated source sj(t) or to an output separation
mask mj(t) to be applied to the input to get the separated source sj(t) =
x(t)�mj(t).

U-Net. Such a DNN model often takes the form of a Denoising Auto-
Encoder (DAE) where a model is trained to reconstruct the clean signal
from its noisy version. Because of their (theoretically) infinite memory, the
first models used RNNs (or their LSTM and GRU variations) for both the en-
coder and decoder [MLO+12, WHLRS14, EHWLR15]. Since then, it has been
demonstrated that non-recurrent architectures, such as CNN, can also be ap-
plied successfully at a much lower cost. However, convolutional DAE while
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successful for image denoising have been found limited for audio reconstruc-
tion (the bottleneck layer does not allow to capture the fine details necessary
to reconstruct an harmonic spectrogram). To allow the reconstruction of these
fine details, the U-Net architecture has been proposed. This architecture was
first proposed for the segmentation of biomedical images [RFB15]. It is an AE
with added skip connections between the encoder and the encoder to allow
the reconstruction of the fine details. In [JHM+17], this architecture has been
applied to a spectrogram representation to isolate the singing voice from real
polyphonic music largely improving previously obtained results. Precisely,
the network is trained to output a Time/Frequency mask Mj(t, f) such that
applied to the amplitude STFT of the mixture |X(t, f)|, it allows to separate
the amplitude STFT of the isolated source |Sj(t, f)| = |X(t, f)| �Mj(t, f).
The signal sj(t) is then reconstructed by inverting |Sj(t, f)| using the phase
of the initial mixture spectrogram φX(t, f). However, using the phase of the
original signal limits the performances of the system.

Complex-U-Net. To deal with this limitation, [CKH+19] have proposed
in the case of speech enhancement to use the complex-spectrogram as input,
and to modify the network, the masks and the loss to deal with complex
values. In this case the complex-mask does not only modify the amplitudes
|X(t, f)| but also apply changes to the phases φX(t, f) so as to estimate the
complex-spectrogram of the isolated source Sj(t, f)

Wave-U-Net. Another way to deal with the problem of the phase is to by-
pass the STFT and process the audio waveform directly. Along this, [SED18]
have proposed a Wave-U-Net which applies the U-Net directly to the wave-
form. In this, the encoder is made of a cascade of 1D-convolution/Decimation
to progressively reduce the time-dimension of x(t) to the bottleneck represen-
tation z. A cascade of Up-Sampling/1D-convolution is then used to decode
z in the separated signals sj(t) (no masking filters are used here).

End-to-end. [LPS19] also propose to use directly the waveform but with-
out the U-Net architecture. The architecture is here inspired by WaveNet
[vdODZ+16] and uses a stack of dilated convolutions with skip connections
but while WaveNet aims at predicting the next sample value, it is used here
in a non-causal way to predict the set of isolated sources of the center frame.

SEGAN. SEGAN (Speech Enhancement Generative Adversarial Net-
work) [PBS17] is an architecture proposed for speech enhancement which
also uses the WaveNet blocks to represent the waveform. Moreover it also
uses a DAE architecture but here considered as the generator G in a GAN
set-up. The generator is trained to generate enhanced signals that look like
real signals.

AE as NMF. [SV17] reconcile the DNN and the NMF source separation
research community by expressing an AE as a non-linear NMF. In NMF a
positive observed matrix X is reconstructed as the product of a positive basis-
matrix W with a positive activation-matrix H: X̂ = W ·H. Similarly in an
AE, X is reconstructed by passing z in the decoder function φd: X̂ = φd(z).
Considering only one linear layer for φd would therefore make φd play the
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same role as W and z the same role as H. The encoder part z = φe(X) would
then be H = W ‡ ·X18. They then propose a Non-Negative AE as a stack of
non-linear encoding layers Y0 = X,Y1 = g(W1·Y0), Y2 = g(W2·Y1) . . . H = YL
followed by a stack of non-linear decoding layers YL+1 = g(WL+1 ·YL) . . . X̂ =
Y2L. g can be chosen to be a positive non-linear functions. The latent repre-
sentation H can then be considered as an activation matrix which activate
the “basis” of the decoder φd. Based on this, the authors propose various
source separation algorithms.

TasNet, ConvTasNet. With this in mind, the seminal networks TasNet
[LM18] and ConvTasNet [LM19] can also be considered as examples of an
encoder which provides the activation’s and a decoder which reconstruct the
signal. However, both TasNet and ConvTasNet directly process the waveform
using 1D-Convolution. The decoder φd reconstructs the mixture waveform as
a non-negative weighted sum of basis signals ~V : ~̂x = ~w~V . The weights ~w
are the outputs of a simple encoder φe of the form ~w = H(~x~U) where H
is an optional nonlinear function19. The separation is done by masking the
weights ~w and keeping only the ones necessary to reconstruct ~sj from ~x:
~̂sj = (~w � ~mj). The masks ~mj are the outputs of a “separation network”
φs: ~mj = φs(~w) ∈ [0, 1]. The latter is a Deep-LSTM in TasNet or stacks
of 1D-Conv for ConvTasNet. As opposed to the U-Net approaches described
above [JHM+17, CKH+19, SED18] which apply the masks on the original
mixture, the masks are here applied on the weights.

Deep Clustering. [HCLRW16] propose a very different paradigm to train
a DNN architecture for source separation. Deep Clustering uses a metric
learning approach. For this, a DNN is trained to non-linearly project each
time and frequency points (t, f) of a spectrogram in a space such that points
that belong to the same source (to different sources) are projected in close
neighboring (far away respectively). A simple K-means clustering algorithm
of the projected points can then be used to perform the separation.

4.4 Content generation

In statistical classification or machine learning, we often distinguish be-
tween discriminative or generative approaches [Jeb04]. Generative approaches
are particularly attractive for their capacity to generate new data sam-
ples from their model. Some of the most popular models include differ-
ent forms of autoencoders (including Variational Auto-Encoders (VAEs)
[KW14b, CWBv19], Auto-Regressive models [vdODZ+16, PVC19, VSP+17]
and Generative Adversarial Networks (GANs) [DMP18, GBC16]. These gen-
eral models have sparked great interest since their introduction, mainly due

18 ‡ denotes the pseudo-inverse
19 for example a ReLU, to make the weights positive
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to their incredible capabilities to generate new and high quality images
[RMC16a, SGZ+16] but have also more recently shown their capacity for
audio content generation.

Auto-regressive and Attention-based models As already discussed in
section 3.3, WaveNet is clearly one of the most popular neural autoregressive
generative models for audio waveform synthesis [vdODZ+16]. It is capable of
high quality speech and music synthesis but remains a complex model with
a demanding sample-level auto-regressive principle. Nevertheless it is used in
many other frameworks and in particular in encoder-decoder architectures
such as Nsynth [ERR+17] or Variational Auto-Encoders (VAEs) as further
discussed below. Another trend in synthesis, initially introduced for Text-To-
Speech (TTS), aims for fully end-to-end generative models, where the signal is
directly synthesized from characters. For example, the original Tacotron relies
on a sequence-to-sequence architecture with attention mechanism to generate
a linear-scale spectrogram from which the audio signal can be estimated using
Griffin and Lim algorithm [GJ84]. Its extension, Tacotron2 [SPW+18], com-
bines the advantage of both previous models in using a sequence-to-sequence
Tacotron-style model to generate mel-scale spectrograms followed by a mod-
ified WaveNet synthesizer.

Variational Auto-Encoders: VAEs were used in speech synthesis as
extensions of wavenet autoencoders where the quantized latent space is con-
ditioned on the speaker identity [vdOVK17]. For music synthesis, a generali-
sation of the previous concept was proposed in [MWPT19] under the form of
an universal music translation network. The main idea is to have a so-called
universal encoder that forces the embeddings of all musical domains to lie in
the same space but separate reconstructing decoders for each domain exploit-
ing an auxiliary conditioning network. Several experiments of music domain
conversion were described including for example early attempts for orchestral
music to piano translation. The regularisation principle at the heart of VAEs
can also be extended as in [ECRSB18] to enforce that the latent space exhibits
the same topology as perceptual spaces such as musical timbre. One of the
main advantages of such approaches is that the latent spaces can be directly
used to synthesize sounds with continuous timbre evolution. Such capabilities
can also be achieved with Generative Adversarial Networks (GANs) as dis-
cussed below with the example of drum synthesis [NLR20b]. Another exten-
sion of VAEs is known as the Vector-Quantized VAE (VQ-VAE)[vdOVK17]
which aims at learning a discrete latent representation or codebook. The VQ-
VAE can achieve sharper reconstructions than classic VAEs and can extract
high-level interpretable audio features that strongly correlate with audio se-
mantic information such as phonemes, with applications for voice conver-
sion [CWBv19] or such as musical timbre for sound transformation. Another
interesting approach in that framework is the Jukebox method presented
in [DJP+20]. It is built on a multiscale VQ-VAEs (e.g. operating at differ-
ent temporal resolutions) and on simplified autoregressive transformers with
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sparse attention. This model was in particular used to synthesize entire songs
with vocals.

Adversarial audio synthesis: Generative Adversarial Networks (GANs)
have been initially used with success in speech synthesis [STS18] but their use
was rapidly extended to music synthesis. For exemple, WaveGan [DMP18]
performs unsupervised synthesis of raw-waveform audio. WavGan is based
upon the two-dimensional deep convolutional GAN (DCGAN) architecture
initially developed for image synthesis [RMC16b] and adapted to audio in
considering intrinsic differences between audio and images (which resulted in
the use of larger receptive fields and higher upsampling factors between lay-
ers). As discussed above in section 3, a number of audio representations have
been used in neural audio processing. For example in GANsynth [EAC+19],
several audio representations are evaluated including Short-Term Fourier
Transform (STFT) representations (log Magnitude, wrapped and unwrapped
Phase) and Instantaneous frequency (IF). Some other representations, includ-
ing the raw audio waveform and a variety of time-frequency representations
(such as complex spectrogram, CQT or MFCC), were also compared for the
task of adversarial audio synthesis in [NLR20a].

Numerous extensions or adaptations of the concepts of GANs were pro-
posed including Style-GAN [KLA19], Cycle-GAN [ZPIE17] or Progressive
Growing GANs [AHPG18, KALL18]. In audio synthesis, for example, [NLR20b]
proposed a specific Progressive Growing GAN architecture for drum sound
synthesis with a conditional generation scheme using continuous perceptual
features describing timbre (e.g., boominess, brightness, depth).

Music style transformations: Besides audio content generation, chang-
ing the style or instrumentation of a given piece of music is receiving a grow-
ing interest from the research community. Some research work target a direct
style transformation of an input audio signal, as for example in [GDOP18]
using Convolutive NN or as in the universal music translation network dis-
cussed above [MWPT19]. However, most studies operate on symbolic music
such as MIDI and can focus on one or several music attributes such as melody
[NSNY19], instrumentation or timbre [HCCY19, HLA+19], accompaniment
[CcR19, HSP16] or general arrangement style [BKWW18, LS18]. An inter-
esting work at the crossroads of accompaniment generation and style transfer
is the so-called Groove2Groove model [CSR20]. It is a one-shot style trans-
fer encoder-decoder neural network method for symbolic music trained in a
supervised fashion using synthetic parallel data. In this model, the input to
the style translation model is a full accompaniment but the output is entirely
regenerated and does not contain any of the original accompaniment tracks.
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4.5 Semi-Supervised Learning and Self-Supervised
Learning

Supervised learning assumes that labeled data, i.e. data x with associated
ground-truth label y, are available to train the parameters θ of a prediction
model ŷ = fθ(x). To train a DNN model, the amount of such labeled data can
be very large. While such large labeled datasets exist for image or speech,
this is not the case today for audio content such as music or environmen-
tal sounds. We review here two popular techniques to deal with this lack
of annotated data: semi-supervised learning (teacher-student paradigm) and
self-supervised learning.

4.5.1 Semi-Supervised Learning

Semi-Supervised Learning (Semi-SL) combines training with a small amount
of labeled data and training with a large amount of unlabeled data. One
popular form of Semi-SL used the so-called teacher-student paradigm. It is a
supervised learning technique in which the knowledge of a teacher (a model
trained on clean labeled data) is used to label a large set of unlabeled data
which is used in turn to train student models.

SoundNet [AVT16] is one of the first models developed in audio (for
a task of environmental sounds recognition) that use the teacher-student
technique. The idea is to transfer the knowledge of computer vision (CV)
networks to an audio network. For this, a large set of Audio-Video clips are
considered. Each clip has a video track and an audio-track. The CV networks
are applied to the video-tracks to annotate the corresponding audio-tracks
which are then used to train the audio network. The teachers are CV networks
previously trained for objects and scenes recognition (an ImageNet CNN and
a Places CNN) The audio network is a deep stack of 1-D convolutions. The
transfer is done by minimizing the Kullback-Leibler divergence between the
output probabilities of the audio and image networks. The training is done
using two-millions unlabeled videos. It is shown that using such a trained
audio network as feature extractor for typical Acoustic Scene Classification
tasks largely outperform previous methods.

In music description, [WL17] were the first to use the teacher-student
paradigm. For a task of drum transcription, a teacher (a Partially-Fixed-
NMF model) previously trained on clean labeled data is applied on a large
unlabeled dataset which is then used to train a DNN student model. The
author show that the student largely outperforms the teacher. For a task
of singing voice segmentation, [MBCHP18] also propose to use the teacher-
student technique but in a different way. A teacher (a deep CNN network)
previously trained on a clean but small labeled dataset, is applied to a large
set of data grabbed from the web with labels obtained by crowd-sourcing
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(hence very noisy). The outputs of the teacher are then used to filter out the
noise from the data. These cleaned data serve as the training label for the
student. The author also report larger performances for the student.

4.6 Self-Supervised Learning

Self-Supervised Learning (Self-SL) is a supervised learning technique in which
the training data are automatically labeled.

To automatically create labels, one can use the natural temporal synchro-
nization between the various modalities of multi-media data. This is denoted
by Audio-Visual Correspondence (AVC). One of the first approach that
use the AVC is the “Look, Listen and Learn” L3 network [AZ17] where
videos are decomposed into their image and audio modalities. A vision and an
audio sub-networks are then fed to a fusion network with a softmax output
which aims at predicting if the input image and audio correspond. Corre-
sponding pairs are the ones taken at the same time from the same video,
while mismatched pairs are extracted from different videos It is showed that
the two image and audio sub-networks trained in such a way can be used
afterward for solving sound classification or visual classification (ImageNet)
tasks with very large performances.

The AVE-Net[AZ18] is an extension of the L3 network in which the
fusion network is replaced by a simple Euclidean distance. The sub-networks
are therefore forced to learn to (non-linearly) project the data in a space
where the image content (e.g. a guitar player) and its corresponding sound
(e.g. a guitar sound) are projected nearby. Since both audio and video are
projected in the same space, cross-modal applications are possible (such as
querying an image giving a sound or the opposite) as well as visually locating
the “object that sounds” (the sub-part of the image which projection is
the closest to the projection of the sound).

In the same spirit, [ZGR+18] propose to train a two branches (image and
audio) network for a task of source separation: to provide the “sound of
the pixels” which are selected on the image. The audio branch (a U-Net)
is trained to separate the audio into a set of isolated components. A Self-SL
approach is then used to learn the mapping between each of these components
and the various parts of the images.

Another type of Self-SL relies on applying transformations to an audio
signal x for which we can predict the effect on the ground-truth labels y. The
SPICE (Self-supervised Pitch Estimation) [GFR+20] network uses such an
approach. In this, a Siamese AE is used. The encoder is first applied to
the original audio to obtain a latent variable z1. The signal is then pitch-
transposed by a factor p and encoded to obtain z2. The network is then
trained to allow predicting p from the difference between z1 and z2. It is
showed that, while trained to predict pitch-transposition, the network can be
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used to perform pitch-estimation with results very close to networks trained
in a fully supervised way.

5 Conclusion and future directions

The advances in deep learning has strongly impacted the domain of audio
analysis and synthesis. For many applications, the current state of the art is
exploiting to at least some extent some form of deep neural processing. The
emergence of deep neural networks as pure data-driven approaches was facil-
itated by the access to ever-increasing super-computing facilities, combined
with the availability of huge data repositories (although largely unannotated).
Nevertheless, this poses a number of challenges especially in terms of com-
plexity, explainability, fairness and needs for data. We would like to sketch
below some of our view for future directions in Deep learning for audio and
music.

• Increased explainability using Audio models. For decades, many au-
dio models have been developed. Such models include perceptual models
(only audible information is modelled), Signal-based models (parametric
models capturing the nature or structure of the signal) or physics-based
(exploiting the knowledge of the sound production mechanisms or sound-
propagation characteristics). Besides complexity reduction objectives, rely-
ing on appropriate audio source models within the deep architecture allows
to constrain or “guide” the network to converge to an appropriate solution
or to obtain more interpretable or explainable networks. Some recent works
have already exploited some aspects of this view : using non-negative fac-
torization models with CNNs for audio scene classification [BSER17], or
for speech separation [LM19] or coupling signal processing modules with
deep learning for audio synthesis [EHGR20, WTY20].

• Increased performance and explainability using Multimodality.
In many situations, the audio signal can be associated with other modal-
ities ranging from videos (e.g; in audiovisual scenes), text (such as lyrics
or music scores), body movements or EEG (for example of subjects lis-
tening music). Video has proven to be useful for many audio tasks in-
cluding for example audio-visual music performances analysis [DEL+19]
and audio-visual scene/object recognition but there are still important
challenges especially when the modalities are not observed synchronously
[PEO+20]. As other examples, many Informed source separation ap-
proaches [OLBR13, LDDR13] do exploit an additional modality for sepa-
ration such as lyrics for singing voice [SDRB19, LOD13, MBP20] score for
music remixing [EM12], sketches on spectrogram representations for selec-
tive source separation [SM09], or EEG for attention-based music source
separation [cER20]. There are clear interest to further exploit concurrent
cues, when available, to build better and more explainable models.



Deep Learning for Audio and Music 29

• Increased fairness and ethics. If this is an obvious problem for the
applications of Deep learning in health or justice, it is also of utmost im-
portance in audio. In speech recognition, we certainly do not want systems
that are more efficient on male voices than female voices. Similarly in mu-
sic, since most of the studies are in western music, a clear bias towards this
type of music exist. For music recommendation systems, fairness should
also be a central goal to avoid bias in terms of gender, ethnicity or commer-
cial inequity. In terms of content, to comply with ethics rules it becomes
necessary to be able to filter unappropriate or explicit content [VHM+20].
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[CSR20] O. Ćıfka, U. Simsekli, and G. Richard. Groove2groove: One-shot music style

transfer with supervision from synthetic data. IEEE/ACM Transactions on
Audio, Speech, and Language Processing, 28:2638–2650, 2020.

[CVMG+14] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bah-
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[DRDF10] Jean-Louis Durrieu, Gaël Richard, Bertrand David, and Cédric Févotte.

Source/filter model for unsupervised main melody extraction from polyphonic

audio signals. IEEE transactions on audio, speech, and language processing,
18(3):564–575, 2010.

[DS14] Sander Dieleman and Benjamin Schrauwen. End-to-end learning for music
audio. In 2014 IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), pages 6964–6968. IEEE, 2014.
[DYS+20] Guillaume Doras, Furkan Yesiler, Joan Serra, Emilia Gomez, and Geoffroy

Peeters. Combining musical features for cover detection. In Proc. of ISMIR

(International Society for Music Information Retrieval), Montreal, Canada,

October, 11–15 2020.
[EAC+19] Jesse Engel, Kumar Krishna Agrawal, Shuo Chen, Ishaan Gulrajani, Chris

Donahue, and Adam Roberts. Gansynth: Adversarial neural audio synthesis.
In Proc. of ICLR (International Conference on Learning Representations),

2019.
[ECRSB18] Philippe Esling, Axel Chemla-Romeu-Santos, and Adrien Bitton. Bridging

audio analysis, perception and synthesis with perceptually-regularized vari-

ational timbre spaces. In Proc. of ISMIR (International Society for Music
Information Retrieval), 2018.

[EHGR20] Jesse Engel, Lamtharn Hantrakul, Chenjie Gu, and Adam Roberts. Ddsp:
Differentiable digital signal processing. In Proc. of ICLR (International Con-

ference on Learning Representations), 2020.
[EHWLR15] Hakan Erdogan, John R Hershey, Shinji Watanabe, and Jonathan Le Roux.

Phase-sensitive and recognition-boosted speech separation using deep recur-

rent neural networks. In 2015 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 708–712. IEEE, 2015.

[EM12] Sebastian Ewert and Meinard Müller. Score-Informed Source Separation for
Music Signals. In Meinard Müller, Masataka Goto, and Markus Schedl, edi-

tors, Multimodal Music Processing, volume 3 of Dagstuhl Follow-Ups, pages

73–94. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Ger-
many, 2012.

[ERR+17] Jesse Engel, Cinjon Resnick, Adam Roberts, Sander Dieleman, Mohammad

Norouzi, Douglas Eck, and Karen Simonyan. Neural audio synthesis of mu-
sical notes with wavenet autoencoders. In Proc. of ICML (International

Conference on Machine Learning), pages 1068–1077, 2017.
[FM82] Kunihiko Fukushima and Sei Miyake. Neocognitron: A self-organizing neural

network model for a mechanism of visual pattern recognition. In Competition

and cooperation in neural nets, pages 267–285. Springer, 1982.
[FP19] Hadrien Foroughmand and Geoffroy Peeters. Deep-rhythm for global tempo

estimation in music. In Proc. of ISMIR (International Society for Music
Information Retrieval), Delft, The Netherlands, November 4–8 2019.

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

[GDOP18] Eric Grinstein, Ngoc Q. K. Duong, Alexey Ozerov, and Patrick Pérez. Audio
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