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Chapter 1

Spectral and temporal modifications

This chapter is mostly a translation in English of a course handout by Bertrand David. It draws from passages of
various documents and mainly from a work specifically dedicated to audio signal processing [KB98] (Chap. 7). It
develops more particularly the phase vocoder-based methods and the temporal methods.

1 Introduction
The objective of these modifications, which correspond to usual needs in various fields of sound and speech pro-
cessing, is to independently control the temporal, spectral and possibly formantic (slow variations of the spectrum)
evolutions of the signal:

• temporal dilation: we want to modify duration scales without altering the spectral content and especially the
pitch in the case of a harmonic signal,

• pitch variation: in the case of harmonic signals, we want to change the pitch of the sound, while retaining its
temporal evolution (for example the prosodic flow in the case of speech) and especially its duration,

• formantic control: in the case of a pitch modification, one can choose to either modify the spectral scale as a
whole (and therefore to move the formants or spectral envelope) or to keep the spectral envelope constant
while transposing the line spectrum.

Applications where these types of independent modifications are numerous:

• synthesis by sampling of a wave table (musical sounds or speech segments [All91]),

• post-synchronization: to perform a synchronization of sound and image,

• data compression [MEJ86]

• reading for blind people: our inner reading is much faster than our diction. By shrinking durations we can allow
blind people to increase their speed of browsing documents,

• learning foreign languages: slowing the speech flow is helpful,

• musical post-production: to mix several recordings it may be useful to speed up or slightly reduce the tempo. It
may also be interesting to locally correct the precision of a voice or instrument.

We can classify in three types the methods that carry out these modifications:

• methods inspired by the circular reader head or modified radiocassette (we add / subtract portions of the sig-
nal [FEJ54]). These methods are called temporal,
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• phase vocoder-based methods (spectral methods using the Short Time Fourier Transform (STFT) [SFL67,
Por76]),

• methods based on signal models (Linear Predictive Coding (LPC) [Mak75], Sinus+Noise [SS90], Audio grains [JP88],. . . ).

Temporal methods have resulted in many developments in digital signal processing: Synchronized OverLap-
Add (SOLA) method [RW85], Pitch-Synchronous OverLap-Add (PSOLA) method [MC90]. This last one uses a
synchronized copy/deletion technique on the glottal impulses. This achieves a very good quality modification of
the time scale without resampling the signal.

The PSOLA method can be adapted to perform formantic modifications by modifying the duration of the
segments without modifying the position of the glottal impulses. In this way, we can transpose the spectral en-
velope without modifying the pitch or the duration, and thus modify the timbre of a voice (transform a male
voice into a more female voice by example). Other techniques of formantic modifications use cepstral representa-
tions [CLM95].

2 Signal models to define temporal and spectral distortions
A simple replay at 16 kHz of an audio signal sampled at 8 kHz is enough to convince us that the temporal and
spectral expansions or compressions are interdependent. This dependence can be interpreted as a simple theoretical
result on the Fourier Transform (FT): the Heisenberg uncertainty relation translates this dependence in terms of
supports, and the high frequency decrease in the FT is related to the regularity of the time signal. Therefore the
definition of independent temporal and spectral distortions can only be obtained for well-defined signal models.

2.1 McAuley-Quatieri model
Speech production model. The most common and widely used speech signal model is that of a time-varying
linear filter, excited by a harmonic source (in the case of voiced sounds) or by a stationary random process with
flat spectrum (in the case of unvoiced sounds). In the present case, we consider the voiced case, for which this
source is a sum of sinusoidal components whose frequencies are multiple of a fundamental frequency f0(t). This
representation is equivalent to writing the source as a Dirac comb whose period depends on time.

Let gt(τ) be the impulse response of the system at time t. The signal is then simply written as a function of the
excitation signal e(t):

x(t) =

∫ +∞

−∞
gt(τ)e(t − τ)dτ. (1.1)

This non time-invariant system can be represented by a time-dependent frequency response:

G(t, f ) = M(t, f ) exp jϕ(t, f ).

The temporal variations of gt are linked to the articulatory movements and are considered slow compared to the
fundamental period of the signal. On the other hand, these variations are assumed to be weak over the duration of
the filter memory. The system is quasi-stationary.

For voiced speech, that is to say involving a periodic vibration of the vocal cords, the excitation signal writes:

e(t) =

+∞∑

k=−∞
exp jξk(t) (1.2)

with
ξ′k(t) = 2π fk(t).

The quasi-stationary nature of gt leads to a practical limitation of the support of this function to a dimension of
the order of the system memory. The integral in expression 1.1 is therefore well-defined in practice. In the same
way, the frequency support of speech is limited in practice and the discrete sum of expression 1.2 is in fact a finite
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sum of L(t) complex exponential terms. Taking into account the fact that f0 varies little over the memory duration
of the filter we can expand

ξk(t − τ) ≈ ξk(t) − 2πτk f0(t)

in the vicinity of t (i.e. for τ lower than the memory of the filter). Then we obtain:

x(t) =

L(t)∑

k=1

M(t, fk(t)) exp j[ξk(t) + ϕ(t, fk(t))] (1.3)

Mc-Auley and Quatieri model. This model was introduced by McAulay and Quatieri around 1985 [MQ86],
mainly for low rate speech coding. So it is related to the expression obtained in 1.3. It is however a little more
general since it does not assume a necessarily harmonic relationship between the instantaneous frequencies. The
signal is represented as a sum of sines whose frequencies, amplitudes and phases are controlled over time:

x(t) =

L(t)∑

k=1

Ak(t) exp jΨk(t) with Ψ′k(t) = ωk(t) = 2π fk(t) (1.4)

where Ak(t) is the amplitude at time t of sine k, Ψk(t) is the instantaneous phase of this sine at time t and fk(t) is
its instantaneous frequency. This decomposition is not unequivocal and we generally consider that the functions
Ak(t) and ωk(t) have slow variations compared to the functions exp( jΨk(t)).

2.2 Serra-Smith model
This model was developed in the early 90s [SS90] in order to meet the need for an analysis/synthesis system
accounting for the noisy component of music or speech. This component is very expensive to represent as a sum
of sines. The proposed model is therefore an extension of that of MacAuley-Quatieri:

x(t) =

L(t)∑

k=1

Ak(t) exp jΨk(t) + b(t) (1.5)

where b(t) is a stationary random process filtered by a time-varying filter, like filter gt presented above. Let ht be
this filter, we will then write, taking into account the causality of signals,

b(t) =

∫ t

0
ht(τ)u(t − τ)dτ (1.6)

where u(t) is a white stationary random process.
The complete analysis/modification/synthesis system includes

• an estimation phase of the deterministic components,

• a phase of linear interpolation of the amplitudes and cubic interpolation of the phases from one frame to another
of the signal for these components,

• a subtraction of this deterministic part to get b(t) for each frame,

• the application of a possibly distinct transformation algorithm for each of the two components,

• resynthesis.

3 Definitions and equivalences
All the definitions given here relate to a model of signal with sinusoidal components. They therefore apply to the
McAuley-Quatieri model or to the deterministic part of the Serra-Smith model. The phases at t = 0 will be assumed
to be zero for the sake of simplification (this term can be incorporated into the definition of the amplitudes).
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3.1 Temporal distortion

We define the time distortion function using the new time scale τ and the original time scale t by:

τ = T (t). (1.7)

This function is continuous and bijective from R+ to R+. The modification of the signal’s time scale x(t) is then
defined by

y(τ) =

L(T−1(τ))∑

k=1

Ak(T−1(τ)) exp( jφk(τ)) (1.8)

The conservation of the frequency content then requires to maintain the values of the instantaneous frequencies,
hence the relation:

φk(τ) =

∫ τ

0
ωk(T−1(u))du (1.9)

3.2 Pitch modification

To modify the pitch of the signal x(t) we build the signal:

y(t) =

L(t)∑

k=1

Ak(t) exp( jΦk(t)) (1.10)

The alteration of the frequency content is defined using a function α(t) called frequency compression rate, accord-
ing to the expression:

Φk(t) =

∫ t

0
α(u)ωk(u)du (1.11)

3.3 Reciprocity

By a quick calculation we show that the operating sequence: x → x1 by time distortion (τ = T (t)) followed a
simple replay at a different temporal speed (i.e. without maintaining the frequency characteristics) x1(τ) = y(v)
with v = T−1(τ) is equivalent to a frequency modification governed by the function α(t) = T ′(t), that is to say:

y(v) =

L(v)∑

k=1

Ak(v) exp jΦk(v) (1.12)

with

Φk(t) =

∫ v

0
T ′(u)ωk(u)du (1.13)

This relationship is particularly useful in cases where the corresponding time distortion is a multiplying factor, like
for instance T (t) = 2t. Then T ′(t) is constant and the replay operation is a simple replay of the signal obtained at a
different rate (for example, for sampled signals, F′e = 2Fe in the previous case).

4 Short-term Fourier transform

The methods of analysis/synthesis and modification of sounds based on the use of the STFT are very common.
The corresponding tool is usually called phase vocoder. It refers to the polar representation (module & phase) of
the STFT.
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Figure 1.1: Short-term Fourier transform

4.1 Theoretical reminders

The block diagram of the STFT is represented in figure 1.1, as it is numerically computed. The principle is that of a
sliding Fourier transform, performed on overlapping frames of the signal. Each frame is windowed by an analysis
window. We will write the STFT of a digital signal x(n) in the form

X̃(ta, ν)
∆
=

∑

n∈Z
x(n + ta)wa(n)e− j2πνn. (1.14)

wa denotes the analysis window, most often of finished length, real and symmetrical. The analysis times are
implicitly indexed by a natural integer u, that is ta = ta(u), u ∈ N. We preferred here a notation function of
ν while a notation function of e j2πν would have been more consistent with the interpretation in terms of sliding
Fourier transform, but this choice simplifies the expressions.

Interpretation. A quick calculation shows that, by defining h(n) = wa(−n)e j2πνpn, the expression 1.14 can be
written in the form of a convolution product:

X̃(ta, νp) = [x ∗ h](ta). (1.15)

If wa(n) is a real and pair window of finite length, its FT Wa(e j2πν) is real and even. The FT of h is then simply
H(e j2πν) = Wa(e j2π(ν−νp)). An example of typical result is given in figure 1.2 for νp = 0.3. This example shows that
X̃(ta, νp) performs a bandpass Finite Impulse Response (FIR) filtering around frequency νp. The characteristics of
the filter are linked to that of the chosen analysis window. This interpretation is at the origin of the qualification
of bandpass convention given to expression 1.14. There is another convention, called low pass, often used for its
ease of handling calculations. We will, however, stick to the band pass convention because it corresponds to the
practical realization.
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Figure 1.2: Bandpass filtering equivalent to an STFT channel

Discrete version of the STFT. In practice, the Fourier transform is evaluated using the Discrete Fourier Trans-
form (DFT). This is equivalent to setting νp = p/N in the expression of X̃(ta, νp). N is the order of the DFT. We
thus obtain a discrete version of the STFT, i.e. sampled in frequency, i.e.

X̃(ta, νp) =

N−1∑

n=0

x(n + ta)wa(n)e− j2π pn
N . (1.16)

In order to avoid time aliasing, the length of the analysis windows will be less than or equal to N.

Modifications and problems posed. The modification of sounds by the phase vocoder involve obtaining a mod-
ified STFT from X̃(ta, νp), k = 0, . . . ,N − 1, then resynthesizing the signal. We denote by ts = ts(u) the temporal
synthesis marks. Hence the modification

X̃(ta(u), νp)→ Y(ts(u), νp).

The main difficulty encountered is that Y must satisfy strong conditions [Por76] to correspond to a well-defined
original sequence. The solution to this problem is found in the least squares sense [ML95]. However, one can
write the perfect reconstruction conditions in case no modification is performed (i.e. ts = ta and Y = X̃).

Perfect reconstruction condition. The reverse operation of the analysis is carried out for the synthesis: from
the stream of discrete spectra X̃(ta(u), νp) we compute an inverse DFT and we reconstruct the signal by OverLap-
Add (OLA). The result is given by

y(n) =
∑

u

ws(n − ts(u))yw(n − ts(u), ts(u)) (1.17)
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with ts(u) = ta(u) and

yw(n, ts(u)) =
1
N

N−1∑

p=0

Y(ts(u), νp)e j2πνpn.

Taking Y = X̃ into account and substituting the expression 1.14 in 1.17, we show that x(n) = y(n) is obtained by
using the sufficient condition: ∑

u

wa(n − ta(u))ws(n − ta(u)) = 1 (1.18)

5 Modifications using the phase-vocoder

5.1 Instantaneous frequency
The transformations presented in section 3 require the calculation of the instantaneous frequencies ωk(t) of each of
the components of the sum 1.4. This calculation is carried out from two successive short term spectra X̃(ta(u), νp)
and X̃(ta(u + 1), νp) p = 0, . . . ,N − 1, under certain conditions that ensure the existence of a solution.

Narrow-band condition. This first condition ensures the presence of at most one component per channel of the
STFT. The substitution of the expression 1.4,

x(t) =

L(t)∑

k=1

Ak(t) exp jΨk(t),

into expression 1.14 of the STFT gives:

X̃(ta(u), νp) =

N−1∑

n=0

L(n+ta)∑

k=1

Ak(n + ta) exp( jΨk(n + ta))wa(n)e− j2πνpn

We then use the quasi-stationarity of the model, namely:

Ak(n + ta) ≈ Ak(ta)
Ψk(n + ta) ≈ Ψk(ta) + nωk(ta)

and finally, by defining ωk(t) = 2π fk(t):

X̃(ta(u), νp) =

L(n+ta)∑

k=1

Ak(ta) exp( jΨk(ta))Wa(e j2π(νp− fk(ta)) (1.19)

The narrow band condition leads to non-negligible values of Wa(e j2π(νp− fk(ta)) for at most one value of k. Let k = l
be this value if it exists. If we note fc the cutoff frequency of the low-pass filter whose impulse response is wa(n),
then the existence of l implies

|νp − fl(ta)| ≤ fc ,

that is, the component number l is in the pass-band of the filter corresponding to the p-th channel of the STFT. The
expression 1.19 is then reduced to the contribution of the l-th component alone:

X̃(ta(u), νp) = Al(ta) exp( jΨl(ta))Wa(e j2π(νp− fl(ta)) (1.20)

If we assume that wa is real and even, and therefore Wa is real and even, this expression is interpreted as follows:
the phase of the STFT gives access to the instantaneous phases of the components of x(t), up to an indeterminacy of
a multiple of 2π, and the module of the STFT gives access to instantaneous amplitudes of x(t), up to an amplitude
factor due to filtering. We can therefore deduce the instantaneous frequencies of each component from the phase
of the flow of short-term spectra, provided that the indeterminacy of 2π is removed.

Example: for a Hann analysis window of length L, the narrow-band condition applied to a line spectrum of
harmonics (case of a voiced speech segment for example) leads to a spacing of spectral peaks at least equal to the
bandwidth of the Fourier transform of the window, that is 4/L. That results in f0 < 4/L, i.e. a window length at
least equal to 4 times the fundamental period.
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Overlap condition. We will see here that the removing of the indeterminacy leads to a condition of minimal
recovery of the analysis windows. Indeed, the phase difference between two successive analysis times, for the p-th
channel of STFT is written, by defining Φ(ta(u), νp) = arg X̃(ta(u), νp),

∆Φp = Φ(ta(u + 1), νp) − Φ(ta(u), νp) = Ψ(ta(u + 1)) − Ψ(ta(u)) [2π]
= 2π fl∆ta(u) + 2nπ

= 2π( fl − νp)∆ta(u) + 2πνp∆ta(u) + 2nπ

where n is a relative integer and ∆ta(u) = ta(u + 1) − ta(u). By taking |νp − fl(ta)| ≤ fc into account, the previous
equation leads, if the condition 1.21 below is verified

fc∆ta(u) < 1/2, (1.21)

to the inequality
|∆Φp − 2πνp∆ta(u) − 2nπ| < π ,

however there is one and only one value of n that verifies this property. This has removed the indeterminacy.
In summary, we can thus get the value of the instantaneous frequency in each STFT channel by the following
algorithm:

1. Calculation of the STFT at two successive times of analysis, which gives ∆Φp for each channel (p =

0, . . . ,N − 1),

2. For each channel, we look for the value Q(n0) of Q(n) = ∆Φp − 2πνp∆ta − 2nπ such that |Q(n0)| < π,

3. we deduce the instantaneous frequencies by fl = νp +
Q(n0)
2π∆ta

.

Interpretation: inequality 1.21 leads to a minimum overlap condition between the analysis windows. Indeed, if we
take for example a Hann window, for which we can estimate fc = 2/L where L is the window length, it becomes

∆ta <
L
4

which corresponds to a minimum recovery of 75% in analysis.

5.2 Temporal distortion
Once the instantaneous frequencies in each channel are deduced1, the temporal signal distortion may be considered.
In particular, instantaneous phases can be "unwound" so as to synchronize the modified STFT on the synthesis
times. We then obtain the following modification algorithm, assuming that the analysis STFT X̃(ta(u), νp) and the
synthesis STFT Ỹ(ts(u), νp) are calculated for the index u, and given the time distortion law T (t):

1. calculation of the STFT at time ta(u + 1) and deduction of the instantaneous frequency fk(ta(u)) in each
channel,

2. calculation of the new synthesis time ts(u) = T (ta(u)); in practice we take the whole part of this new instant

3. iteration of the synthesis instantaneous phase

Φs(ts(u + 1), νp) = Φs(ts(u), νp) + 2π fp(ta(u))(ts(u + 1) − ts(u))

4. calculation of the synthesis STFT for the index u + 1 according to

Ỹ(ts(u + 1), νp) = Ap(ta(u + 1)) exp jΦs(ts(u + 1), νp)
1in doing so, we assume that there is one and only one component by channel and therefore we can identify the indexes p (STFT channel)

and k (components).
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5.3 Pitch modification
The modification of pitch, or more generally of the frequency scale, is obtained either by temporal resampling or
by spectral resampling.

Temporal resampling. This method is based on the reciprocity properties as seen in paragraph 3.3.
In the case of a constant frequency compression ratio α(t) = α0, we obtain the desired modification by

1. a time stretch of factor α0,

2. a replay at sampling frequency α0Fe

where Fe is the original sampling frequency. This technique is equivalent to performing a resampling of factor
α0 = F′e/Fe and playing at Fe. In this last case, it should however be noted that the time support is divided by α0.

An extension of this resampling technique can be applied to obtain compression ratios α(t) variable over time.
We use the canonical resampling method of digital signals by approaching α by a rational fraction at each analysis
time α(ta) = L(ta)/M(ta) and by performing the processing chain of figure 1.3 where H(z) is a low-pass filter of
cutoff frequency νc = min(1/2L, 1/2M). We can therefore apply this processing to each frame of the signal and

Figure 1.3: Canonical resampling chain of factor L/M

use synchronized analysis and synthesis times ta(u) = ts(u). It should be noted that in this case, the phase vocoder
is not used. This method can be quite demanding because it requires the calculation of a new interpolation filter H
at each analysis step.

Spectral resampling. The phase vocoder allows a less greedy solution than the resampling in the case of variable
compression ratios, by performing resampling in the frequency domain. This frequency resampling is performed
by linear interpolation of the analysis short-term spectrum, that is

q = bp/α(ta(u))c
µp = p/α(ta(u)) − q

Ỹ(ts(u), νq) = (1 − µp)X̃(ta(u), νp) + µpX̃(ta(u), νp+1)

p and q are natural integers that index the channels of the STFT, they therefore vary from 0 to N − 1. We note
that this interpolation, if it presents no difficulty for compression rates greater than unity (pitch is increased),
however requires completion of the high frequency spectrum for rates lower than unity (the synthesized sound is
lower-pitched). One way to achieve this completion was suggested in [Sen82] and simply consists of copying the
low frequency part of the spectrum into the missing part. This spectral copy gives good rendering for sampling
frequencies of at least 16 kHz. In this case, the completion occurs at high frequencies where the sound has mainly
unvoiced characteristics.

Finally, to carry out the modification, it is necessary to take into account the local modification of the time
scale caused by the frequency modification. Indeed the phases of the synthesis STFT Φs(ts(u), νp) = Φa(ta(u), νp)
are now synchronized on synthesis times different from the analysis times:

Φs(ts(u + 1), νp) = Φs(ts(u), νp) + 2π fp(ta(u))∆ta(u)
= Φs(ts(u), νp) + 2πα(ta(u)) fp(ta(u))∆ts(u)
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We therefore see that the local analysis duration ∆ta(u) has been divided by α in the synthesis. Let ∆ts(u) =

∆ta(u)/α(ta(u)). This corresponds to a virtual time distortion

T (t) =

∫ t

0
α(w)−1dw

To carry out the time scale modification, it is therefore necessary to finally apply a compensatory temporal distor-
tion D(t) = T−1(t).

Note regarding the processing of spoken or singing voice. In the case of pitch modifications in spoken or
singing voice, a direct transposition of the signal leads to the "Donald Duck" effect. Indeed, the transposition of
the overall spectrum leads to a transposition of its envelope and therefore of the formants. The timbre is then
severely modified and the voice acquires a nasal characteristic evoking the sound of the duck. This effect is also
produced by the modification of the characteristic impedance of the medium caused by the mixed gaz breathed in
by divers. A solution to overcome this defect consists in estimating the spectrum envelope before the processing
(by LPC or direct modeling [EJM91]). The processing is then applied to the source signal (LPC residual for
instance) then the obtained result is filtered to find the original spectral envelope, unchanged.

6 Pitch synchronous temporal method
This method, called Time-domain Pitch-Synchronous OverLap-Add (TD-PSOLA), assumes that we process a
speech signal whose period is known.

The idea [MC90] is based on the assumption that the speech signal is made up of glottal pulses filtered by
the vocal tract. We thus observe a succession of impulse responses, positioned at multiple times of the period
(assumption of the time comb convoluted with the impulse response of the vocal tract).

We then define "analysis marks" synchronous with the fundamental frequency for the voiced parts, positioned
on the waveform at each period. Scale modifications are then carried out as follows:

6.1 Modification of the time scale.
In order to modify the signal duration without altering the fundamental frequency, we will simply duplicate (for
time stretching) or eliminate (for time compression) periods of the waveform, depending on the desired modifica-
tion rate. So we are led to define synthesis marks also synchronous with the fundamental period, associated with
the analysis marks (in a non-bijective way since some marks are duplicated or eliminated).

Short-term signals around each analysis mark are then extracted (by the use of a time window, by example
a Hann window, of duration equal to two periods and centered on the analysis mark) and ’copied’ around the
corresponding synthesis marks, and the modified signal is obtained by a simple OLA method. Figure 1.4 illustrates
the principle of this method for a local time stretch rate of 1.5.

We see that two periods of the original signal gave birth to three periods in the modified signal, which corre-
sponds well to a time stretch but the duration of the period is not not modified (the spacing of the synthesis marks
is the same as that of the analysis marks), the fundamental frequency of the signal is preserved. Figure 1.6 gives
an application example to the sentence "il s’est" whose original is given in figure 1.5. We notice the unvoiced part
in the center of the window (the sound ‘s’), separating the two voiced parts /i/ and /e/.

6.2 Modification of the frequency scale.
If we are able to position the analysis marks in the signal exactly at the start of each glottal wave (impulse response
of the vocal tract occurring at each glottal closure), we can see that decreasing (resp. increasing) the time interval
separating two consecutive analysis marks will increase (resp. decrease) the fundamental frequency, without the
formants being modified (the impulse response is not modified, in particular its temporal decay and its resonance
frequencies - the formants).
We are thus led to define synthesis marks corresponding to the modified value of the fundamental, and to associate
them with the analysis marks, as previously. Since the synthesis marks are closer (elevation of the fundamental) or
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Original signal

Modified signal

Short-term synthesis signals

Figure 1.4: Modification of the duration of the signal by the TD-PSOLA method. At the top, the original signal,
in the middle three short-term signals generated from two short-term signals centered around the first two analysis
marks. At the bottom, the modified signal.

farther (lowering of the fundamental) than in the original signal, we have to duplicate or eliminate some marks in
order to keep the duration of the signal. Figure 1.7 illustrates the principle of this method.

It can be seen that the synthesis marks being more spaced out than the analysis marks, the signal period is
lengthened. In order to avoid an elongation of the signal, it is necessary to periodically eliminate some short-term
signals.

When the signal no longer has a precise fundamental frequency (case of consonants for instance), the modifi-
cation is carried out non-synchronously, until we find a region with a sharper fundamental.

The method described above is mainly applied to speech, and makes very good quality modifications. By its
simplicity, it can be subject to a real-time implementation. However, its application to more complex sounds, or
sounds devoid of "pitch" (case of music in general) poses serious problems.
The modifications of fundamental frequency are however very sensitive to the position of the analysis marks. To
make the method more robust, the modifications of frequency scale can be performed in the frequency domain
(FD-PSOLA method) [MC90, ML95].

For other methods based on very similar ideas, we can refer to [SG72, WW88, Mal79, Har90].

6.3 The circular memory technique
The circular memory technique is the simplest and most ancient time and frequency scale modification technique
[Ben88]. It is also a method operating in the time domain.

6.3.1 The analog origin

This technique is derived from an analog system proposed in the 1950s [FEJ54]. It consists in using a tape recorder
equipped with a rotating head. The closed loop tape wraps around half of the cylinder (as for the VCR and the

Roland Badeau roland.badeau@telecom-paris.fr

Contexte académique } sans modifications
Voir Page 88 19/88



Audio signal analysis, indexing and transformation

0 0.05 0.1 0.15 0.2 0.25 0.3
-0.5

0

0.5

1

Time (s)

A
m

pl
itu

de

Figure 1.5: Original: "il s’est".
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Figure 1.6: Signal stretched by factor 2.

DAT) and scrolls at constant speed. The cylinder is provided with two diametrically opposed reader heads whose
signals are mixed with an identical gain. It is possible to control the direction of rotation and the speed of the
cylinder.

When the cylinder is motionless, the tape scrolls in an identical manner in front of the recording head and
in front of one of the reader heads. The signal read is therefore identical to the signal recorded (up to recording
errors).
When the cylinder rotates in the opposite direction of the scrolling of the tape, the relative speed Vr of the scrolling
tape with respect to the reader head is faster than its absolute scroll speed Va. During the period of contact between
the reader head and the tape, the signal is thus read faster than it has been recorded, which corresponds to a dilation
of the frequency axis. The presence of two heads ensures the continuity thanks to a natural cross-fade (when a
head leaves the band, the other approaches it, so that the total signal does not decrease). Note that some portions
of the signal can be read two or more times, depending on the speed of rotation of the head. It is this rereading that
keeps the signal duration.
Conversely, when the cylinder rotates in the scrolling direction of the band, the frequency content of the signal is
contracted towards the origin since the tape is read at a slower speed than it is recorded. In this case, some portions
of the signal may not be read at all.
The ratio of frequency homothety is expressed as:

α =
Vr

Va
=

Va + R Ωcylinder

Va

where Va is the tape scrolling speed in front of the recording head, Vr is the relative speed of the tape with respect
to the reader head, Ωcylinder is the speed of rotation of the cylinder in radians s−1, and R is the radius of the cylinder.
In all cases, the regular alternation of the two heads induces a periodic "noise" of frequency Ωcylinder/π.

Modifications in the signal time scale are obtained for instance by recording the signal a first time on the tape,
then by replaying it with a tape scrolling speed multiplied by factor α. In the absence of rotation of the reader head,
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Original signal

Modified signal
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Figure 1.7: Modification of the pitch of the signal by the TD-PSOLA method. At the top, the original signal, in the
middle three short-term signals generated from the three first analysis marks. At the bottom, the modified signal.
The spacing of the synthesis marks is not identical to that of the analysis marks.

the signal pitch is of course multiplied by factor α, which we try to avoid. We therefore compensate for the pitch
change by a proper rotation of the reader head.

6.3.2 Digital implementation

Most commercially available pitch modifiers are based on a digital realization of the system described above. The
magnetic tape is replaced by a circular memory in which the input signal samples are placed. This circular memory
is read by two diametrically opposite pointers.

For each sample written in the memory (every ∆T seconds), we advance the reading pointers by α∆T seconds,
where α is the rate of change, and then we read a sample in memory. In general (for non-integer values of α), we
find ourselves between two samples, and as in the case of the "flanger", it is necessary to calculate the signal value
at this time. Here too, a simple linear interpolation is suitable.
Thus, the signal is read with a sampling frequency different from the one it was recorded with, which causes a

Magnetic tape

Reader heads

Rotating cylinder

Recording head

Driving roller

Figure 1.8: The circular memory technique
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Reading pointer 1

Writing pointer

Reading pointer 2

Figure 1.9: Digital implementation

modification of the frequency scale of rate α. A problem arises when the reading pointer catches up (when α > 1)
or is caught (when α < 1) by the writing pointer. As in the analog equivalent, continuity is ensured by a mixture
of the two pointers at the time when the encounter occurs ("cross-fade"): the sample read by the current reader
pointer (e.g. pointer 1) is lowered while the one read by the other reader pointer (pointer 2) is increased. Finally,
the second pointer becomes the current pointer, and keeps its maximum weighting, until the writing pointer gets
close to it.

Implemented in this way, the pitch shifter has a behavior substantially equivalent to its analog counterpart (except
that it is more easily configurable). Its implementation in real-time is not a particular problem, since it requires
very few calculations.
Unfortunately, it produces artificial noise which comes from the periodic mixing of the two reader pointers. To try
to improve the obtained quality, we seek to better combine the signals read by the two reader pointers, somewhat
similarly to what is done in the synchronous methods. We can for example use the signal autocorrelation function
to determine the most suitable location for the "cross-fading" [Dat87, Lar93a].

6.3.3 Modification of the duration by the technique of circular memory

Like its analog counterpart, the circular buffer technique can also be used for temporal scale modification: if you
have a pitch shifter with circular memory, and want to perform a "time scaling" of parameter α, just change the
signal sampling frequency by a rate α, then process it with the pitch shifter. So, in order to slow down the signal
twice, it suffices to oversample it twice. If we listen to the signal obtained at the original frequency, it will be twice
as much long, but also at a lower octave. So just listen to it at the original frequency by inserting a pitch shifter at
rate α = 2.

We quickly realize that it is easier to do both operations jointly: the technique then consists in repeating or
periodically eliminating signal portions so as to increase (or decrease) the duration. Viewed from this angle, this
technique (which is called "splicing method") approximates a TD-PSOLA technique in which we would not know
the value of the fundamental frequency. The artifacts inherent in this method, which come from the breaks in the
periodicity of the signal during the repetitions or eliminations, can be considerably reduced by the use of methods
based on the autocorrelation of the signal in order to optimize the length and location of signal portions to be
duplicated or destroyed [Lee72, Dat87, Lar93a, RW85, SK92, VR93].
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Chapter 2

Audio source separation

1 Introduction
Source separation is the art of estimating source signals, which are assumed statistically independent, from the
observation of one or several mixtures of these signals. It is useful in many audio signal processing tasks, including
denoising applications:

• separation of the instruments in polyphonic music;

• karaoke: remove the singer voice in music recordings;

• cocktail party problem: isolate the voice of the person you are speaking to from many other voices;

• suppression of vuvuzela in TV broadcasting of football matches during the 2010 FIFA world cup.

Besides, the separated audio tracks can be used for remixing purposes, possibly including transformations (e.g.
pitch shifting, time scaling, etc.) or re-spatialization of the separated audio sources.

1.1 Typology of the mixture models
Formally, the observed data is made of M mixture signals xm(t), concatenated in a vector x(t). The unknowns are
the K (possibly different from M) source signals sk(t), concatenated in a vector s(t).

The mixture is modeled as a functionA which transforms the source signals s(t) into the mixture signals x(t).
Generally, some simplifying assumptions are introduced regarding the mixture model [VVG18, chap. 1]:

• Stationarity: functionA is translation invariant.

• Linearity: functionA is a linear map.

• Memory:

– Transformations that are both stationary and linear can be modeled with convolution products in the
time domain (linear filtering).

– The memory of such transformations corresponds to the length of the impulse response.

– If there is no memory (i.e. the length is zero), the mixture is called instantaneous andA is characterized
by a mixing matrix A (of dimension M × K): x(t) = A s(t). Instantaneous mixture models are suitable
e.g. for some biomedical applications (electroencephalography (EEG) or magnetoencephalography
(MEG)), but generally not for audio applications, because of reverberation.

Depending on the respective values of M and K, the mixture may or may not be invertible:
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• If M = K, the mixture is called determined: it is generally invertible.

• If M > K, the mixture is called over-determined: a unique solution can be found in the least squares sense.

• If M < K, the mixture is called under-determined: there are infinitely many solutions. Without additional
information about the mixture or the source signals, it is impossible to retrieve the original sources from the
mixture signals.

1.2 Instantaneous linear mixtures

Examples of instantaneous linear mixtures are given in Figure 2.1:

• In a real audio environment, an approximately instantaneous linear mixture can be obtained with the X-Y
stereo recording technique, by putting two directional microphones at the same place, typically oriented at
90 degrees or more from each other (Figure 2.1-(a)). However the audio mixture obtained in this way is
never perfectly instantaneous.

• Otherwise, truly instantaneous linear mixtures can of course be created artificially by using a mixing deck
or a computer (Figure 2.1-(b)).

Figure 2.1: Instantaneous linear mixtures

1.3 Anechoic linear mixtures

Anechoic linear mixtures are a particular case of convolutive mixtures that can be recorded in an anechoic chamber:
because the sound reflections on the room walls are greatly attenuated, every impulse response is formed only of a
single pulse, characterized by its delay and its magnitude, which corresponds to the direct propagation path from
every source to every microphone (Figure 2.2).

1.4 Convolutive mixtures

In the general case, audio mixtures are convolutive: in a room, the sound waves are reflected on the walls, so
the impulse response is formed of infinitely many pulses, which correspond to the direct propagation path and
the various reflections, whose density grows quadratically with time. This phenomenon is called reverberation
(Figure 2.3-(a)). Convolutive mixtures can also be created artificially, e.g. to simulate a 3-D stereo sound sensation
for the listener using headphones (binaural mixture, illustrated in Figure 2.3-(b)).
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Figure 2.2: Anechoic linear mixtures

Figure 2.3: Convolutive mixtures

2 Mathematical reminders

Because most source separation techniques involve probabilistic models, we first start with some mathematical
reminders from probability theory and statistical signal processing.

2.1 Real random vectors

Let x ∈ RM denote a real random vector. In the rest of this document, we will use the following notation: φ[x]
(with square brackets) denotes a function of the distribution of the random vector x, whereas a random variable
defined as a function of x would be denoted ψ(x) (with parentheses). In particular, we will consider:

• the mean vector: µx = E[x] ∈ RM (where E denotes the mathematical expectation, a.k.a the expected value);

• the covariance matrix: Σxx = E[(x − µx)(x − µx)>] ∈ RM×M , which is always symmetric (i.e. Σ>xx = Σxx

where .> denotes the transpose of a matrix) and positive semi-definite (i.e. ∀v ∈ RM , v>Σxxv ≥ 0);

• the characteristic function: φx( f ) = E[e−2ıπ f>x] ∈ L∞(RM) (where L∞(RM) denotes the Lebesgue space of
essentially bounded functions on RM);

• when the inverse Fourier transform of φx is a measurable function on RM , p(x) =
∫
R
φx( f )e+2ıπ f>xd f is

called the Probability Density Function (PDF) of the random vector x.
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Some of the oldest source separation methods are based on the notion of cumulants. The cumulants of the
random vector x will be denoted κn

k1...kn
[x] ∈ R for all orders n ∈ N and entries ki ∈ {1 . . . M}, and they are defined

as the coefficients of the Taylor expansion of the cumulant generating function, which is the natural logarithm of
the characteristic function: when φx is an analytic function, we can write

ln(φx( f )) =

+∞∑

n=1

(−2ıπ)n

n!

M∑

k1=1

M∑

kn=1

κn
k1...kn

[x] fk1 . . . fkn .

The cumulants satisfy the following properties:

• ∀n ∈ N∗, κn[x] is an n-th order tensor of coefficients κn
k1...kn

[x];

• κ1[x] is the mean vector µx and κ2[x] is the covariance matrix Σxx;

• If the PDF p(x) is symmetric (p(−x) = p(x)), then κn[x] = 0 for any odd value n;

• The ratio between the fourth order cumulant κ4
k,k,k,k[x] and the squared variance (κ2

k,k[x])2 plays a special role
in independent component analysis (cf. Section 3.2). It is called the excess kurtosis.

2.2 Real Gaussian random vectors
Among all probability distributions with well-defined cumulants of all orders, the Gaussian distribution is the one
such that all cumulants of order n > 2 are zero. The characteristic function of a Gaussian random vector x ∈ RM

can thus be expressed as
φx( f ) = exp

(
−2ıπ f>µx − 2π2 f>Σxx f

)
.

When the covariance matrix Σxx is invertible, then the PDF is defined as:

p(x) =
1

(2π)
M
2 det(Σxx)

1
2

exp
(
−1

2
(x − µx)>Σ−1

xx (x − µx)
)
.

2.3 WSS vector processes
A discrete vector process is a sequence of random vectors x(t) ∈ RM indexed by time t ∈ Z. A second order vector
process is a discrete vector process with well-defined second order moments. Finally, a Wide Sense Stationary
(WSS) vector process x(t) is a second order vector process whose cumulants of orders 1 and 2 are invariant under
any translation of time:

• E[x(t)] = µx ∀t ∈ Z where µx ∈ RM is the mean vector of the vector process x(t);

• ∀t ∈ Z, E
[
(x(t + τ) − µx)(x(t) − µx)>

]
= Rxx(τ) , where ∀τ ∈ Z Rxx(τ) ∈ RM×M defines the autocovariance

function of the vector process x(t). When τ = 0, Rxx(0) = Σxx is the covariance matrix of the random vector
x(t) ∀t ∈ Z, and as such it is symmetric and positive semi-definite.

Finally, given two jointly WSS vector processes x(t) ∈ RM and y(t) ∈ RN of mean zero, we define their interco-
variance function Rxy(τ) ∈ RM×N :

∀τ ∈ Z, Rxy(τ) = E
[
x(t + τ)y(t)>

]
.

When the Discrete Time Fourier Transform (DTFT) of the autocovariance function Rxx(τ) of a WSS vector process
x(t) is a measurable function Sxx(ν) ∈ CM×M , this function is called the Power Spectral Density (PSD) of x(t):

∀ν ∈ R, Sxx(ν) =
∑

τ∈Z
Rxx(τ)e−2ıπντ.

The PSD is always periodic of period 1, and ∀ν ∈ R, matrix Sxx(ν) is always Hermitian symmetric (i.e. Sxx(ν)H =

Sxx(ν) where .H denotes the conjugate transpose of a matrix) and positive semi-definite (i.e. ∀v ∈ CM , vHSxx(ν)v ≥
0).
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2.4 Information theory
Information theory is a fundamental tool in blind source separation (cf. Section 3.1), because it makes it possible
to measure the amount of information shared between several random variables.

We first consider the notion of entropy, which measures the degree of uncertainty in a probability distri-
bution. For a discrete random variable x with probability distribution p, the Shannon entropy is defined as
H[x] = −E[ln(p(x))]. It is always a non-negative real number. The higher this number, the more "uncertain"
the outcome of x is. For a continuous random vector x ∈ RM with PDF p(x), the differential entropy is defined in
the same way: H[x] = −E[ln(p(x))]. However the differential entropy H[x] is not necessarily non-negative.

For continuous random vectors x ∈ RM , the Kullback-Leibler divergence measures the degree of dissimilarity
between two probability distributions characterized by their PDFs p and q:

DKL(p||q) =

∫

x∈RM
p(x) ln

(
p(x)
q(x)

)
dx.

As a divergence, it is always nonnegative, and DKL(p||q) = 0 if and only if p = q. However, the Kullback-Leibler
divergence is not a distance, because it is not symmetric (in general DKL(p||q) , DKL(q||p)), and it does not satisfy
the triangle inequality.

Finally, the mutual information measures the mutual dependence between several random variables. For in-
stance if x ∈ RM is a continuous random vector, then the mutual information between the entries of x is defined as:

I[x] = E

[
ln

(
p(x)

p(x1) . . . p(xM)

)]
= DKL(p(x)||p(x1) . . . p(xM)).

Since DKL is a divergence, I[x] is always nonnegative, and I[x] = 0 if and only if p(x) = p(x1) . . . p(xM), i.e.
if and only if the random variables x1 . . . xM are mutually independent. The mutual information is related to the
differential entropy through the equality

I[x] =


M∑

m=1

H[xm]

 − H[x]. (2.1)

In independent component analysis, the mutual information is an objective function to be minimized, in order to
make several random variables as independent as possible (cf. Section 3.2.2). Equation (2.1) shows that minimizing
I[x] is equivalent to minimizing the sum of the individual entropies H[xm] when the joint entropy H[x] is fixed.

3 Linear instantaneous mixtures
Even though we have seen in Section 1.2 page 24 that the linear instantaneous mixture model cannot accurately
represent real acoustic mixtures, the oldest separation techniques which paved the way for modern audio source
separation methods are based on this model. We thus first address this over-simplified mixture model, which
will permit us to introduce several useful concepts and methods, that will then be extended to the more realistic
convolutive mixture model in Section 4.

3.1 Blind source separation (BSS) model
Blind Source Separation (BSS) techniques [Car98] assume that we know very little about the source signals: they
are only assumed to be statistically independent. This is the case for instance in many denoising applications,
where the signal of interest (e.g. speech) is independent from the source of noise (e.g. background environmental
noise). This hypothesis is the funding principle of most multichannel source separation methods.

Actually, BSS methods also rely on a generative source model, but this model is chosen as little informative
as possible: the samples of each source signal are assumed Independent and Identically Distributed (IID). The
IID source model thus ignores any temporal dynamics (i.e. power variations over time), or spectral dynamics (i.e.
temporal correlations), that might be present in the source signals:
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Definition 1 (IID source model). We consider K independent source signals sk(t) ∈ R with t ∈ Z. For all k ∈
{1 . . .K}, sk is modeled as an IID random process: the samples sk(t) are independent random variables, of same
probability distribution pk (which depends on source k).

The possibility of performing source separation in such a blind way may seem to be an incredible feat. Actually,
the trick is that, contrary to the source model, the mixture model is very constraining: at first we will only consider
linear instantaneous mixtures, characterized by a mixing matrix A:

Definition 2 (Linear instantaneous mixture model). We consider K source signals sk(t) ∈ R with t ∈ Z. Then
the samples of the M mixture signals xm(t) ∈ R for m ∈ {1 . . . M} are defined as the entries of the M-dimensional
vector

x(t) = As(t), (2.2)

where A ∈ RM×K is called the mixing matrix, and s(t) is the K-dimensional vector of entries sk(t) for k ∈ {1 . . .K}.
Given the source model in Definition 1 and the mixture model in Definition 2, the purpose of BSS is to estimate

the source signals sk(t) given the observed mixture signals xm(t), without knowing the mixing matrix A. When the
mixture is determined (M = K) and matrix A is invertible, we will show that this is generally feasible.

3.1.1 Identifiability

Suppose that the mixture is determined (M = K) . Before investigating how source separation can be performed,
we first need to study the identifiability of the linear instantaneous BSS model: is it really possible to retrieve both
the source signals sk(t) and the mixing matrix A from only the observed mixture signals xm(t)?

Clearly, if P is a permutation matrix (i.e. it has a unique 1 entry in each row and each column, all other entries
being 0), then matrix Ã = A P−1 and vector s̃(t) = Ps(t) lead to the same observations x(t), while satisfying all the
properties of the linear instantaneous BSS model in Definitions 1 and 2. So the source signals can only be retrieved
up to a permutation: at best we can retrieve the source signals, but we cannot identify them.

In the same way, if D is an invertible diagonal matrix, then matrix Ã = A D−1 and vector s̃(t) = Ds(t) lead to
the same observations x(t), while satisfying all the properties of the linear instantaneous BSS model in Definitions 1
and 2. Therefore the source signals can only be retrieved up to a multiplicative factor (which in most applications
is not a problem: e.g. audio signals are generally scaled during playback).

So the linear instantaneous BSS model in Definitions 1 and 2 has at least permutation and scale indetermi-
nacies. Actually, it can be proved that there is no other one. These two indeterminacies are summarized by the
concept of non-mixing matrices:

Definition 3 (Non-mixing matrix). A matrix C ∈ RK×K is non-mixing if and only if it has a unique non-zero entry
in each row and each column.

A non-mixing matrix can always be decomposed as the product of a permutation matrix and an invertible
diagonal matrix.

3.1.2 Linear separation of sources

When the mixture is linear instantaneous, it may seem natural to estimate the source signals as linear instantaneous
combinations of the mixture signals:

y(t) = Bx(t), (2.3)

where the entries of vector y(t) are the source signal estimates, and B ∈ RK×M is referred to as the separation
matrix. Then the source separation problem amounts to finding an optimal separation matrix.

Linear source separation is generally feasible in the case of determined and over-determined mixtures:

• if M = K and if matrix A is invertible, then the separation matrix B = A−1 leads to y(t) = s(t);

• more generally, if M ≥ K and if matrix A has full rank, then the separation matrix B = A† leads to y(t) = s(t),
where .† denotes the matrix the pseudo-inverse: A† = (A>A)−1 A>, which is such that A†A = IK .

However, in the under-determined case (M < K), linear source separation is generally not feasible (cf. Section 5).
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3.2 Independent component analysis (ICA)
Independent Component Analysis (ICA) [CJ10] is a linear source separation technique which consists in looking
for a separation matrix B that makes the signals yk(t) independent.

Since x(t) = As(t) (equation (2.2)) and y(t) = Bx(t) (equation (2.3)), we have y(t) = Cs(t) with C = BA.
According to the identifiability analysis in Section 3.1.1, the BSS problem is solved if and only if matrix C is
non-mixing (cf. Figure 2.4).

s(t)x(t)y(t)

C

s(t)y(t)

AB

m

Figure 2.4: Identifiability theorem: signals yk(t) are independent if and only if matrix C = BA is non-mixing

The following identifiability theorem due to P. Comon [Com94] proves the feasibility of ICA under mild
conditions about the source signals:

Theorem 1 (Identifiability theorem). Consider the linear instantaneous BSS model in Definitions 1 and 2 in the
determined case (M = K). Among the K IID sources sk, suppose that at most one is Gaussian-distributed. Let
C ∈ RK×K and ∀t ∈ Z, y(t) = Cs(t). Then the random processes yk(t) for k ∈ {1 . . .K} are independent if and only
if matrix C is non-mixing.

Theorem 1 proves that finding a separation matrix B that makes signals yk(t) independent solves the BSS prob-
lem: the estimated signals yk(t) are equal to the source signals sk(t) up to permutation and scale indeterminacies.

Here, pay attention to the non-Gaussianity assumption in Theorem 1: in Section 3.2.1, we will show that
indeed, if two (or more) sources are Gaussian, then the BSS problem cannot be solved.

3.2.1 Whitening

Independent component analysis can be performed in two steps; the first one consists in whitening1, i.e. decor-
relating the observed mixture signals. Remember that independence implies decorrelation, but decorrelation does
generally not imply independence. Therefore the second step will consist in making the whitened signals indepen-
dent.

To simplify the problem, we will address the case of determined mixtures M = K (even though whitening
could also be performed in the over-determined case M > K), and we will assume that matrix A is invertible and
that the source signals are centered: E[s(t)] = 0 (which is always the case of audio signals).

To further simplify, we will focus on the canonical BSS problem: without loss of generality, we will assume
that the random vectors s(t) are spatially white, i.e. their covariance matrix is Σss = E[s(t)s(t)>] = IK . Indeed,
since the source signals are independent, we already know that matrix Σss is diagonal; since in addition the source

1Whitening is performed in the spatial domain, i.e. over channels, not in the time domain, i.e. over time samples.

Roland Badeau roland.badeau@telecom-paris.fr

Contexte académique } sans modifications
Voir Page 88 29/88



Audio signal analysis, indexing and transformation

signals can only be retrieved up to a multiplicative factor, we can also assume without loss of generality that the
diagonal entries of matrix Σss are 1.

Since x(t) = As(t) (equation (2.2)), the covariance matrix of the mixture vectors x(t) is Σxx = AΣss A> = A A>:
we say that A is a matrix square root of Σxx. This property is interesting because Σxx can be estimated from the
observed data, and it carries information about the mixing matrix A. Unfortunately, we will see that this property
is not sufficient to fully characterize A. Nevertheless, it allows us to make a first step towards the estimation of A.
For the moment, just note that since matrix A is invertible, matrix Σxx is also invertible, thus positive definite.

The whitening of the mixture signals can then be performed as follows [CS93]:

• Since matrix Σxx is positive definite, the spectral theorem in matrix theory shows us that it is diagonalizable
in an orthonormal basis: there is an orthonormal matrix Q ∈ RK×K (i.e. such that Q−1 = Q>), and a diagonal
matrix Λ ∈ RK×K with positive diagonal entries, such that

Σxx = QΛ2Q>. (2.4)

• Then let S = QΛ ∈ RK×K ; matrix S is also a matrix square root of Σxx, since S S> = QΛ2Q> = Σxx.

• Finally, let
W = S−1 (2.5)

and
∀t ∈ Z, z(t) = Wx(t). (2.6)

Then the random vector process z(t) is spatially white, in the sense that on the one hand it is centered: E[z(t)] = 0
(since z(t) = W As(t) and E[s(t)] = 0), and on the other hand its covariance matrix isΣzz = WΣxxW> = WSS>W> =

IK). Matrix W will thus be referred to as the whitening matrix and z(t) is the whitened data.
Then let us define matrix U = W A. We have UU> = W AA>W> = WΣxxW> = IK , therefore U is an

orthonormal matrix. In particular, | det(U)| = 1: if det(U) = 1, U is a rotation matrix, otherwise if det(U) = −1,
U is a reflection matrix. However, remember that the source signals can only be retrieved up to a multiplicative
factor, which might as well be negative. Therefore, by changing the sign of the k-th source signal sk(t), the product
As(t) is left unchanged by changing the sign of the k-th column of matrix A, which changes the sign of det(U).
Therefore, without loss of generality, we can assume that U is a rotation matrix (det(U) = 1).

Finally, let
y(t) = U> z(t). (2.7)

Then y(t) = U>Wx(t) = (W A)−1W(As(t)) = s(t). Therefore matrix B = U>W is a separation matrix. In practice
of course, matrix A is unknown, thus so is matrix U. But it remains that ICA can be performed in two steps (cf.
Figure 2.5):

Step 1 : compute the whitening matrix W and the whitened data z(t) from an estimate of the covariance matrix Σxx;

Step 2 : look for a rotation matrix U such that the entries of vector y(t) = U> z(t) are independent.

To summarize, the whiteness property (based on second order cumulants) determines matrix W and leaves the
rotation matrix U unknown.

Note that in the Gaussian case, decorrelation implies independence. Therefore if the source signals are
Gaussian-distributed, then the whitened signals zk(t) are independent, and U cannot be determined. This explains
the assumption made in Theorem 1 page 29 that at most one source can be Gaussian-distributed (if they are two of
them, they cannot be separated).

Therefore if we want to determine rotation U, we will need to explicitly exploit the non-Gaussianity of the
source signals. To do so, we will characterize the independence property by using cumulants of order greater
than 2 [CS93].
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x(t)z(t)y(t)

B

x(t)y(t)

WUT

m

Figure 2.5: Pre-whitening for independent component analysis: B = U>W where U is a rotation matrix

3.2.2 Contrast functions

In Section 2.4, we have introduced the concept of mutual information: the mutual information between several
random variables is always non-negative, and it is zero if and only if these random variables are independent.
Therefore the mutual information between the entries of vector y(t) can be used as an objective function to be
minimized in order to perform ICA.

More generally, the concept of contrast functions has been introduced in order to formulate ICA as an optimiza-
tion problem, the mutual information being only one example of such functions. Formally, still in the determined
case (M = K), Theorem 1 leads to the following definition of contrast functions [Car98]:

Definition 4 (Contrast function). For all k ∈ {1 . . .K}, we consider source signals sk(t) as defined in Definition 1.
Then a function φ : RK → R is a contrast function when φ[Cs(t)] ≥ φ[s(t)] for any matrix C ∈ RK×K , and
φ[Cs(t)] = φ[s(t)] if and only if matrix C is non-mixing.

Following Definition 4 and considering linear instantaneous mixtures x(t) = As(t) (equation (2.2)) as in Def-
inition 2 page 28, linear source separation y(t) = Bx(t) (equation (2.3) page 28), and matrix C = BA, the BSS
problem is solved by minimizing the contrast function φ[y(t)] with respect to (w.r.t.) the separation matrix B,
or w.r.t. the rotation matrix U if the data has been whitened. Among all possible contrast functions, the mutual
information φIM[y(t)] = I[y(t)] is considered as the canonical contrast function.

If the observed data has already been whitened, it is possible to consider only orthogonal contrast functions,
which are such that ICA is performed by minimizing an orthogonal contrast function subject to the constraint
E[y(t)y(t)>] = IK . For instance, by using equation (2.1) page 27, it can be shown that an orthogonal contrast
function associated to the mutual information is φ◦IM[y(t)] =

∑K
k=1 H(yk(t)), because H(y(t)) is left unchanged

under the constraint E[y(t)y(t)>] = IK .
In practice, the orthogonal contrast function φ◦IM can be expressed as a function of the cumulants of y(t), and

approximated by considering only the cumulants up to order 4 [CS93]:

φ◦ICA[y(t)] =
∑

i jkl,iiii

(κ4
i jkl[y(t)])2. (2.8)

Then the minimization of φ◦ICA with respect to the rotation matrix U can e.g. be performed by factorizing U
as a product of Givens rotations (i.e. 2-dimensional rotation matrices parameterized by a single angle in [0, 2π],
which are applied iteratively to every pair of entries of vector y(t)), and by performing a coordinate descent, also
known as (a.k.a.) Jacobi technique, w.r.t. the angles of these Givens rotations [CJ10].
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Compared to equation (2.8), the independence can also be tested on a smaller subset of cumulants, as

φ◦JADE[y(t)] =
∑

i jkl,i jkk

(κ4
i jkl[y(t)])2. (2.9)

The motivation for using this specific subset is that φ◦JADE[y(t)] can also be seen as a joint diagonalization criterion2.
This approach leads to the celebrated Joint Approximate Diagonalization of Eigenmatrices (JADE) method [CS93]
summarized in Algorithm 1.

Algorithm 1 JADE method

Estimation of the covariance matrix Σxx and diagonalization: Σxx = QΛ2Q> (equation (2.4))
Computation of S = QΛ and of the whitening matrix W = S−1 (equation (2.5))
Data whitening: z(t) = Wx(t) (equation (2.6))
Estimation of U by minimizing the contrast function φ◦JADE in equation (2.9)
Estimation of source signals via y(t) = U> z(t) (equation (2.7))

3.3 Second order methods
The JADE method is dedicated to the linear instantaneous BSS model in Definitions 1 and 2 page 28. It makes
use of higher order statistics (i.e. of order greater than 2), because the identifiability of the model requires that
at most one source signal be Gaussian distributed (cf. Theorem 1 page 29). However, it is well known that the
estimating higher order statistics is more sensitive (e.g. in terms of mean square error) than estimating second order
statistics. Therefore it would be interesting to develop source separation methods that only make use of second
order statistics. That will require to relax the source model in Definition 1, so that the model become identifiable
from its second order statistics only. In Sections 3.3.1 and 3.3.2, we will show two different ways of relaxing the
source model.

3.3.1 Temporal coherence of source signals

In this section, we keep the same mixture model as in Definition 2, and we consider the source model in Definition 1
in the determined case (M = K), except that each source signal sk(t) is no longer assumed to be IID, but rather
WSS, with a non-flat power spectral density. Therefore, as in Definition 1, the samples sk(t) for t ∈ Z can still
follow the same distribution pk, but now they are assumed to be mutually dependent (the source model is relaxed
by removing the first "I" of "IID"):

Definition 5 (WSS source model). We consider K independent source signals sk(t) ∈ R with t ∈ Z, concatenated
in a vector s(t). For all k ∈ {1 . . .K}, sk is modeled as a centered WSS random process. So s(t) is a WSS vector
process of mean E[s(t)] = 0 and of autocovariance function Rss(τ) = E

[
s(t + τ)s(t)>

]
.

Since the source signals are independent, ∀τ ∈ Z the covariance matrix Rss(τ) is diagonal: Rss(τ) = diag(rsk (τ)),
where rsk (τ) ∈ R is the autocovariance function of the scalar WSS process sk(t), and diag(.) denotes a diagonal
matrix formed from a vector of diagonal coefficients.

As in Section 3.2.1 page 29, we can still consider the canonical BSS problem and assume that Σss = Rss(0) =

IK . Then, still as in Section 3.2.1, we can spatially whiten the mixture signals:

• compute a matrix square root S of Σxx;

• compute W = S−1 and the whitened data z(t) = Wx(t) ∀t ∈ Z.

Again, since Σxx = A A>, matrix U = W A is a rotation matrix. The novelty, compared with the mathematical
developments in Section 3.2.1, is that we can now consider matrices Rzz(τ) ∀τ ∈ Z, since they are no longer

2Joint diagonalization of matrices will be addressed in Section 3.3.1.
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assumed to be zero. On the contrary, we have ∀τ ∈ Z, Rzz(τ) = WRxx(τ)W> = W ARss(τ)A>W> = URss(τ)U>.
This equation shows that matrices Rzz(τ) are jointly diagonalized by the same set of eigenvectors, which are the
columns of matrix U, the eigenvalues being the diagonal entries of matrices Rss(τ).

Therefore the estimation of matrix U will no longer require the use of higher order statistics: U can be uniquely
determined as the only rotation matrix (up to a non-mixing matrix) that jointly diagonalizes matrices Rzz(τ) for
different values of τ, as shown by the following theorem:

Theorem 2 (Unicity theorem). Let us consider a set of matrices Rzz(τ) ∈ RK×K indexed by τ ∈ Z, of the form
Rzz(τ) = URss(τ)U>, where matrix U ∈ RK×K is orthonormal and matrices Rss(τ) ∈ RK×K are diagonal: Rss(τ) =

diag(rsk (τ)). Then U is unique (up to a non-mixing matrix) if and only if ∀k , l ∈ {1 . . .K}, there is τ ∈ Z such that
rsk (τ) , rsl (τ).

In order to compute matrix U, we can thus use any joint diagonalization method [CS96]. For instance, we can
numerically minimize the following objective function:

J(U) =
∑

τ

‖U>Rzz(τ)U − diag(U>Rzz(τ)U)‖2F (2.10)

where ‖.‖F denotes the Frobenius norm of a matrix (i.e. the Euclidean norm of a vector made of all its entries) and
diag(.) denotes a diagonal matrix formed from a matrix with same diagonal entries. The criterion J(U) is zero if
and only if all matrices U>Rzz(τ)U are diagonal.

As in Section 3.2.2 page 31, this minimization can be performed by factorizing U as a product of Givens
rotations, and by performing a coordinate descent w.r.t. the angles of these Givens rotations [CJ10]. The resulting
BSS method is known as the Second Order Blind Identification (SOBI) technique [BAMCM97], and summarized
in Algorithm 2.

Algorithm 2 SOBI method for WSS sources

Estimation of the covariance matrix Σxx and diagonalization: Σxx = QΛ2Q> (equation (2.4))
Computation of S = QΛ and of the whitening matrix W = S−1 (equation (2.5))
Data whitening: z(t) = Wx(t) (equation (2.6))
Estimation of covariance matrices Rzz(τ) for various delays τ
Approximate joint diagonalization of matrices Rzz(τ) in a common basis U by minimizing (2.10)
Estimation of source signals via y(t) = U> z(t) (equation (2.7))

3.3.2 Non-stationarity of source signals

In this section, we keep the same mixture model as in Definition 2, and we consider the source model in Definition 1
in the determined case (M = K), except that each source signal sk(t) is no longer assumed to be IID, but rather
non-stationary. More precisely, as in Definition 1, the samples sk(t) for t ∈ Z can still be assumed independent, but
now they no longer follow the same distribution pk (the source model is relaxed by removing the last letters "ID"
of "IID"):

Definition 6 (Non-stationary source model). We consider K independent source signals sk(t) ∈ R with t ∈ Z,
concatenated in a vector s(t). For all k ∈ {1 . . .K}, sk is modeled as a centered random process with uncorrelated
samples sk(t) for t ∈ Z, of time-varying variance σ2

k(t). So s(t) is a random vector process of mean E[s(t)] = 0 and
of time-varying covariance matrix Σss(t) = E

[
s(t)s(t)>

]
.

Since the source signals are independent, ∀t ∈ Z matrix Σss(t) is diagonal: Σss(t) = diag(σ2
k(t)).

Then, still as in Section 3.2.1 page 29, we can spatially whiten the mixture signals:

• compute a matrix square root S of Σxx =
∑

t Σxx(t);

• compute W = S−1 and the whitened data z(t) = Wx(t) ∀t ∈ Z.
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Again, as in Section 3.2.1 we can consider a canonical BSS problem and assume Σxx = A A>, therefore matrix
U = W A is a rotation matrix.

Then if we consider the covariance matrices of the whitened data: ∀t ∈ Z, Σzz(t) = E
[
z(t)z(t)>

]
, we get ∀t ∈ Z,

Σzz(t) = WΣxx(t)W> = W AΣss(t)A>W> = UΣss(t)U>. Therefore, as in Section 3.3.1, matrix U can be determined
by solving a joint diagonalization problem [CS96], e.g. by minimizing the following objective function:

J(U) =
∑

t

‖UΣzz(t)U> − diag(UΣzz(t)U>)‖2F . (2.11)

We thus get a variant of the SOBI algorithm [BAMCM97], summarized in Algorithm 3.

Algorithm 3 SOBI method for non-stationary sources

Estimation of the covariance matrix Σxx and diagonalization: Σxx = QΛ2Q> (equation (2.4))
Computation of S = QΛ and of the whitening matrix W = S−1 (equation (2.5))
Data whitening: z(t) = Wx(t) (equation (2.6))
Segmentation of whitened data and estimation of covariance matrices Σzz(t) on the different time frames
Approximate joint diagonalization of matrices Σzz(t) in a common basis U by minimizing (2.11)
Estimation of source signals via y(t) = U> z(t) (equation (2.7))

3.4 Time-frequency methods
So far, we have seen that:

• the use of higher order cumulants is only necessary for the non-Gaussian IID source model in Definition 1;

• second order statistics are sufficient for separating source signals that are:

– either WSS but not IID, as in Definition 5, which amounts to exploit their spectral dynamics (through
the autocovariance function Rss(τ));

– or uncorrelated but not stationary, as in Definition 6, which amounts to exploit their temporal dynamics
(through the time-varying covariance matrices Σss(t)).

The take-home message is that classical signal processing tools based on second order statistics are appropriate
for performing blind separation of independent (and possibly Gaussian) sources, provided that the spectral and/or
temporal source dynamics are taken into account.

However, a very simple way of highlighting the spectral and temporal dynamics of a signal is to use a Time-
Frequency (TF) representation. In this section, we will show how TF representations allow us to easily perform
source separation of determined linear instantaneous mixtures. Then in Sections 4 and 5, we will see that TF
representations reveal their full potential when processing convolutive and/or under-determined mixtures.

3.4.1 Time-frequency representations

Here we use the expression time-frequency representation to refer to complex or real-valued linear time-frequency
transforms that can be implemented by means of perfect-reconstruction filterbanks [Vai93]. Classical examples of
perfect reconstruction filterbanks include the STFT (which is complex-valued) and the Modified Discrete Cosine
Transform (MDCT) (which is real-valued) [VVG18, chap. 2].

Every mixture signal xm(t) is thus filtered by F analysis filters h f corresponding to each frequency channel
f ∈ {1 . . . F}. The output signals are decimated by a factor T ≤ F to produce the F sub-band signals:

xm( f , n) = (h f ∗ xm)(nT ), (2.12)

where n ∈ Z is the time frame index and T is the hop-size.
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Since we consider perfect-reconstruction filterbanks, we assume that there exist F synthesis filters g f so that
every signal xm(t) can be perfectly reconstructed from the sub-band signals: xm(t) =

∑F
f =1 g f (t − nT )xm( f , n).

In the same way, the source signals are decomposed in F sub-band signals sk( f , n) = (h f ∗ sk)(nT ) and recon-
structed as

sk(t) =

F∑

f =1

∑

n∈Z
g f (t − nT )sk( f , n). (2.13)

An interesting property of such a time-frequency representation is that it leaves the linear instantaneous mixture
model in Definition 2 page 28 unchanged: if x( f , n) ∈ CM (resp. s( f , n) ∈ CK) denotes the vector of coefficients
xm( f , n) (resp. sk( f , n)), then the equality x(t) = A s(t) ∀t ∈ Z is equivalent to

∀ f ∈ {1 . . . F},∀n ∈ Z, x( f , n) = A s( f , n). (2.14)

Indeed, if am,k denotes the entries of the mixing matrix A, we have ∀m ∈ {1 . . . M},

xm( f , n) = (h f ∗ xm)(nT ) =

h f ∗
K∑

k=1

am,k sk

 (nT ) =

K∑

k=1

am,k(h f ∗ sk)(nT ) =

K∑

k=1

am,k sk( f , n).

3.4.2 Time-frequency source model

Let us now introduce a general non-stationary source model. As usual we assume that the K sub-band source
signals sk( f , n) are centered and independent.

In Section 3.3.1 page 32, we have presented the SOBI BSS method, that exploits the spectral dynamics of
the source signals, by modeling them as WSS processes. Remember that the well-known spectral representation
theorem of WSS processes [BD87] shows that the Fourier transforms of WSS processes are formed of uncorrelated
random elements whose variances vary over frequency.

In a similar way, in Section 3.3.2 page 33, we have presented a variant of the SOBI method, that exploits the
temporal dynamics of the source signals, by modeling them as sequences of uncorrelated random variables whose
variances vary over time.

Now, the use of a time-frequency representation allows use to jointly exploit the spectral and the temporal
dynamics, just by modeling the samples of the sub-band source signals sk( f , n) for f ∈ {1 . . . F} and n ∈ Z as
uncorrelated random variables whose variance σ2

k( f , n) depends both on the frequency channel f and the time
frame n:

Definition 7 (Non-stationary TF source model). We consider K independent source signals sk(t) ∈ Rwith t ∈ Z and
their TF representations sk( f , n) as defined in Section 3.4.1, concatenated in a vector s( f , n). For all k ∈ {1 . . .K},
the sub-band source signals sk( f , n) for f ∈ {1 . . . F} and n ∈ Z are modeled as uncorrelated random variables
of mean 0 and whose variance σ2

k( f , n) depends both on f and n. So s( f , n) is a random vector process of mean
E[s( f , n)] = 0 and of TF-varying covariance matrix Σss( f , n) = E

[
s( f , n)s( f , n)H

]
.

3.4.3 Separation method

This leads us to a new variant of the SOBI method in the determined case (M = K), based on the TF source model in
Definition 7. Let us define the mixture covariance matrices Σxx( f , n) = E[x( f , n)x( f , n)H]. Since x( f , n) = A s( f , n)
(equation (2.14)), we have Σxx( f , n) = AΣss( f , n)A>. Moreover, since the source signals are independent, matrix
Σss( f , n) is diagonal: Σss( f , n) = diag(σ2

k( f , n)).
Then, as in Section 3.2.1 page 29, we can spatially whiten the mixture signals:

• compute a matrix square root S of Σxx =
∑

f ,n Σxx( f , n);

• compute W = S−1 and the whitened data

∀ f ∈ {1 . . . F},∀n ∈ Z, z( f , n) = Wx( f , n). (2.15)
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Again, as in Section 3.2.1 we can consider a canonical BSS problem and assume Σxx = A A>, therefore matrix
U = W A is a rotation matrix.

Then if we consider the covariance matrices of the whitened data: ∀ f , n, Σzz( f , n) = E
[
z( f , n)z( f , n)H

]
, we

get Σzz( f , n) = WΣxx( f , n)WH = W AΣss( f , n)AHWH = UΣss( f , n)UH . Therefore, as in Section 3.3.1 page 32,
matrix U can be determined by solving a joint diagonalization problem [CS96], e.g. by minimizing the following
objective function:

J(U) =
∑

f ,n

‖UΣzz( f , n)UH − diag(UΣzz( f , n)UH)‖2F . (2.16)

Finally, the source sub-band signals can be estimated as

y( f , n) = U> z( f , n). (2.17)

We thus get a variant of the SOBI algorithm [BAMCM97], summarized in Algorithm 4.

Algorithm 4 SOBI method in the TF domain
TF analysis of mixture signals: xm( f , n) = (h f ∗ xm)(nT ) (equation (2.12))
Estimation of the covariance matrix Σxx and diagonalization: Σxx = QΛ2QH (equation (2.4))
Computation of S = QΛ and of the whitening matrix W = S−1 (equation (2.5))
Data whitening: z( f , n) = Wx( f , n) (equation (2.15))
Estimation of covariance matrices Σzz( f , n) on all time-frequency bins
Approximate joint diagonalization of matrices Σzz( f , n) in a common basis U by minimizing (2.16)
Estimation of source signals via y( f , n) = UH z( f , n) (equation (2.17))
TF synthesis of source signals: yk(t) =

∑F
f =1

∑
n∈Z g f (t − nT )yk( f , n) (equation (2.13))

4 Convolutive mixtures
As already mentioned in Section 1.2 page 24, linear instantaneous mixtures cannot accurately model real acoustic
mixtures, since reverberation in a room involves convolutive effects. For this reason, we now address the extension
of the BSS methods presented in Section 3 page 27 to convolutive mixtures.

4.1 Source images
First, suppose that K source signals sk(t) are simultaneously emitted in a room, and that M microphones receive
the observed data vector x(t) ∈ RM . The raw source separation problem would consist in estimating the image
of each source k, i.e. the data vector xk(t) ∈ RM that would be received by the M microphones if only source k
was active. These images are such that x( f , n) =

∑K
k=1 xk( f , n). Then the task that consists in estimating the scalar

source signals sk(t) from each vector image xk(t) is called deconvolution or dereverberation.
In this way, the source separation problem is decomposed in two steps:

• separation: estimate the image xk( f , n) from the mixture x( f , n)

• deconvolution: estimate the source signal sk( f , n) from xk( f , n)

4.2 Convolutive mixture model
Let us now introduce the convolutive mixture model in the time domain:

Definition 8 (Convolutive mixture model). We consider K source signals sk(t) ∈ R with t ∈ Z, concatenated in a
vector s(t). The samples of the M mixture signals xm(t) ∈ R for m ∈ {1 . . . M} are then defined as

xm(t) =

K∑

k=1

(amk ∗ sk)(t).
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where ∀k ∈ {1 . . .K}, ∀m ∈ {1 . . . M}, amk is the impulse response of a stable3 filter. In vector form, we will write
x(t) = A ∗ s(t) where A is an M ×K matrix of stable impulse responses amk, and ∗ denotes the convolution product
between a sequence of matrices and a sequence of vectors.

The following identifiability theorem [NTJ95] generalizes Theorem 1 page 29 to the convolutive case: it proves
the feasibility of ICA under mild conditions about the source signals:

Theorem 3 (Identifiability theorem). Consider the source model in Definition 1, with the convolutive mixture
model in Definition 8 in the determined case (M = K). Among the K IID sources sk, suppose that at most one is
Gaussian-distributed. Let C be a K × K matrix of stable impulse responses, and ∀t ∈ Z, y(t) = C ∗ s(t). Then the
random processes yk(t) for k ∈ {1 . . .K} are independent if and only if matrix C is non-mixing.

Theorem 3 shows that the source signals can be retrieved up to an unknown permutation and an unknown scale
factor.

4.3 Time-frequency approach

In order to simplify the problem and to make it possible to reuse the source separation methods introduced in
Section 3, let us now rewrite the mixture model in Definition 8 in the time-frequency domain. More precisely,
signals will be represented by their STFT, using the filterbank notation introduced in Section 3.4.1 page 34.

Moreover, we will consider the narrow-band approximation: we will assume that the impulse response of each
mixing filter amk is short w.r.t. the time frame length of the STFT 4. As a consequence, the spectral variations of the
frequency responses Amk(ν) are slow compared to those of H f (ν) ∀ f ∈ {1 . . . F}. Since h f is a very narrow band-
pass filter, we will even assume that Amk(ν) is approximately constant in the pass-band of H f (ν) (see Figure 2.6).
Consequently, we can make the approximation H f (ν) Amk(ν) ≈ H f (ν) amk( f ), where amk( f ) is the average value
of Amk(ν) in frequency channel f . Back in the time domain, this approximation can be rewritten (h f ∗ amk)(t) ≈
amk( f ) h f (t).

ν

Hf (ν)

Amk(ν)

amk(f)

Figure 2.6: Narrow-band approximation

3Stability is defined in the bounded-input, bounded-output (BIBO) sense: if the input signal is bounded, then the output signal is also
bounded.

4Note that this assumption is not realistic: the length of the impulse response amk corresponds to the reverberation time, which is usually
several hundreds of miliseconds, while the typical time frame length in an STFT is a few tens of miliseconds. Nevertheless, this approximation
is often used in audio source separation methods because it leads to a very simple mixture model in the TF domain (cf. Definition 9), which
proves to perform well in various applications [OF10].
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If we now consider the STFT of the m-th mixture signal, we get

xm( f , n) = (h f ∗ xm)(nT )
=

(
h f ∗

(∑K
k=1 amk ∗ sk

))
(nT )

=
(∑K

k=1

(
h f ∗ amk

)
∗ sk

)
(nT )

≈ ∑K
k=1 amk( f )

(
h f ∗ sk

)
(nT )

=
∑K

k=1 amk( f )sk( f , n).

Hence the following approximate convolutive mixture model in the time-frequency domain:

Definition 9 (TF mixture model). We consider K source signals sk(t) ∈ R with t ∈ Z and their TF representations
sk( f , n) as defined in Section 3.4.1, concatenated in a vector s( f , n). For all m ∈ {1 . . . M}, the sub-band mixture
signals xm( f , n) for f ∈ {1 . . . F} and n ∈ Z are then defined as

xm( f , n) =

K∑

k=1

amk( f )sk( f , n),

or in matrix form,
x( f , n) = A( f )s( f , n), (2.18)

where A( f ) ∈ CM×K is the matrix of entries amk.

It can be noted that in each frequency channel f , (2.18) is a linear instantaneous mixture model (to be compared
to equation (2.2) page 28), parameterized by the mixing matrix A( f ). Therefore we are tempted to apply any
ICA method designed for the linear instantaneous mixture model, such as those described in Section 3, in every
frequency channel of the STFT, in order to estimate the sub-band signals sk( f , n).

4.4 Independent component analysis
As in Section 3.1.2 page 28, it may seem natural to estimate the sub-band source signals as linear instantaneous
combinations of the sub-band mixture signals: y( f , n) = B( f ) x( f , n), where the entries of vector y( f , n) are the
sub-band source signal estimates, and B( f ) ∈ CK×M is referred to as the separation matrix. Then the source
separation problem amounts to finding an optimal separation matrix.

Linear source separation is generally feasible in the case of determined and over-determined mixtures:

• if M = K and if matrix A( f ) is invertible, then the separation matrix B( f ) = A( f )−1 leads to y( f , n) = s( f , n);

• more generally, if M ≥ K and if matrix A( f ) has full rank, then the separation matrix B( f ) = A( f )† leads to
y( f , n) = s( f , n).

However, in the under-determined case (M < K), linear source separation is generally not feasible (cf. Section 5).
In the determined case (M = K), independent component analysis [CJ10] can be applied in each frequency

channel f . It aims to find a separation matrix B( f ) that makes the K sub-band signals yk( f , n) independent. Then,
as in Section 3.2 page 29, we get y( f , n) = C( f )s( f , n), where C( f ) = B( f )A( f ) is a non-mixing matrix (cf.
Definition 3 page 28).

4.5 Indeterminacies
While the indeterminacies induced by the non-mixing matrix C were acceptable when we were considering linear
instantaneous mixtures in Section 3, we now encounter an unexpected issue, because with the TF mixture model
in Definition 9, there are F possibly different non-mixing matrices C( f ). The problem is that, for instance, the
permutations can be different in two different frequency channels f . If we choose to ignore that, and to just
reconstruct the source signals yk(t) from the separated sub-band signals yk( f , n) with the synthesis filters g f , it is
very likely that the resulting signals yk(t) will be formed of different sources sk in different frequency channels.
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In other words, reconstructing the source signals from the separated sub-band signals would amount to remix the
estimated sources!

In order to avoid this problem, we need to solve the permutation indeterminacy in the frequency channels of the
STFT. Note that this multiple permutation issue is inherent to the time-frequency approach and to the narrow-band
approximation introduced in Section 4.3: if BSS was performed in the time domain instead, Theorem 3 page 37
proves that all sources can theoretically be retrieved up to a unique permutation.

Even though, assuming that we do have a method that allows us to solve the multiple permutation indetermi-
nacy, the other indeterminacy remains: there is an unknown multiplicative factor associated to each source in each
frequency channel f .

Actually, both kinds of indeterminacies can be solved jointly, by introducing additional assumptions about the
mixing filters amk and/or the source signals sk:

• regarding the source signals, we can assume that the temporal dynamics (over n) of σ2
k( f , n) are similar

between different frequency channels f for a same source k (nonparametric approach), or we can also exploit
a parametric model, such as the Nonnegative Matrix Factorization (NMF) [VVG18, chap. 8] [OF10].

• regarding the mixing filters, we can assume that their frequency responses amk( f ) are slowly varying w.r.t. f
(nonparametric approach), or we can also exploit a parametric mixture model, such as the beamforming
model or the anechoic model. The beamforming model [VVG18, chap. 10] relies on the plane wave and far
field hypotheses (no reverberation) and assumes that the microphone antenna is linear. In this case, we get
amk( f ) = e−2ıπ f τmk where τmk = dm

c sin(θk), where parameters dm denote the positions of the sensors on the
linear antenna and parameters θk denote the angles of the sources (see Figure 2.7). The anechoic model is a
bit more general: it assumes that the sources are punctual and that there is no reverberation. In this case, we
get amk( f ) = αmke−2ıπ f τmk where αmk = 1√

4πrmk
, τmk = rmk

c , and parameters rmk denote the distances between
the sensors and sources. In practice, none of these two mixture models is able to accurately represent real
acoustic mixtures; nevertheless they can be helpful to solve the multiple permutation problem.

d1 d2 d3θ1 θ2

k = 1

k = 2

m = 1 m = 2 m = 3

Figure 2.7: Beamforming mixture model
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5 Under-determined mixtures

As mentioned in Section 1.1 page 23, linear source separation is generally not feasible in the under-determined
case, because there are infinitely many solutions. Without additional information about the mixture or the source
signals, it is impossible to retrieve the original sources from the mixture signals.

Unfortunately, the under-determined case is often encountered in audio signal processing: indeed, many audio
signals are either monophonic (M = 1) or stereophonic (M = 2), whereas the number of sources K is generally
greater than 2. In this section, we will see how additional information can be taken into account to perform source
separation in such a challenging scenario.

5.1 Under-determined convolutive mixtures

We still consider the TF mixture model in Definition 9 page 38 : x( f , n) = A( f )s( f , n) (equation (2.18)), and the
TF source model in Definition 7 page 35: the samples of the sub-band source signals sk( f , n) for f ∈ {1 . . . F} and
n ∈ Z are uncorrelated random variables whose variance σ2

k( f , n) depends both on the frequency channel f and the
time frame n, so that the covariance matrix of s( f , n) is Σss( f , n) = diag(σ2

k( f , n)).
As in Section 4.4 page 38, it may seem natural to estimate the sub-band source signals as linear instantaneous

combinations of the sub-band mixture signals: y( f , n) = B( f ) x( f , n), where the entries of vector y( f , n) are the
sub-band source signal estimates, and B( f ) ∈ CK×M is referred to as the separation matrix. Then the source
separation problem amounts to finding an optimal separation matrix.

However if M < K, even if the mixing matrix A( f ) and the source model Σss( f , n) were known, the exact
separation would not be feasible: there is no matrix B( f ) such that B( f ) A( f ) = IK , because the maximum rank of
matrix B( f ) A( f ) is M < K (cf. Figure 2.8).

However, we can still try to find an approximate solution y( f , n) in the least squares sense.

���
s( f , n)x( f , n)y( f , n)

A( f )B( f )

Figure 2.8: Under-determined mixtures: there is no matrix B( f ) such that B( f ) A( f ) = IK

5.2 Separation via non-stationary filtering

First, we suppose that the mixing matrix A( f ) and the source model Σss( f , n) are known. Even though only
an approximate solution y( f , n) can be obtained, this solution can be improved by adding a degree of freedom
to the separation matrix B: we will now make it depend on time n, so that the estimate y( f , n) is obtained by
non-stationary filtering:

y( f , n) = B( f , n) x( f , n) (2.19)

where B( f , n) ∈ CK×M . The approximate solution will be found in the least squares sense, by considering the
Minimum Mean Square Error (MMSE) estimator [SAK+13]: we will look for the separation matrix B( f , n) which
minimizes the Mean Square Error (MSE) E[‖y( f , n) − s( f , n)‖22]. This MSE is such that

E[‖y( f , n) − s( f , n)‖22] = E
[
(B( f , n) x( f , n) − s( f , n))H (B( f , n) x( f , n) − s( f , n))

]

= trace
(
E

[
(B( f , n) x( f , n) − s( f , n)) (B( f , n) x( f , n) − s( f , n))H

])

= trace
(
B( f , n)Σxx( f , n)B( f , n)H − B( f , n)Σxs( f , n) − Σsx( f , n)B( f , n)H + Σss( f , n)

)
.
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The MSE is minimized when the Wirtinger matrix gradient [GR65] w.r.t. B( f , n) is zero:

B( f , n)Σxx( f , n) − Σsx( f , n) = 0.

Therefore the solution is given by B( f , n) = Σsx( f , n)Σxx( f , n)−1, where Σxx( f , n) = A( f )Σss( f , n) A( f )H and
Σsx( f , n) = Σss( f , n) A( f )H . We can finally express the MMSE estimator as (2.19), with

B( f , n) = Σss( f , n) A( f )H
(
A( f )Σss( f , n) A( f )H

)−1
. (2.20)

We remark that the MMSE estimator guarantees the perfect reconstruction of the mixture signals from the
estimated source signals: A( f ) y( f , n) = x( f , n).

This MMSE estimator is also known as the generalized or multichannel Wiener filter, because in the particular
case of monophonic mixtures (M = 1), it boils down to the well-known Wiener filter. Indeed, because of the scale
indeterminacy of the model, we can assume without loss of generality that A( f ) = [1, . . . , 1]. Then the MMSE
estimator defined by (2.19) and (2.20) can be rewritten as yk( f , n) =

σ2
k ( f ,n)

∑K
l=1 σ

2
l ( f ,n)

x( f , n), which is the usual form of
the Wiener filter.

In practice of course, the mixing matrix A( f ) and the source model Σss( f , n) are unknown; they thus have
to be estimated from the observed data. For instance, A( f ) can be assumed slowly varying over f (nonparamet-
ric approach), or parameterized according to the beamforming or the anechoic model introduced in Section 4.5
page 38, and Σss( f , n) can be assumed sparse in the TF domain as in Section 5.3.1 (nonparametric approach), or
parameterized according to an NMF model [VVG18, chap. 8] [OF10].

The resulting algorithm is sketched in Algorithm 5.

Algorithm 5 Under-determined source separation in the TF domain
TF analysis of mixture signals: xk( f , n) = (h f ∗ xk)(nT ) (equation (2.12))
Estimation of A( f ) and σ2

k( f , n)

Computation of B( f , n) = Σss( f , n) A( f )H
(
A( f )Σss( f , n) A( f )H

)−1
(equation (2.20))

Estimation of source sub-band signals as y( f , n) = B( f , n) x( f , n) (equation (2.19))
TF synthesis of source signals: yk(t) =

∑F
f =1

∑
n∈Z g f (t − nT )yk( f , n) (equation (2.13))

5.3 Stereophonic mixtures: separation based on sparsity
5.3.1 Temporal sparsity

We now consider the particular case of stereophonic (M = 2) linear instantaneous mixtures as in Definition 2
page 28 (defined by a unique mixing matrix A in order to simplify, but this approach would also work with the TF
mixture model in Definition 9 page 38), so that the mixture model in the time domain is x(t) = A s(t).

We consider the example in Figure 2.9-(a): the K = 3 source signals represented in the three top lines of the
figure are never active at the same time. We say that they are sparse in the time domain, in the sense that most
of their temporal samples are zero. The M = 2 mixture signals are represented in the two bottom lines. Clearly,
in this particular case of non-overlapping source signals, the source separation problem is a simple classification
problem: it amounts to segment the mixture signals, and label the successive segments as "source 1", "source 2",
etc.

In this simple scenario, the classification of the time samples can be easily performed by plotting the dispersion
diagram, represented in Figure 2.9-(b): for every time t, the point of coordinates (x1(t), x2(t)) is drawn in the plane.
This diagram clearly makes appear three straight lines, which correspond to the three sources. Indeed, when only
source k is active, the linear instantaneous mixture model in Definition 2 yields x(t) = ak sk(t), where ak is the k-th
column of matrix A (remember that because of the scale indeterminacy, we can assume without loss of generality
that ak is a unit vector). Therefore all points of coordinates x(t) in the plane that are generated by source k belong
to the straight line passing through the origin and defined by the direction vector ak, and their position on this
straight line corresponds to the value of the time sample sk(t).
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Therefore in this simple case, source separation can be very easily performed by detecting the lines in the
dispersion diagram (e.g. by using the Hough transform [SS01]), which makes it possible to jointly estimate the
column vectors ak and the number of sources K. Then the images of the sources (defined in Section 4.1 page 36)
can be retrieved by selecting the points x(t) that are the closest to each line, and finally the source signals sk(t) can
be estimated by calculating the positions of these points on the line.

Figure 2.9: Sparsity in time domain

5.3.2 Sparsity in a transformed domain

Unfortunately, the example in Figure 2.9 is not very realistic: it rarely happens, especially in music, that the
different source signals do not overlap in the time domain. Figure 2.10-(a) shows an example of dispersion diagram
obtained with a mixture of overlapping music sources: no straight line emerges from the cloud of points.

However, even when they do overlap in time, audio signals are often sparse in the TF domain: the spectrum of
various sounds (especially in music) is made of a discrete set of frequencies. Figure 2.10-(b) shows another disper-
sion diagram obtained from the same mixture of music sources as in Figure 2.10-(a), except that the coordinates of
the points are not obtained from the time samples x(t), but from the MDCT TF transform5 x( f , n). The resulting
dispersion diagram is not as clean as that of Figure 2.9-(b), but again three straight lines clearly emerge from the
cloud of points, which shows that the mixture is made of K = 3 sources, which can be separated in the same way
as in Section 5.3.1, but in the TF domain.

Figure 2.10: Sparsity in TF domain

5The MDCT is known to produce very sparse TF representations, which is why it is widely used in lossy audio data compression [Luo09].
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5.3.3 DUET method

We can now introduce the celebrated Degenerate Unmixing Estimation Technique (DUET) method [JRY00, Ric07],
which is dedicated to stereophonic (M = 2) mixtures, in the linear instantaneous mixture case: x( f , n) = A s( f , n)
(equation 2.14 page 35). Without loss of generality, the column vectors of the mixing matrix A are parameterized

as ak =

[
cos(θk)
sin(θk)

]
, where θk ∈ R. Regarding the source signals, we consider a sparse source model in the TF

domain:

Definition 10 (Sparse TF source model). We consider the same source model as in Definition 7. In addition, we
assume that ∀ f , n, there is a unique k( f ,n) ∈ {1 . . .K} such that σ2

k( f ,n)
( f , n) > 0, and ∀l , k( f ,n), σ2

l ( f , n) = 0.

This additional assumption means that only one source can be active at any TF bin ( f , n) (sources do not overlap
in the TF domain). Therefore ∀ f , n, x( f , n) = ak( f ,n) sk( f ,n) ( f , n).

The DUET method then consists of two steps: parameter estimation and source separation.
In the first step, the TF representation of the mixture signals is first computed by using the analysis filters h f

as in equation (2.12) page 34. Then, in order to estimate the mixture parameters θk, the histogram of the angles of
vectors x( f , n) is first computed. The peaks of this histogram theoretically correspond to the angles θk, which can
thus be estimated by performing peak detection. Then the active source k( f ,n) at frequency bin ( f , n) is estimated
by selecting the angle θk which is the closest to the angle of the observed vector x( f , n).

In the second step, the source images (defined in Section 4.1 page 36) are estimated via binary masking [YR04]:

∀k ∈ {1 . . .K}, yk( f , n) =

{
x( f , n) ∀( f , n) such that k( f ,n) = k,
0 for the other time-frequency bins ( f , n). (2.21)

Then the sub-band source signals are estimated with the MMSE estimator introduced in equation (2.20) page 41,
which here boils down to a zero separation matrix B( f , n), except its k-th row which is6

ak( f )† =
ak( f )H

‖ak( f )‖22
. (2.22)

Therefore the estimate of the k-th sub-band source signal as defined in (2.19) page 40 is

yk( f , n) = ak( f )†yk( f , n). (2.23)

Finally, the source signals are reconstructed in the time domain by using the synthesis filters g f , as in equa-
tion (2.13) page 35. The DUET method is summarized in Algorithm 6.

Algorithm 6 DUET method
TF analysis of mixture signals: xk( f , n) = (h f ∗ xk)(nT ) (equation (2.12))
Estimation of parameters θk and of the active source k( f ,n)

Computation of the histogram of the angles of vectors x( f , n)
Peak detection in order to estimate parameters θk

Determination of the active source at ( f , n) by proximity with θk

Source separation:
Estimation of source images yk( f , n) via binary masking (equation (2.21))
MMSE estimation of sub-band source signals: yk( f , n) = ak( f )†yk( f , n) (equation (2.23))

TF synthesis of source signals: yk(t) =
∑F

f =1
∑

n∈Z g f (t − nT )yk( f , n) (equation (2.13))

6In equation (2.20), matrix Σss is singular, so the matrix inverse is replaced by the matrix pseudo-inverse, leading to equation (2.22).
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6 Conclusion
In this chapter, we have reviewed several source separation models and methods, dedicated to determined linear
instantaneous mixtures, determined convolutive mixtures, and under-determined mixtures. All these methods ex-
ploit the spatial diversity of the observed mixture signals (they require that M > 1), and their funding principle is
that all source signals are statistically independent.

Source separation requires to make assumptions about the mixture and about the source signals, which are
generally expressed in terms of probability distributions. For (over-)determined linear mixtures, we have seen that
assuming independent sources is generally sufficient to make the separation possible (under mild conditions on the
source probability distributions). When the mixture is under-determined however, it is necessary to make additional
assumptions about the mixture and about the source signals, that can be formulated either in a non-parametric way
(via regularization), or by exploiting parametric models.

This chapter forms an introduction to audio source separation, with a selection of models and methods; several
topics that have been investigated in the literature could not been addressed here, for instance:

• The separation of non-stationary mixtures requires to develop adaptive separation algorithms [CL96];

• Informed source separation techniques exploit some possibly available extra information about the mixture
or the sources, such as the spatial positions of the sources and microphones (e.g. via beamforming), or the
transcription of the source signals (speech or music) [EM12];

• Deep learning techniques are able to automatically learn how to perform separation from a large database of
source and mixture signals [VVG18].

• Criteria for the objective assessment of audio source separation are required in order to compare the perfor-
mance of various separation methods [VGF06].
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Chapter 3

High resolution methods

In the context of speech and music signal processing, the tonal part of a wide variety of sounds is accurately
modeled as a sum of sinusoids with slowly varying parameters. For example, the sounds that produce a well-
defined perception of pitch have a quasi-periodic waveform (over a duration greater than a few tens of miliseconds).
Fourier analysis shows that these signals are composed of sinusoids satisfying a relation of harmonicity, which
means that their frequencies are multiples of the fundamental frequency, defined as the inverse of the period. This is
the case of voiced speech signals produced by the quasi-periodic vibration of the vocal cords, such as vowels. Many
wind or string instruments also produce harmonic or quasi-harmonic sounds. However, in a polyphonic music
signal, the sounds emitted simultaneously by one or more instruments overlap; thus the harmonic relationship is
no longer verified, but the signal remains essentially made up of sinusoids.

The estimation of sinusoids is a classic problem, more than two hundred years old. In this area, the Fourier
transform is a privileged tool because of its robustness, the simplicity of its implementation, and the existence
of fast algorithms (Fast Fourier Transform (FFT)). However, it has a number of drawbacks. First, its frequency
precision, that is, the precision with which the frequency of a sinusoid can be estimated, is limited by the number
of samples used to calculate it. This first limitation can be circumvented by extending the signal by a series of zeros
(this operation is called zero-padding). However, its frequency resolution, that is to say its ability to distinguish
two close sinusoids, remains limited by the duration of the observed signal. Despite these drawbacks, the Fourier
transform remains the most used tool in spectral analysis. It has given rise to numerous frequency estimation
methods [KM02].

The High Resolution (HR) methods, which find their applications both in antenna processing and in spectral
analysis [MSAB+98], have the advantage of overcoming the natural limitations of Fourier analysis. Indeed, in the
absence of noise, their frequency precision and resolution are virtually infinite (although in practice limited by the
finite precision of computers). This is made possible by exploiting a parametric signal model. Thus, unlike the
Fourier analysis which consists in representing the signal in a transformed domain, the HR methods are parametric
estimation methods. In the context of audio signal processing, despite their superiority in terms of spectral resolu-
tion (in particular over short time windows), they remain little used because of their high computational complexity.
Nevertheless, the HR methods are well suited for estimating the parameters of a sum of sinusoids whose ampli-
tudes vary exponentially (Exponential Sinusoidal Model (ESM) model). This type of modulation makes it possible
to describe the natural damping of free vibratory systems, such as the vibration of a plucked string [JHJ04]. On
the other hand, it has been shown in [Lar93b] that the HR methods prove to be particularly effective in the case of
strongly attenuated signals. More generally, the ESM model makes it possible to describe signals with large am-
plitude variations [HVW02]. In addition, the music signals often contain pairs or triplets of very close frequencies
which generate a beat phenomenon. These beats strongly contribute to the natural appearance of the sound. They
often result from the special properties of vibration systems. For example, a minor asymmetry in the geometry of a
bell leads to pairs of vibration modes. In the case of a guitar, the coupling between the strings and the bridge can be
represented by a so-called mobility matrix, from which it is possible to deduce frequency pairs [LC93]. In the case
of the piano, the coupling of the horizontal and vertical vibration modes of each string and the presence of pairs
or triplets of strings for most notes explain the presence of four or six neighboring frequencies at the level of each
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harmonic [Wei77]. The Fourier analysis generally does not make it possible to distinguish all these frequencies.
Studies in [Lar93b] on piano and guitar sounds have shown the superiority of HR methods in this area. The same
technique was used to estimate physical parameters, such as the radiation factor of a guitar [Dav99], and to study
the propagation of mechanical waves in solid materials [JMP98].

1 Introduction
This chapter is devoted to the parametric estimation of a signal composed of a sum of exponentially modulated
sinusoids, perturbed by an additive noise. The maximum likelihood principle then reduces the estimation of am-
plitudes and phases to a simple least squares problem, while the estimation of frequencies and damping factors
requires more sophisticated methods, called high resolution methods, because they overcome the limits of Fourier
analysis in terms of spectral resolution.

The origin of the HR methods dates back to Prony’s work published in 1795, which aims to estimate a sum
of exponentials by linear prediction techniques [RdP95]. More recently, this approach was further developped by
Pisarenko to estimate sinusoids of constant amplitude [Pis73]. In comparison, modern HR methods are based on
the particular properties of the signal covariance matrix. Thus, the study of its rank makes it possible to separate
the data space into two subspaces, the signal subspace spanned by the sinusoids, and the noise subspace which is its
orthogonal complement. The HR methods resulting from this decomposition into subspaces are known to be more
robust than linear prediction techniques. This is the case of the MUSIC [Sch86] and root-MUSIC [Bar83] methods
(which are based on the noise subspace), of the Toeplitz Approximation Method (TAM) algorithm [KAR83], as well
as the Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT) algorithm [RPK86] and
its variants TLS-ESPRIT [RK87] and PRO-ESPRIT [ZS89] (which are based on the signal subspace). All of these
estimation methods can be applied to the ESM (Exponential Sinusoidal Model), which represents the signal as a
sum of exponentially modulated sinusoids. This model is also called Exponentially Damped Sinusoids (EDS) when
the modulation is decreasing [NHD98]. Other estimation techniques have been specifically developed for the ESM
model, such as the Kumaresan and Tufts (KT) algorithm, also called Min-Norm method [KT82], its modified
version [LLR97] (based on linear prediction), and the Matrix Pencil method [HS90] (based on subspaces). A more
complete list of methods can be found in [VdVDS93].

This chapter is not intended to present the HR methods exhaustively, but rather to familiarize the reader with
the concepts on which they are based. This is why only some of them are presented here: the Prony, Pisarenko,
MUSIC and ESPRIT methods. This presentation will start with the definition of the signal model (section 2). Then
the maximum likelihood method, which makes it possible to establish a link with the Fourier transform, will be
presented in section 3. Then the high resolution methods that estimate the complex poles will be introduced in
section 4, and techniques for estimating the other parameters of the model will be presented in section 5. Section 6
will be devoted to the analysis of the performance of HR methods. Finally, the results of this chapter will be
summarized in section 7.

2 Signal model
Consider the discrete signal model (defined for all t ∈ Z)

s(t) =
K−1∑
k=0

αkzk
t (3.1)

where K ∈ N∗, ∀k ∈ {0 . . .K − 1}, αk ∈ C∗, and the poles zk ∈ C∗ are pairwise distinct. In the particular case where
all the poles belong to the unit circle, the signal is represented as a sum of complex sinusoids. Thus, each pole zk

is written in the form zk = ei2π fk where fk ∈ R is the frequency of the sinusoid. More generally, if the poles are not
on the unit circle, the sinusoids are exponentially modulated (ESM). In this case, each pole zk is written in polar
form zk = eδk ei2π fk , where δk ∈ R is the damping factor (or attenuation rate) of the sinusoid. In particular, poles
with the same polar angle and different modules are associated with the same frequency. The complex amplitudes
αk are also written in polar form αk = ak eiφk , where ak ∈ R∗+ and φ ∈ R.
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In addition, the observed signal x(t) can be modeled as the sum of the deterministic signal s(t) defined above
and of a complex centered white Gaussian noise b(t) of variance σ2. Remember that a complex centered white

Gaussian noise is a sequence of i.i.d random variables with complex values, of probability density p(b) = 1
πσ2 e−

|b|2
σ2 .

We thus obtain the relation
x(t) = s(t) + b(t). (3.2)

The signal is observed over time windows of length N ≥ K. Thus, for all t ∈ Z, we consider the time
window {t − l + 1 . . . t + n − 1}, where the integers n and l are such that N = n + l − 1, and we define the vector
s(t) = [s(t− l + 1), . . . , s(t + n−1)]>, of dimension N. For all z ∈ C, let us define v(z) = [1, z, . . . , zN−1]>. However

s(t) =
K−1∑
k=0

αk zt−l+1
k v(zk) . This equality can be rewritten in the form of a product: s(t) = VN Dt−l+1 α, where

α = [α0, . . . , αK−1]> is a vector of dimension K, D = diag(z0, . . . , z(K−1)) is a diagonal matrix of dimension K ×K,
and VN =

[
v(z0), . . . , v(z(K−1))

]
is a Vandermonde matrix of dimensions N × K: (cf. definition 12 in appendix 8.2

page 62)

VN =



1 1 . . . 1
z0 z1 . . . zK−1
...

...
...

...
z0

N−1 z1
N−1 . . . zK−1

N−1


.

Then define the vector of amplitudes at time t, α(t) = Dt−l+1α, so that s(t) = VNα(t). It is known that the
determinant of the square Vandermonde matrix VK extracted from the first K rows of VN (remember that N ≥ K)
is (cf. proposition 12 in appendix 8.2 page 62)

det(VK) =
∏

0≤k1<k2≤K−1
(zk2 − zk1 ). (3.3)

Thus, matrix VN has full rank if and only if all the poles are distinct. The relation s(t) = VNα(t) therefore shows
that for each time t the vector s(t) lies in the range space of matrix VN , of dimension less than or equal to K in the
general case, and equal to K if all poles are distinct.

Let b(t) = [b(t−l+1), . . . , b(t+n−1)]> be the vector containing the samples of the additive noise. It is a centered
Gaussian random vector, whose covariance matrix is Rbb = σ2IN . Finally, let x(t) = [x(t−l+1), . . . , x(t+n−1)]> be
the vector of observed data. This vector therefore satisfies x(t) = s(t) + b(t). The model being posed, the analysis
of the signal s(t) will consist in estimating the parameters σ2, z0, . . . , z(K−1) and α(t). A classical parametric
estimation technique, the maximum likelihood method, is applied to this model in the next section.

3 Maximum likelihood method

The maximum likelihood principle is a general parametric estimation method. It provides asymptotically
efficient and unbiased estimators. This is why it is often preferred to other estimation techniques when it has a
simple closed-form solution.

3.1 Application of the maximum likelihood principle to the ESM model
The maximum likelihood principle consists in maximizing the conditional probability of observing the signal x
over the interval {t− l + 1, . . . , t + n− 1}, given the parameters σ2, z0, . . . , z(K−1) and α(t) (or the natural logarithm
of this probability, called log-likelihood of the observations). Since x(t) = s(t) + b(t), where s(t) = VNα(t) is a
deterministic vector and b(t) is a centered complex Gaussian random vector of covariance matrix Rbb = σ2IN , x(t)
is itself a complex Gaussian random vector with expected value s(t) and covariance matrix Rbb. Remember that
the probability density of such a random vector is

p(x(t)) =
1

πN det(Rbb)
e−(x(t)−s(t))H R−1

bb (x(t)−s(t)).
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So the log-likelihood of the observations is

L(σ2, z0 . . . zK−1,α(t)) = −N ln(πσ2) − 1
σ2 g(z0 . . . zK−1,α(t))

where
g(z0 . . . zK−1,α(t)) =

(
x(t) − VNα(t)

)H (
x(t) − VNα(t)

)
.

Maximizing this log-likelihood with respect to the parameters (σ2, z0 . . . zK−1, α(t)) can be done by first minimizing
g with respect to the pair (z0 . . . zK−1, α(t)), then by maximizing L with respect to σ. We thus obtain σ2 =
1
N g(z0 . . . zK−1,α(t)), i.e.

σ2 = 1
N

∥∥∥x(t) − VNα(t)
∥∥∥2

. (3.4)

It appears that σ2 is estimated by calculating the power of the residual obtained by subtracting the exponentials
from the observed signal.

The matrix VN has full rank, since it has been assumed in section 2 that the poles are pairwise distinct. Thus,
matrix VN HVN is invertible. In order to minimize g with respect to the pair (z0 . . . zK−1, α(t)), we just use the
decomposition

g(z0 . . . zK−1,α(t)) = x(t)H x(t) − x(t)HVN
(
VN HVN

)−1
VN H x(t)

+

(
α(t) −

(
VN HVN

)−1
VN H x(t)

)H (
VN HVN

) (
α(t) −

(
VN HVN

)−1
VN H x(t)

)
.

The last term of this equation is always non-negative, and can be zeroed by defining

α(t) =
(
VN HVN

)−1
VN H x(t). (3.5)

It appears that the vector of complex amplitudes α(t) is estimated in the same way as with the ordinary least squares
method.

Function g is therefore minimal when the K -tuple (z0 . . . zK−1) maximizes function J defined by

J(z0, . . . , z(K−1)) = x(t)HVN
(
VN HVN

)−1
VN H x(t). (3.6)

As this optimization problem does not have a closed-form solution in the general case, it must be solved numer-
ically. In summary, the maximum likelihood principle leads to estimating the parameters of the model in three
stages:

complex poles are obtained by maximizing function J (equation (3.6)),

complex amplitudes are obtained by calculating the right side of equation (3.5),

the standard deviation is then given by equation (3.4).

Unfortunately, it turns out that the first step of this estimation method, which requires the optimization of a
function of K complex variables, is difficult to implement, because the function to be maximized has many local
maxima. In addition, it is extremely costly in terms of computation time. This is why we generally use more
reliable and faster methods to estimate complex poles. However, once the poles are estimated, the maximum
likelihood principle can be used to determine the complex amplitudes and the standard deviation of the noise.

3.2 Maximum likelihood and Fourier resolution
Let us now take a look at the particular case where all the poles are on the unit circle (∀k, δk = 0). The results of
section 3.1 showed that the maximum likelihood principle leads to an optimization problem which does not have
a simple closed-form solution in the general case. However, such a solution exists in the particular case where
K = 1, as well as an approximate solution if K > 1.
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Let us first examine the case of a single complex exponential (K = 1). Then equation (3.6) is simplified as
J(z0) = R̂x(z0), where R̂x is the periodogram of the signal x(t) observed on the time window {t− l + 1 . . . t + n− 1}:

R̂x(ei2π f0 ) =
1
N

∣∣∣X(ei2π f0 )
∣∣∣2

where X(ei2π f0 ) = v(ei2π f0 )H x(t) =
N−1∑
τ=0

x(t − l + 1 + τ) e−i2π f0τ. Similarly, equation (3.5) is simplified as α0(t) =

1
N X(ei2π f0 ). Finally, equation (3.4) is simplified as σ2 = 1

N

(
‖x(t)‖2 − R̂x(ei2π f0 )

)
.

These results lead to the following conclusion:

The maximum likelihood principle leads in the case of a complex sinusoid to detect the frequency at which
the periodogram reaches its maximum. The corresponding complex amplitude is proportional to the value
of the DFT of the signal at this frequency. The noise variance is estimated as the signal average power after
subtracting the sinusoid.

Let us now address the general case K ≥ 1, for which the maximization of functionJ(z) no longer has an exact
closed-form solution. We then introduce the following hypothesis:

N >>
1

min
k1,k2

∣∣∣ fk2 − fk1

∣∣∣
.

Matrix VN HVN is a positive definite Hermitian matrix of dimension K × K, whose entries can be calculated in

closed-form:
{
VN HVN

}
(k1, k2)

=
N−1∑
τ=0

(zk1 zk2 )τ. We then obtain

1
N

{
VN HVN

}
(k1, k2)

= eiπ(N−1)( fk2− fk1 ) sin(πN( fk2− fk1 ))
N sin(π( fk2− fk1 )) if k1 , k2

1
N

{
VN HVN

}
(k, k)

= 1 if k1 = k2 = k

Therefore, when N >> 1
min

k1,k2
| fk2− fk1 | ,

1
N VN HVN = IK + O

(
1
N

)
, thus

(
VN HVN

)−1
=

1
N

IK + O
(

1
N2

)
.

Then equation (3.6) is simplified as

J(z0, . . . , zK−1) =
1
N

∥∥∥∥VN H x(t)
∥∥∥∥

2
+ O

(
1

N2

)
=

K−1∑

k=0

R̂(zk) + O
(

1
N2

)
.

Similarly, equation (3.5) is simplified as α(t) = 1
N VN H x(t) + O

(
1

N2

)
, hence

αk(t) =
1
N

X(ei2π fk ) + O
(

1
N2

)
.

Finally, equation (3.4) is simplified as σ2 = 1
N

(
‖x(t)‖2 −

K−1∑
k=0

R̂(ei2π fk )
)

+ O
(

1
N2

)
.

Thus, the joint maximization of J with respect to z0, . . . , zK−1 leads to determine the K frequencies corre-
sponding to the K largest values of the periodogram. The corresponding complex amplitudes are propor-
tional to the value of the DFT of the signal at these frequencies. Remember that these results are only valid
if all the poles are on the unit circle and are based on the assumption N >> 1

min
k1,k2
| fk2− fk1 | .
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We thus observe the limit of the Fourier analysis in terms of spectral resolution: the parameters are estimated
correctly provided that the length of the observation window is sufficiently large compared to the inverse of the
smallest frequency difference between two neighboring poles. It is this limit that the HR methods presented in
section 4 allow to overcome. So, HR methods are able to distinguish two close sinusoids, that Fourier analysis
does not allow to distinguish. In applications, HR methods can be used with shorter windows than those usually
used with Fourier analysis.

Figure 3.1: Jean Baptiste Joseph FOURIER (1768-1830)

4 High resolution methods
We begin here by introducing the oldest high-resolution methods, which are based on linear prediction techniques
(section 4.1), before addressing in section 4.2 the more recent subspace methods.

4.1 Linear prediction techniques
The first two high-resolution methods presented in this chapter are based on a fundamental result related to linear
recurrence equations, presented in section 4.1.1.

4.1.1 Linear recurrence equations

Let p0 ∈ C∗, K ∈ N∗, and {z0, . . . , zK−1} be K distinct and non-zero complex numbers. We define the polynomial
of degree K whose dominant coefficient is p0 and whose roots are zk:

P[z] = p0

K−1∏

k=0

(z − zk) =

K∑

τ=0

pK−τ zτ.

The following theorem characterizes the signal model.

Roland Badeau roland.badeau@telecom-paris.fr

Contexte académique } sans modifications
Voir Page 88 50/88



Audio signal analysis, indexing and transformation

Theorem 4. A complex discrete signal {s(t)}t∈Z satisfies the recurrence equation

K∑
τ=0

pτ s(t − τ) = 0 (3.7)

for all t ∈ Z if and only if there are scalars α0, . . . , αK−1 ∈ C such that s(t) =
K−1∑
k=0

αk zk
t.

Proof. First of all, it is straightforward to check that the set of signals which satisfy the relation (3.7) forms a
vector space E over C. Next, we will prove that this vector space has dimension less than or equal to K. Consider
the application

f : E → CK

s[t] 7→ [s[0], . . . , s[K − 1]]>

We can notice that f is a linear map. Let s ∈ E be a signal such that f (s) = 0. Then s is zero over the interval
[0,K − 1]. By using the recurrence (3.7), we deduce that s is also zero over the interval [K,+∞[. Finally, using the
recurrence (3.7) and the fact that pK , 0, we show that s is also zero over the interval ] − ∞,−1]. Consequently,
s ≡ 0, so the linear map f is injective. We conclude that the vector space E is at most of dimension K.

Now we will show that any signal of the form s[t] = zk
t where k ∈ {0, . . . , K − 1} belongs to the vector space

E. Indeed, if s[t] = zk
t, then ∀t ∈ Z,

K∑
k=0

pk s[t − k] = zk
t−K

K∑
k=0

pk zk
K−k = zk

t−K P[zk] = 0, therefore s[t] satisfies the

relationship (3.7).
Finally, consider the family of vectors

{
zk

t}
{k∈{0, ...,K−1}}. The square matrix whose columns are extracted from

these vectors and whose rows correspond to times {0 . . .K − 1} is a Vandermonde matrix (cf. definition 12 of the
appendix 8.2 page 62). According to proposition 12 in appendix 8.2, it is invertible, since the poles zk are pairwise
distinct. Therefore, the family

{
zk

t}
{k∈{0, ...,K−1}} is linearly independent. However it contains precisely K vectors of

E. This vector space is therefore exactly of dimension K, and this family forms a basis of it. Thus, a signal s[t]
belongs to E if and only if it is of the form (3.2). � �

4.1.2 Prony method

The work of Baron de Prony is at the origin of the development of high resolution methods. He proposed an
estimation method inspired by the previous result on the linear recurrence equations [RdP95]. This method was
originally intended to estimate noiseless real exponentials; however we apply it here to the estimation of noisy
complex exponentials. Prony’s method consists in first determining the polynomial P[z] using linear prediction
techniques, then extracting the roots of this polynomial. We define the prediction error

ε(t) ,
K∑

τ=0

pτ x(t − τ). (3.8)

In particular, by substituting equations (3.2) and (3.7) into equation (3.8), we get ε(t) =
K∑
τ=0

pτ b(t − τ). The

prediction error therefore characterizes only the noise which is superimposed on the signal. Let us address the
particular case n = K +1, and suppose that l ≥ K +1. Thus, the signal is observed on the window {t− l+1 . . . t+ K}.
By applying equation (3.8) at times {t − l + K + 1, t − l + K + 2, . . . , t + K}, we get the system of equations



p0 x(t − l + K + 1) + p1 x(t − l + K) + . . . + pK x(t − l + 1) = ε(t − l + K + 1)
p0 x(t − l + K + 2) + p1 x(t − l + K + 1) + . . . + pK x(t − l + 2) = ε(t − l + K + 2)

... +
... + . . . +

... =
...

p0 x(t + K) + p1 x(t + K − 1) + . . . + pK x(t) = ε(t + K)

(3.9)
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Figure 3.2: Gaspard-Marie RICHE de PRONY (1755-1839)

Then define p =
[
pK , p(K−1), . . . , p0

]H , ε(t) = [ε(t − l + K + 1), ε(t − l + K + 2), . . . , ε(t + K)]H and

X(t) =



x(t − l + 1) · · · x(t − 1) x(t)
x(t − l + 2) · · · x(t) x(t + 1)

... · · · ...
...

x(t − l + K + 1) · · · x(t + K − 1) x(t + K)


(3.10)

so that the system of equations (3.9) can be condensed in the form pH X(t) = ε(t)H .
Prony’s method consists in minimizing the power of the prediction error 1

l ‖ε‖2 with respect to p, subject to
the constraint p0 = 1. However it is possible to write 1

l ‖ε‖2 = pH R̂xx(t) p, where matrix R̂xx(t) = 1
l X(t) X(t)H has

dimension (K + 1) × (K + 1). As matrix X(t) has K + 1 rows and l ≥ K + 1 columns, we can assume that matrix
R̂xx(t) is invertible.

Theorem 11 in appendix 8.1 page 61 allows to prove 1 that the solution of this optimization problem is 2

p =
1

eH
1 R̂xx(t)−1e1

R̂xx(t)−1e1

where e1 , [1, 0 . . . 0]> is a vector of dimension K + 1. Thus, the Prony estimation method includes the following
steps:

• Construct matrix X(t) and calculate R̂xx(t);

• Compute p = 1
eH

1 R̂xx(t)−1e1
R̂xx(t)−1e1;

• Determine the poles {z0, . . . , zK−1} as the roots of the polynomial P[z] =
K∑

k=0
pk zK−k.

1As the data are complex, it is necessary to decompose the vector p into its real part and its imaginary part to be able to apply theorem 11,
which deals exclusively with the real data case.

2The scalar eH
1 R̂xx(t)−1e1 is non-zero, since the vector e1 is unitary and matrix R̂xx(t) is positive definite.
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4.1.3 Pisarenko method

The Pisarenko method is a variant of the Prony method. It consists in minimizing the power of the prediction error
1
l ‖ε‖2 = pH R̂xx(t) p subject to the constraint that vector p has norm 1. Theorem 11 in appendix 8.1 page 61 allows
us to prove that the solution of this optimization problem is the eigenvector of matrix R̂xx(t) associated with the
smallest eigenvalue.

Thus the Pisarenko method [Pis73] consists of the following stages:

• calculate and diagonalize R̂xx(t);

• determine p as the eigenvector associated with the smallest eigenvalue;

• extract the roots of polynomial P[z].

The Prony and Pisarenko methods are the oldest HR methods. As we will show in section 6.2, they do not prove
to be very robust in practice, this is why the subspace methods, proposed more recently, are generally preferred to
them.

4.2 Subspace methods
In the same spirit as the Pisarenko method, modern HR methods (for example [Sch86, RPK86, HS90]) are based
on a decomposition of matrix R̂xx(t).

4.2.1 Singular structure of the data matrix

Suppose now that n ≥ K + 1 and l ≥ K + 1, and construct the data matrix of the noiseless signal s(t) on the same
model as matrix X(t) in equation (3.10), according to a Hankel structure:

S(t) =



s(t − l + 1) · · · s(t − 1) s(t)
s(t − l + 2) · · · s(t) s(t + 1)

... · · · ...
...

s(t − l + n) · · · s(t + n − 2) s(t + n − 1)


. (3.11)

The following proposition characterizes the signal model.

Proposition 5 (Factorization of the data matrix). The following assertions are equivalent:

1. The signal s(t) satisfies the model defined in equation (3.1) on the interval {t − l + 1, . . . , t + n − 1};
2. The matrix S(t) defined in equation (3.11) can be factorized as

S(t) = Vn A(t) Vl> (3.12)

where the diagonal matrix A(t) = diag(zt−l+1
0 α0, . . . , zt−l+1

(K−1)α(K−1)) has dimension K × K, Vn has dimension
n × K, and Vl has dimensions l × K.

Proof of Proposition 5: Let us prove each of the two implications.

Proof of 1. ⇒ 2. The signal s(t) is defined as a sum of complex exponentials:s(t) =
K−1∑
k=0

sk(t), where sk(t) =

αk zk
t. Consequently, matrix S(t) defined in equation (3.11) can be decomposed in the same way: S(t) =

K−1∑
k=0

Sk(t),

where matrices Sk(t) are constructed in the same way as S(t) in equation (3.11), from the signals sk(t). However it is
straightforward to check that Sk(t) = αk zt−l+1

k vn(zk) vl(zk)>, where vn(z) = [1, z, . . . , zn−1]> and vl(z) = [1, z, . . . , zl−1]>.
Equation (3.12) follows directly.

Proof of 1. ⇒ 2. If matrix S(t) is defined by equation (3.12), the reverse reasoning allows to show that S(t) can
be written in the form (3.11), where s(t) is defined in equation (3.1). � �
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Proposition 5 induces a result on which all subspace methods are based:

Corollary 6. Matrix S(t) defined in equation (3.11) has rank less than or equal to K. More precisely, it has rank
K if and only if n ≥ K, l ≥ K, all the poles zk are distinct and non-zero, and all the amplitudes αk are non-zero. In
this case, its range space is spanned by matrix Vn.

Proof of Corollary 6: It turns out that matrices Vn and Vl have full rank equal to K. Indeed, if V0 is the Van-
dermonde matrix made up of the first K rows of Vn or Vl, proposition 12 shows that V0 is invertible, since the
poles zk are pairwise distinct. Consequently, rank(Vn) ≥ K and rank(Vl) ≥ K. However dim(Vn) = n × K and
dim(Vl) = l×K, therefore rank(Vn) = rank(Vl) = K. Furthermore, matrix A(t), of dimensions K ×K, is invertible,
hence of rank K.

We can deduce from this remark that matrix S(t) is also of rank K. To do this, let us first show that Ker(S(t)) =

Ker(Vl>). Indeed,

• ∀y ∈ Cn, Vl>y = 0⇒ Vn A(t)Vl>y = 0;

• ∀y ∈ Cn, Vn A(t)Vl>y = 0 ⇒
(
VnHVn

)
A(t)Vl>y = 0. However matrix

(
VnHVn

)
A(t) is invertible, hence

Vl>y = 0.

The rank-nullity theorem then implies: rank(S(t)) = n − dim(Ker(S(t))) = n − dim(Ker(Vl>) = rank(Vl>) =

K. � �

The singular structure of the data matrix induces an equivalent structure for the correlation matrix, defined
below.

4.2.2 Singular structure of the correlation matrix

The subspace methods are based on the particular structure of the signal correlation matrix Css(t) = S(t) S(t)H , and
in particular on its eigensubspaces, that we will now study. Let us define Rss(t) = 1

l Css(t). Equation (3.12) shows
that

Rss(t) = Vn P(t) VnH (3.13)

where

P(t) =
1
l

A(t) Vl>Vl A(t)H (3.14)

is a symmetric positive definite matrix. Thus, equation (3.13) shows that under the same assumptions as for S(t),
matrix Rss(t) has rank K.

The range space of matrix Rss(t), of dimension K, is spanned by matrix Vn. This vector space is called
signal subspace in the literature.

Then let {wm}m=0...n−1 be an orthonormal basis of eigenvectors of matrix Rss(t), associated to the eigenvalues
λ0 ≥ λ1 ≥ . . . ≥ λn−1 ≥ 0. Since matrix Rss(t) has only of rank K, we actually have λm = 0 ∀m ≥ K. We denote
by W(t) matrix [w0 . . .wK−1], and by W⊥(t) matrix [wK . . .wn−1]. We can then check that >Im(W(t)) = >Im(Vn).
Indeed, vectors {wm}m=0...K−1 are eigenvectors of matrix Rss(t) = Vn P(t)VnH associated with nonzero eigenvalues.
So ∀ k ∈ {0 . . .K − 1}, wm ∈ >Im(Vn). Thus >Im(W(t)) ⊂ >Im(Vn). However matrices W(t) and Vn have the
same rank K, therefore >Im(W(t)) = >Im(Vn).

Matrix W(t) is another basis of the signal subspace, generally distinct from Vn.

We then define matrix X(t) from the samples of the noisy signal x(t), in the same way as matrix S(t) in equa-
tion (3.11), and we consider the correlation matrix

Cxx(t) = X(t) X(t)H . (3.15)
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Then let R̂xx(t) = 1
l Cxx(t) (as in section 4.1.2). Since the additive noise b(t) is white and centered, of variance σ2,

matrix Rxx(t) = E[R̂xx(t)] is such that
Rxx(t) = Rss(t) + σ2In. (3.16)

Using equation (3.16), we show that the family {wm}m=0...n−1 defined above is also an orthonormal basis of
eigenvectors of matrix Rss(t), associated with the eigenvalues

λm =

{
λm + σ2 ∀m ∈ {0, . . .K − 1}
σ2 ∀m ∈ {K, . . . n − 1} .

Thus, all the eigenvectors of matrix Rss(t) are also eigenvectors of Rxx(t), and the corresponding eigenvalues of
Rxx(t) are equal to those of Rss(t) plus σ2. Consequently, the signal subspace, defined as the range space of matrix
Rss(t), is also the principal subspace of dimension K of matrix Rxx(t), i.e. the eigensubspace of Rxx(t) associated
with the K largest eigenvalues, all strictly greater than σ2. The n − K eigenvalues associated with the orthogonal
complement of the signal subspace, called noise subspace, are all equal to σ2. Thus, it is possible to estimate the
signal subspace and the noise subspace by calculating the EigenValue Decomposition (EVD) of matrix R̂xx(t), or
even the Singular Value Decomposition (SVD) of X(t). By concatenating the K principal eigen or singular vectors
of one of these matrices, we thus obtain matrix W(t) = [w0 . . .wK−1] of dimensions n × K spanning the signal
subspace, and by concatenating the n − K other vectors, we obtain matrix W⊥(t) = [wK . . .wn−1] of dimensions
n × (nK) spanning the noise subspace.

The idea of decomposing the data space into two subspaces (signal and noise) is the source of several high-
resolution methods, including the MUSIC method, presented in section 4.2.4, and the ESPRIT method, presented
in section 4.2.5.

4.2.3 Complement: analogy between the spectrum in the matrix sense and in the Fourier sense

We examine here the particular case where all poles are on the unit circle (∀k, δk = 0) and where all frequencies
fk are both multiple of 1

n and 1
l (we will consider the results that we will get as asymptotic results). We denote by

X
(
ei2π ν

n

)
the DFT of the signal observed on the window {t, . . . , t + n − 1}:

X
(
ei2π ν

n

)
=

n−1∑

τ=0

x(t + τ) e−i2π ν
n .

We then define the periodogram of the signal as follows

R̂x

(
ei2π ν

n

)
=

1
n

∣∣∣∣X
(
ei2π ν

n

)∣∣∣∣
2
.

Since all frequencies fk are multiple of 1
n , the discrete spectrum Rx

(
ei2π ν

n

)
, E

[
R̂x

(
ei2π ν

n

)]
is such that

Rx

(
ei2π ν

n

)
= σ2 +

K−1∑

k=0

a2
k 1{

ei2π νn =zk

}. (3.17)

Furthermore, since all frequencies fk are multiple of 1
l , we can verify that

P(t) = diag(a2
0, . . . , a2

(K−1)).

Therefore, Rxx(t) = σ2In +
∑K−1

k=0 a2
kv(zk) v(zk)H . It is then assumed without loss of generality that the ak are

sorted in decreasing order. However, the family {v(zk)}k=0...K−1 is orthogonal. Therefore ∀m ∈ {0 . . .K − 1},
Rxx(t)v(zk) = (a2

k + σ2)vb(zk). Thus, {v(zk)}k=0...K−1 forms a family of eigenvectors of matrix Rxx(t) , associated
to the eigenvalues {a2

k + σ2}k=0...K−1. By completing this family with the other vectors of the n-th order Fourier
basis, we obtain a basis of eigenvectors of matrix Rxx(t) (all other eigenvectors being associated with the same
eigenvalue σ2).

Consequently, the spectrum of the eigenvalues of matrix Rxx(t) matches the discrete spectrum given in equa-
tion (3.17) (whose periodogram forms an estimator ).
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4.2.4 MUltiple SIgnal Characterization (MUSIC)

The MUSIC method, developed by R. O. Schmidt [Sch81], is based on the following remark: the poles {zk}k=0...K−1
are the only solutions of equation

‖W⊥(t)Hv(z)‖2 = 0 (3.18)

where v(z) = [1, z, , . . . , zn−1]>. Indeed, z is solution if and only if v(z) ∈ Span(W(t)) = Span(Vn). So every pole
zk is a solution, and there can be no other because otherwise the signal subspace would be of dimension strictly
larger than K. So the root-MUSIC [Bar83] method consists of the following stages:

• calculate and diagonalize matrix R̂xx(t);

• deduce a basis of the noise subspace W⊥(t);

• extract the roots of equation (3.18).

In the particular case where the noise subspace has dimension 1, it is equivalent to the Pisarenko method presented
in section 4.1.3.

In practice, real signals do not strictly correspond to the model, and equation (3.18) is not rigorously verified.
This is why the spectral-MUSIC [Sch86] method rather consists in searching for the K highest peaks of function
Ŝ (z) = 1

‖WH
⊥v(z)‖2 . The spectral-MUSIC method is illustrated in figure I.3, where it is applied to a piano note.

The ESPRIT method, presented below, avoids the optimization of function Ŝ (z), or the resolution of equa-
tion (3.18), and provides the values of the complex poles in a more direct way.

4.2.5 Estimation of Signal Parameters via Rotational Invariance Techniques

The ESPRIT [RPK86] method is based on a particular property of the signal subspace: the rotational invariance.
Let Vn

↓ be the matrix of dimensions (n − 1) × K which contains the first n − 1 rows of Vn, and Vn
↑ the matrix of

dimensions (n − 1) × K which contains the last n − 1 rows of Vn. Similarly, let W(t)↓ be the matrix of dimensions
(n − 1) × K which contains the first n − 1 rows of W(t), and W(t)↑ the matrix of dimensions (n − 1) × K which
contains the n − 1 last rows of W(t). Then we have

Vn
↑ = Vn

↓ D (3.19)

where D = diag(z0, . . . , z(K−1)). Now the columns of Vn and those of W(t) form two bases of the same vector space
of dimension K. Thus, there is an invertible matrix G(t) of dimension K × K such that

Vn = W(t) G(t) (3.20)

where G(t) is defined as the transition matrix from the first basis to the second one. By substituting equation (3.20)
into equation (3.19), we show that

W(t)↑ = W(t)↓Φ(t) (3.21)

where Φ(t), called spectral matrix, is defined by its EVD:

Φ(t) = G(t) D G(t)−1. (3.22)

In particular, the eigenvalues of Φ(t) are the poles {zk}k=0...K−1.
By multiplying equation (3.21) on the left by W(t)H

↓ , we get

W(t)H
↓W(t)↑ = W(t)H

↓W(t)↓Φ(t). (3.23)

However, if rank(W(t)↓) = K, matrix W(t)H
↓W(t)↓ is invertible. Indeed, we trivially note that ∀x ∈ Cn,

W(t)H
↓W(t)↓x = 0 ⇔ W(t)↓x = 0. So dim(ker(W(t)H

↓W(t)↓)) = dim(ker(W(t)↓)). The rank-nullity theorem allows
us to conclude that rank(W(t)H

↓W(t)↓) = rank(W(t)↓) = K, so W(t)H
↓W(t)↓ is invertible. Therefore equation (3.23)

implies Φ(t) =
(
W(t)H

↓W(t)↓
)−1

W(t)H
↓W(t)↑.

Finally, the ESPRIT algorithm is composed of four steps:
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Figure 3.3: Waveform (t 7→ x(t)), periodogram ( f 7→ 20 log10 |S (ei2π f )|) and pseudo-spectrum ( f 7→
20 log10 |Ŝ (ei2π f )| with K = 20 and n = 256) of a piano note

• calculate and diagonalize matrix R̂xx(t);

• deduce a basis of the signal subspace W(t);

• extract from W(t) matrices W(t)↓ and W(t)↑;

• compute the spectral matrix Φ(t) =
(
W(t)H

↓W(t)↓
)−1

W(t)H
↓W(t)↑

• diagonalize Φ(t) and deduce the estimated poles.

Theoretical and experimental studies have shown that the ESPRIT method is the most efficient of the HR
methods presented above. (cf. section 6.2).

5 Estimation of the other parameters

The high resolution methods exposed in the previous sections estimate only the poles zk. We are now interested in
the estimation of the other model parameters.
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5.1 Estimation of the modeling order

Until now, the order of the ESM model was assumed to be known, which is generally not the case in practice.
Many methods have been proposed in the literature for estimating the number of sinusoids present in white
noise. The most classic ones are the maximum likelihood method [BK83] and the Information Theoretic Cri-
teria (ITC) [WK85], among which the Akaike Information Criterion (AIC) criterion [Aka73] and the Minimum
Description Length (MDL) criterion by Schwartz [Sch78] and Rissanen [Ris78]. Another technique in the context
of ITC is the Efficient Detection Criteria (EDC) criterion [ZKB86a], which is also robust to a multiplicative white
noise [GB03]. These various ITC criteria are based on the similarity of the eigenvalues in the noise subspace, and
not on the existence of a gap between the signal and noise subspaces [LR01]. A criterion for selecting the modeling
order based on this gap, formulated in terms of maximally stable decomposition, was developed in [LRD99]. Other
approaches are based on Wishart matrices [GLC96] and on the cross validation method [KM00].

However, in the case where the noise is colored, all these methods tend to overestimate the order of the model.
Thus, specific methods have been designed to deal with the case of colored noise, among which new ITC cri-
teria [ZKB86b, ZW93], a technique based on a model of noise Auto-Covariance Function (ACF) of finite sup-
port [Fuc92], and a maximum a posteriori criterion [BD96].

Among all these methods, we present here the most classic ones, namely the three main ITC criteria: AIC,MDL
and EDC (which is a robust generalization of AIC and MDL). These methods consist in minimizing a cost function
composed of a first common term and a second term which forms a penalizing factor:

ITC(p) = −(n − p) l ln



(
n∏

q=p+1
σ2

q

) 1
n−p

1
n−p

n∑
q=p+1

σ2
q


+ p (2n − p) C(l)

where the scalars σ2
q are the eigenvalues of matrix R̂xx(t) sorted in decreasing order, and C(l) is a function of

variable l. The AIC criterion is defined by setting C(l) = 1, and the MDL criterion is defined by setting C(l) =
1
2 ln(l) . The EDC criteria are obtained for all functions l 7→ C(l) such that lim

l→+∞
C(l)

l = 0 and lim
l→+∞

C(l)
ln(ln(l)) = +∞.

These criteria lead to maximizing the ratio of the geometric mean of the eigenvalues of the noise subspace to their
arithmetic mean. However this ratio is maximum and equal to 1 when all these eigenvalues are equal; it therefore
measures the whiteness of the noise (in theory the eigenvalues are all equal to σ2). The penalty term C(l) avoids
overestimating p. In practice, these methods are relatively satisfactory when processing signals that fit well the
signal model, but their performance collapses when this model is less well fitted, in particular when the noise is
colored.

5.2 Estimation of amplitudes, phases and standard deviation of noise

The maximum likelihood principle developed in section 3.1 suggests using the least squares method to estimate
the complex amplitudes (cf. equation (3.5)):

α(t) = VN†x(t),

from which ak = |αk | and φk = arg(αk) are deduced. Remember that according to the Gauss-Markov theorem,
the least squares estimator is an unbiased linear estimator, with minimum variance among all unbiased linear
estimators, since the additive noise is white. In the case where the additive noise is colored, the optimal estimator
is obtained by the weighted least squares method (we can refer to [SLl00] for detailed information on the estimation
of amplitudes by the weighted least squares method) .

Finally, the maximum likelihood principle suggests estimating the standard deviation by calculating the power
of the residual (cf. equation (3.4)):

σ2 =
1
N

∥∥∥x(t) − VNα(t)
∥∥∥2
.

Roland Badeau roland.badeau@telecom-paris.fr

Contexte académique } sans modifications
Voir Page 88 58/88



Audio signal analysis, indexing and transformation

6 Performance of the estimators

6.1 Cramer-Rao bound

The Cramér-Rao bound is a fundamental tool in probability theory, because it makes it possible to analyze the
performance of an estimator, by comparing its variance to an optimal value, which in a way acts as a quality
benchmark. In the particular case of the ESM signal model, a study of the Cramér-Rao bound was proposed in
[HS90]. The general Cramér-Rao bound theorem is summarized below (cf. [Kay93]). It is based on the assumption
of a regular statistical model.

Definition 11 (Regular statistical model). Let us consider a statistical model dominated by a measure µ and
parameterized by θ ∈ Θ, where Θ is an open set of Rq. Let x denote the random vector of dimension N. Then the
parameterization is said to be regular if the following conditions are satisfied:

1. the probability density p(x; θ) is continuously differentiable, µ-almost everywhere, with respect to θ.

2. the Fisher information matrix

F(θ) ,
∫

H
l(x; θ) l(x; θ)> p(x; θ) dx

defined from the score function l(x; θ) , ∇θ ln p(x; θ) 1p(x; θ)>0 is positive definite for any value of parameter
θ, and continuous with respect to θ.

Theorem 7 (Cramér-Rao bound). Let us consider a regular statistical model parameterized by θ ∈ Θ. Let θ̂ be an

unbiased estimator of θ (∀θ ∈ Θ, Eθ [̂θ] = θ). Then the dispersion matrix D(θ, θ̂) , Eθ
[(̂
θ − θ

) (̂
θ − θ

)>]
is such

that matrix D(θ, θ̂) − F(θ)−1 is positive semidefinite.

In particular, the diagonal entries of matrix D(θ, θ̂) − F(θ)−1 are non-negative. Consequently, the variances of
the coefficients of θ̂ are greater than the diagonal entries of matrix F(θ)−1. Thus the Cramér-Rao estimation bounds
for all the scalar parameters are obtained in three stages:

• calculation of the Fisher information matrix;

• inversion of this matrix;

• extraction of its diagonal entries.

As mentioned in section 3.1, the vector x(t) containing the N samples of the observed signal is a Gaussian
random vector of expected value s(t) and covariance matrix Rbb. Below, the dependence of s(t) and Rbb on
the parameters of the model will be mentioned explicitly. On the other hand, in order to simplify the notation,
we will omit the dependence of s(t) with respect to time. It is known that the Fisher information matrix of a
Gaussian random vector is expressed simply as a function of the model parameters, as shown in the following
proposition [Kay93, pp. 525].

Proposition 8 (Fisher’s information matrix for a Gaussian density). For a family of complex Gaussian probability
laws of covariance matrix Rbb(θ) and of mean s(θ) , where Rbb ∈ C1(Θ, CN×N) and s ∈ C1(Θ, CN), the entries of
the Fisher information matrix

{
F(i, j)(θ)

}
1≤i, j≤k

are given by the extended Bangs-Slepian formula:

F(i, j)(θ) = trace
(
R−1

bb
∂Rbb(θ)
∂θi

R−1
bb

∂Rbb(θ)
∂θ j

)
+ 2Re

(
∂s(θ)
∂θi

H
R−1

bb
∂s(θ)
∂θ j

)
. (3.24)

By applying formula (3.24) to the ESM model, we obtain a closed-form expression of the Fisher information
matrix. We deduce the following theorem, proved in [HS90]:
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Proposition 9. The Cramér-Rao bounds for parameters (φk, δk, fk) are independent of ak′ for all k′ , k, but
proportional to 1

a2
k
. The bound for parameter ak is independent of all ak′ . Finally, the bounds for all parameters

are independent of all the phases φk′ , and are unchanged by a translation of the set of frequencies fk′ .

In addition, the Cramér-Rao bounds can be calculated in closed-form under certain assumptions, as was done
in [RZ93].

Proposition 10. Suppose that all the damping factors are zero, and let us make N tend towards +∞. Then the
Cramér-Rao bounds for the parameters of the ESM model admit the following first-order expansions:

• CRB{σ} = σ2

4N + O
(

1
N2

)
;

• CRB{ fk} = 6σ2

4π2N3a2
k

+ O
(

1
N4

)
;

• CRB{ak} = 2σ2

N + O
(

1
N2

)
;

• CRB{φk} = 2σ2

Na2
k

+ O
(

1
N2

)
.

We note in particular that the Cramér-Rao bounds related to the frequencies fk are of order 1
N3 , which is unusual

in parametric estimation. Furthermore, it is known that the maximum likelihood principle provides asymptotically
efficient estimators [Kay93]. Thus, the variances of the estimators given in section 3.1 are asymptotically equiva-
lent to the Cramér-Rao bounds given in proposition 10. The case of HR methods is discussed below.

6.2 Performance of HR methods
The performance of an estimator is generally expressed in terms of bias and variance. It is also possible to measure
its efficiency, defined as the ratio between its variance and the Cramér-Rao bound. In particular, an estimator is
said to be efficient if its efficiency is equal to 1.

In the case of HR methods, calculating the bias and variance in closed-form unfortunately turns out to be
impossible, because the extraction of the roots of a polynomial, or of the eigenvalues of a matrix, induces a
complex relationship between the statistics of the signal and those of the estimators. However, asymptotic results
have been obtained thanks to the perturbation theory. These results are based either on the hypothesis N → +∞ (in
the case where all poles are on the unit circle), or on the hypothesis of a high Signal to Noise Ratio (SNR) (SNR
→ +∞). Under each of these two hypotheses, it has been shown that all HR methods presented in this chapter are
unbiased. Furthermore, under the assumption N → +∞, the variances of the Prony and Pisarenko methods were
calculated in [SN88], and those of MUSIC and ESPRIT in [SS91]. Under the hypothesis SNR→ +∞, the variance
of Prony’s method was calculated in [KPTV87], that of MUSIC in [ESS93], and that of ESPRIT in [HS91, ESS93].

The mathematical developments proposed in all these articles are quite complex, and are strongly related to the
estimation method considered, this is why they are not reproduced as part of this document. Only the main results
are summarized here. First of all, it has been proved in [KPTV87, SN88] that the Prony and Pisarenko methods are
very inefficient, in the statistical sense: their variances are much greater than the Cramér-Rao bounds. In addition,
they increase faster than the Cramér-Rao bounds when the SNR decreases. On the other hand, the MUSIC and
ESPRIT methods have an asymptotic efficiency close to 1. More precisely, it has been proved in [SS91, ESS93] (in
the case of unmodulated sinusoids) that these two methods achieve almost identical performances, but ESPRIT is
slightly better than MUSIC. The study carried out in [HS91] (in the more general case of exponentially modulated
sinusoids) goes in the same direction: ESPRIT is less sensitive to noise than MUSIC.

7 Conclusion
In this chapter, we have shown that the estimation of frequencies and damping factors by the maximum likelihood
method leads to a difficult optimization problem. When all the poles of the signal are on the unit circle, it can
be approximated by detecting the K main peaks of the periodogram. This result is only valid when the length of
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the observation window is sufficiently large compared to the inverse of the smallest frequency difference between
neighboring poles. The main interest of HR methods is that they overcome this limit of Fourier analysis in terms
of spectral resolution. The first methods of this family, proposed by Prony and Pisarenko, are based on the linear
recurrence equations which characterize the signal model. On the other hand, more modern techniques, including
the MUSIC and ESPRIT methods, rely on the decomposition of the data space into two eigensubspaces of the
covariance matrix, called signal subspace and noise subspace. The statistical study of these various estimation
techniques has shown that the ESPRIT method is the most efficient. The amplitudes and phases of the complex
exponentials can then be estimated by the least squares method.

8 Appendices

8.1 Constrained optimization

Let V be a Hilbert space and F be a closed subset of V defined by F = {y ∈ V/ f1(y) = 0 . . . fM(y) = 0}, where
functions { fm}m=1...M are continuous from V to R. Let J be a real function on V and p be a local minimum of J over
F. We also assume that functions J and { fm}m=1...M are differentiable at p.

Theorem 11 (Lagrange multipliers). There is µ0, . . . µM ∈ R not all zero such that µ0J′(p) +
M∑

m=1
µm f ′m(p) = 0.

If in addition the vectors { f ′m(p)}m=1...M are linearly independent, then there are coefficients λ1 . . . λM ∈ R called

Lagrange multipliers such that J′(p) +
M∑

m=1
λm f ′m(p) = 0.

Figure 3.4: Joseph-Louis LAGRANGE (1736-1813)
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8.2 Vandermonde matrices
Definition 12 (Vandermonde matrix). Let K ∈ N∗ and z0, . . . , zK−1 ∈ C. We call Vandermonde matrix a matrix V
of dimension K × K of the form

V =



1 1 . . . 1
z0 z1 . . . zK−1
...

...
. . .

...
z0

K−1 z1
K−1 . . . zK−1

K−1


.

Proposition 12 (Vandermonde determinant). The determinant of the Vandermonde matrix is

det(V) =
∏

0≤k1<k2≤K−1

(zk2 − zk1 ).
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Exercises on high resolution methods

Let us consider the Exponential Sinusoidal Model (ESM):

s[t] =

K−1∑

k=0

ak eδktei(2π fkt+φk),

which, to each frequency fk ∈
]
− 1

2 ,
1
2

]
, associates a real amplitude ak > 0, a phase φk ∈] − π, π], and

a damping factor δk ∈ R. By defining the complex amplitudes αk = akeiφk and the complex poles
zk = eδk+i2π fk , this model can be rewritten in the more compact form

s[t] =

K−1∑

k=0

αk zk
t.

In practice, the observed signal x[t] never exactly fits this model. It is rather modeled as the sum of
signal s[t] plus a complex Gaussian white noise b[t] of variance σ2:

x[t] = s[t] + b[t].

Remark: A complex Gaussian white noise of variance σ2 is a complex process whose real part and
imaginary part are two Gaussian white noises of same variance σ2

2 , independent from each other.

We assume that the signal x[t] is observed on the time interval {0 . . .N − 1} of length N > 2K. We
then consider two integers n and l such that n > K, l > K, and N = n + l − 1.

Finally, we define the n × l Hankel matrix which contains the N samples of the observed signal:

X =



x[0] x[1] . . . x[l − 1]
x[1] x[2] . . . x[l]
...

...
...

...

x[n − 1] x[n] . . . x[N − 1]


.

We define in the same way the Hankel matrices S and B of same dimension n × l, from the samples
of s[t] and b[t], respectively.

Notation:

• XT : transpose of matrix X,

• X∗: conjugate of matrix X,

• XH: Hermitian transpose (conjugate transpose) of matrix X.

1 Multiple Signal Classification (MUSIC)

Question 1 For all k ∈ {0 . . .K − 1}, we consider the component sk[t] = αk zk
t. We then define the n× l

Hankel matrix

Sk =



sk[0] sk[1] . . . sk[l − 1]
sk[1] sk[2] . . . sk[l]
...

...
...

...

sk[n − 1] sk[n] . . . sk[N − 1]


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For all z ∈ C, let us define the n-dimensional vector vn(z) = [1, z, z2, . . . , zn−1]T , and the l-dimensional
vector vl(z) = [1, z, z2, . . . , zl−1]T . Then prove that Sk = αk vn(zk) vl(zk)T .

Question 2 Use the result of question 1 to prove that S =
K−1∑
k=0

αk vn(zk) vl(zk)T . Prove that this last

equality can be rewritten in the form S = Vn A VlT , where

• Vn is an n × K Vandermonde matrix:

Vn =



1 1 . . . 1
z0 z1 . . . zK−1
z0

2 z1
2 . . . zK−1

2

...
...

...
...

z0
n−1 z1

n−1 . . . zK−1
n−1



• Vl is an l × K Vandermonde matrix,

• A = diag(α0, α1, . . . , αK−1) is a K × K diagonal matrix.

Question 3 Let us define matrix Rss = 1
l S SH . Prove that matrix Rss is Hermitian and positive semidef-

inite. Prove that Rss can be factorized in the form Rss = Vn P VnH , where P is a K × K Hermitian and
positive definite matrix. Conclude that matrix Rss has rank K (we remind that the poles zk are pairwise
distinct).

Question 4 Prove that matrix Rss is diagonalizable in an orthonormal basis, and that its eigenvalues
{λi}i=0...n−1 are non-negative. By assuming that they are sorted in decreasing order and by using the result
of question 3, conclude that

• ∀i ∈ {0 . . .K − 1}, λi > 0;

• ∀i ∈ {K . . . n − 1}, λi = 0.

Question 5 Let R̂xx = 1
l X XH and Rxx = E

[
R̂xx

]
. Similarly, let R̂bb = 1

l B BH and Rbb = E
[
R̂bb

]
. By

using equality X = S + B and the fact that the noise is centered, prove that Rxx = Rss + Rbb. Then prove
that for a complex Gaussian white noise, Rbb = σ2 In.

Question 6 For all i ∈ {0 . . . n − 1}, let wi denote the eigenvector of matrix Rss corresponding to the
eigenvalue λi. By using the result of question 5, prove that wi is also an eigenvector of Rxx corresponding
to the eigenvalue λ′i = λi + σ2. Conclude that

• ∀i ∈ {0 . . .K − 1}, λ′i > σ2;

• ∀i ∈ {K . . . n − 1}, λ′i = σ2.

Question 7 Let W denote the matrix [w0 . . .wK−1], and W⊥ the matrix [wK . . .wn−1]. Prove that
Span(W) = Span(Vn) (you can start by proving that Span(W) ⊂ Span(Vn)).
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Remark: The subspace spanned by W⊥ is an eigen-subspace of matrix Rxx corresponding to the eigen-
valueσ2. This is why it is called noise subspace. The orthonormal matrix W and the Vandermonde matrix
Vn span the same subspace. It thus completely characterizes the K poles of the signal, This is why it
is called signal subspace. However, all the eigenvalues of Rxx corresponding to the signal subspace are
increased by σ2, which means that this subspace also contains noise.

Question 8 Prove that the poles {zk}k∈{0...K−1} are the solutions of equation
∥∥∥WH
⊥vn(z)

∥∥∥2
= 0.

Remark: In practice, real signals do not rigorously fit the model, and this equation does never hold
exactly. This is why the "spectral-MUSIC" method for estimating the poles consists in detecting the K
highest peaks of function z 7→ 1

‖WH⊥vn(z)‖2 . It is thus easier to implement than the maximum likelihood

method, which requires the numerical optimization of a cost function of K complex variables.

2 Estimation of Signal Parameters
via Rotational Invariance Techniques (ESPRIT)

Let Vn
↓ be the (n − 1) × K matrix that contains the n − 1 first rows of Vn, and Vn

↑ the (n − 1) × K matrix
that contains the n − 1 last rows of Vn. Similarly, let W↓ be the (n − 1) × K matrix that contains the n − 1
first rows of W, and W↑ the (n − 1) × K matrix that contains the n − 1 last rows of W.

Question 1 Prove that matrices Vn
↓ and Vn

↑ are such that Vn
↑ = Vn

↓ D, where D is a K × K diagonal
matrix. What are its diagonal entries?

Question 2 Prove that there is a K × K invertible matrix G such that Vn = W G (we do not ask to
compute G, but only to prove its existence). Then prove that Vn

↓ = W↓G and Vn
↑ = W↑G.

Question 3 Conclude that there is an invertible matrix Φ such that W↑ = W↓Φ. What are the eigen-
values of Φ?

Question 4 By assuming that matrix WH
↓W↓ is invertible, compute Φ as a function of W↓ and W↑.

Question 5 Propose an estimation method of the poles {zk}k∈{0...K−1}.

Remark: The principal advantage of this method with respect to spectral-MUSIC is that it does longer
require to numerically optimize a cost function in order to determine the poles, which instead are obtained
by a direct computation.
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Pitch and temporal scale modifications

In this practical work, you will implement the PSOLA method for the analysis/synthesis of speech
signals. This method will be tested on signals that can be downloaded on the website of the module
"Audio Signal Analysis, Indexing and Transformation"of M2 MVA. These signals are sampled at Fs.
You can load them with Matlab e.g. by typing up load aeiou; they will then be stocked in variable
s. To listen to them, you can type up soundsc(s,Fs). In Python, you can use the provided notebook
template template-TP-modifications.ipynb that you can download on the website.

1 Extraction of the analysis marks

Firstly, you will program the following function

function A = AnalysisPitchMarks(s,Fs)

which extracts the analysis marks. The arguments s and Fs respectively are the signal to be analyzed
and the sampling frequency. The returned matrix A will contain the times and pitches corresponding to
each analysis mark. More precisely, A will be formed of three rows, such that A(1,n) = ta(n) is the
time corresponding to the nth analysis mark (ta(n) ∈ N is expressed in number of samples), A(2,n)
= voiced(n) is a Boolean which indicates whether the signal is voiced or unvoiced in the neighborhood
of this mark, and A(3,n) = Pa(n) ∈ N describes the pitch corresponding to the same mark (i.e. the
period expressed in number of samples) in the voiced case, or equals 10ms × Fs in the unvoiced case.

To do so, you will need a pitch estimator. In order to spare time, you can use function period.m,
whose Matlab code is provided with the example signals, and whose Python code is included in the
notebook template template-TP-HR.ipynb. This function requires two arguments: a short term signal
x extracted from s, and the sampling frequency Fs (the other arguments are optional), and returns a
couple [P, voiced] where voiced is a Boolean which indicates whether x is voiced or non, and P ∈ N
is the period expressed in number of samples in the voiced case, or equals 10ms × Fs in the unvoiced
case.

Let us now detail how to determine the analysis marks. For the sake of simplicity, we will not try
to align the mark ta(n) on the beginning of a glottal pulse. To compute Pa(n) and ta(n), we proceed by
recursion on n ≥ 1:

• extraction of a sequence x that starts at time ta(n−1), and whose duration is equal to 2.5 Pa(n−1);

• computation of Pa(n) and voiced(n) by means of function period;

• computation of ta(n) = ta(n − 1) + Pa(n).

The algorithm will be initialized by setting ta(0) = 1 (in Matlab) or ta(0) = 0 (in Python) and Pa(0) =

10ms × Fs.

2 Synthesis and modification of the temporal and spectral scales

To perform the synthesis of the signal, we must start by defining the synthesis marks. They will be
stocked in a matrix B formed of two rows, such that B(1,k) = ts(k) is the time corresponding to the kth

synthesis mark, and B(2,k) = n(k) is the index of the analysis mark corresponding to this same synthesis
mark. To start, you can perform a synthesis without modification, by setting:

• B(1,:) = A(1,:);

• B(2,:) = [1, 2, 3, . . .].
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2.1 Signal synthesis

You will now program the following function

function y = Synthesis(s,Fs,A,B)

which computes the synthesis signal y from the original signal s, the sampling frequency Fs, the analysis
marks stocked in matrix A and the synthesis marks stocked in matrix B. The synthesis is very simply
performed by recursion on k ≥ 1 (vector y being initialized to the zero vector of dimension ts(kend) +

Pa(n(kend))):

• extraction of a sequence x centered at ta(n(k)) and of length 2 Pa(n(k)) + 1;

• windowing of x by a Hann window (Matlab function hann or Python function scipy.signal.hanning);

• overlap-add of the sequence x windowed on y(ts(k) − Pa(n(k)) : ts(k) + Pa(n(k))).

2.2 Modification of the temporal scale

Modified signal

Short-term synthesis signals

Original signal

Figure 1: Modification of the temporal scale

We now want to determine the synthesis marks that will modify the temporal scale by a factor α, i.e.
to determine a matrix B such that the duration of the signal synthesized by function Synthesis is equal
to that of the original signal s multiplied by α. This operation will be performed by function

function B = ChangeTimeScale(alpha,A,Fs)

which computes matrix B from the factor α, the analysis marks stocked in A, and the sampling frequency
Fs. You can proceed by recursion on k ≥ 1, by using a non-integer index n(k):
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• ts(k) = ts(k − 1) + Pa(bn(k)c);
• n(k + 1) = n(k) + 1

α .

The algorithm will be initialized by setting ts(0) = 1 and n(1) = 1. You will take care of only stocking
integer values in matrix B.

2.3 Modification of the spectral scale

Modified signal

Short-term synthesis signals

Original signal

Figure 2: Modification of the spectral scale

You will now perform the dual operation of the previous one: determine the synthesis marks that will
modify the spectral scale by a factor β, i.e. determine a matrix B such that the fundamental frequency of
the signal synthesized by function Synthesis is equal to that of the original signal s multiplied by β.
This operation will be performed by function

function B = ChangePitchScale(beta,A,Fs)

which computes matrix B from the factor β, the analysis marks stocked in A, and the sampling frequency
Fs. As in the previous case, you can proceed by recursion on k ≥ 1, by using a non-integer index n(k)
and non-integer synthesis times ts(k), and by making the difference between the voiced and unvoiced
cases:

• if the analysis mark of index bn(k)c is voiced, scale(k) = 1
β , otherwise scale(k) = 1;

• ts(k) = ts(k − 1) + scale(k) × Pa(bn(k)c);
• n(k + 1) = n(k) + scale(k).

Again, you will take care of only stocking integer values in matrix B.
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2.4 Joint modification of the temporal and spectral scales

To finish, you will program a function that jointly modifies the two scales:

function B = ChangeBothScales(alpha,beta,A,Fs)

where the arguments are defined as previously. The content of this function will be almost identical to
that of ChangePitchScale; you will just need to modify it properly.
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Practical work on audio source separation

In this practical work, you will program a simple implementation of a variant of the DUET (Degen-
erate Unmixing Estimation Technique) method, which aims to separate sound sources in a stereophonic
mixture. You will thus address the case of an under-determined (M = 2 sensors and K > 2 sources)
instantaneous linear mixture. The separation is achieved by exploiting the spatial information, and by
assuming that the sources are sparse in the time-frequency plane (a single source is active at each time-
frequency bin). The transformation that you will use is the MDCT (Modified Discrete Cosine Transform),
which presents the double advantage of having real values, and of producing a sparser representation than
the STFT (short time Fourier transform). In order to compute it, you will use the Linear Time/Frequency
Toolbox (ltfat) toolbox in Matlab, that you can download on the website of the module "Audio Signal
Analysis, Indexing and Transformation"of M2 MVA, or you can use the provided Python notebook tem-
plate template-TP-separation.ipynb which is based on the mdct toolkit. You will also find on this
website the stereophonic sound file to be processed, named mix.wav. In order to use the functions of the
ltfat toolbox in Matlab, you will first have to load it by calling function ltfatstart.

1 Mixture model and principle of the DUET method

The DUET method relies on the following mixture model: at every time-frequency bin ( f , n),

X( f , n) = S( f , n) A

where

• the row vectors X( f , n) =
[
X( f , n, 1), X( f , n, 2)

]
of dimension M = 2 contain the MDCT of the two

stereophonic channels x(t,m) of the observed mixture;

• the K × M matrix A = [cos(θ), sin(θ)] is the mixing matrix;

• the K-dimensional column vector θ contains the angles θ(k) of sources k;

• the K-dimensional row vectors S( f , n) =
[
S ( f , n, 1), . . . , S ( f , n,K)

]
contain the MDCT of the K

unknown source signals.

If only source k is active at ( f , n), the point of affix Z( f , n) = X( f , n, 1) + iX( f , n, 2) ∈ C is such that
Z( f , n) = S ( f , n, k) eiθ(k), where S ( f , n, k) ∈ R. We remark that its argument permits us both to identify
the active source k at ( f , n) and its angle θ(k). The magnitude of Z( f , n) permits us to determine the
value of S ( f , n, k), up to its sign. In order to remove the sign ambiguity of S ( f , n, k), we can assume
that θ(k) ∈ [−π2 , π2 ]. Once source k is identified at every time-frequency bin, a binary mask B( f , n, k)
can be applied to X( f , n,m), in order to obtain an estimation Y( f , n,m, k) of the stereophonic image of
source k. The source signal is finally reconstructed by means of the MMSE (Minimum Mean Square
Error) estimator, which is such that S ( f , n, k) = Y( f , n, 1, k) cos(θ(k)) + Y( f , n, 2, k) sin(θ(k)).

2 Work to do

1. Open file mix.wav and load it in a T × M matrix x(t,m), where M = 2 and T is the number of
samples. Use your headphones to listen to the mixture. What is the number K of instruments that
you can hear? From which direction do you perceive them?
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2. Plot the temporal dispersion diagram, defined as the set of points in the plane of coordinates
(x(t, 1), x(t, 2)) for all t (in order to plot a set of points, you can use the Matlab function plot or the
Python function matplotlib.pyplot.plot with parameter ’x’, and you can normalize the axes
with the Matlab instruction axis equal or the Python Matplotlib function axis(’equal’)). Can
you distinguish the directions of the sources?

3. Compute the MDCT X( f , n,m) of the two stereophonic channels x(t,m) (you can use the Matlab
function wmdct, with F = 512 frequency bands and the window ’sqrthann’, or the Python
function mdct). Plot the corresponding time-frequency representations |X( f , n,m)|2 (you can use
the Matlab function plotwmdct or the Python function matplotlib.pyplot.imshow).

4. Plot the time-frequency dispersion diagram, defined as the set of points in the plane of affix Z( f , n)
for all f and n. Can you distinguish the directions of the sources? How do you explain it?

5. Plot the histogram of the arguments of the points of affix Z( f , n) for all f and n (you can use the
Matlab function atan or the Python function numpy.arctan to compute the arguments modulo π,
between−π2 and +π

2 , and the Matlab function hist or the Python function matplotlib.pyplot.hist
to compute the histogram, whose number of classes has to be tuned so as to make the directions of
the sources clearly visible). Estimate the angles θ(k) (you can determine these values graphically
from the histogram).

6. In order to estimate the active source at every time-frequency bin ( f , n), you can look for the source
k whose angle θ(k) is closest to the argument of Z( f , n), modulo π (you can use a deviation measure
invariant modulo π, for instance | sin (θ(k) − ∠Z( f , n)) |). Then generate the binary masks B ∈ {0, 1},
such that B( f , n, k) is equal to 1 if source k is active at ( f , n), or 0 otherwise.

7. Apply masks B to the MDCT X( f , n,m) in order to estimate the MDCT of the stereophonic images
Y( f , n,m, k). Then reconstruct the images y(t,m, k) of the source signals by applying the inverse
MDCT (you can use the Matlab function iwmdct or the Python function imdct).

8. Listen to the K reconstructed stereophonic images y(:, :, k). What defects can you perceive?

9. Compute the MMSE estimator S ( f , n, k) of source k. Reconstruct the source signals s(t, k) by
applying the inverse MDCT to S ( f , n, k). Listen to the result.

10. We now wish to respatialize the sources, i.e. to resynthesize the mixture x(t,m) by modifying the
angles θ(k) (remark that it is not needed to switch back to the MDCT domain). For instance, try to
permute the directions of the sources. Listen to the result. What audible defects can you notice?
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Analysis and synthesis of bell sounds

The various files related to this practical work can be downloaded on the website of the module "Au-
dio Signal Analysis, Indexing and Transformation"of M2 MVA. You can load a sound file with Matlab
by using the command [x,Fs] = wavread(’clocheB.wav’). In order to listen to it, you can type up
soundsc(x,Fs). In Python, you can use the provided notebook template template-TP-HR.ipynb.

1 Introduction

Bells are among the oldest music instruments and the sound they produce is often evocative because
it has soothed the everyday life of generations for about 3000 years, accompanying minor and major
events. This evocation is partly due to the structure of the sound spectrum: the eigenmodes of vibration
are generally tuned by the bell makers so that their frequencies follow a particular series, which includes
the minor third (E flat if the bell is tuned in C). This series is not harmonic, but the ratios between the
eigenfrequencies are such that one can perceive a well-defined pitch. In particular, the presence of the
series 2-3-4, strong at the beginning of the sound, reinforces the feeling of pitch in the neighborhood of
the fundamental frequency. This feeling is related to a psychoacoustic effect (processing of the signal
received by the brain).

Let fp be the frequency corresponding to the perceived pitch. The analysis of the eigenfrequencies
series leads to a table of about 15 ratios αn = fn/ fp. Their orders of magnitude are as follows: 0.5 (hum
/ "bourdon"), 1 (prime / fundamental), 1.2 (minor third), 1.5 (fifth), 2 (nominal / octave), 2.5, 2.6, 2.7, 3,
3.3, 3.7, 4.2 (wrong double octave), 4.5, 5, 5.9. The timbre of the corresponding sound depends on the
amplitude and on the decrease of each of these partials.

This practical work aims to develop a high resolution spectral estimation method in order to perform
the analysis / synthesis of bell sounds. As can be noticed in figure 1, this type of sounds presents a strong
temporal decrease.
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Figure 1: Bell sound

In order to take this damping into account, we consider the Exponential Sinusoidal Model (ESM):

s[t] =

K−1∑

k=0

ak eδktei(2π fkt+φk),

which to each frequency fk ∈
]
−1

2 ,
1
2

]
associates a real amplitude ak > 0, a phase φk ∈] − π, π], and
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a damping factor δk ∈ R. By defining the complex amplitudes αk = akeiφk and the complex poles
zk = eδk+i2π fk , this model can be rewritten in the form

s[t] =

K−1∑

k=0

αk zk
t.

The case δk < 0 corresponds to exponentially decreasing sinusoids, which are solutions of physical
propagation equations. The model parameters are then {δk, fk, ak, φk}k∈{0...K−1}. In order to estimate
them, we will use the ESPRIT method presented in the course. Firstly, we will apply it to a synthetic
signal in order to highlight the superiority of high resolution methods over Fourier analysis in terms of
spectral resolution. Then this method will be applied to bell sounds.

2 Reminder about Matlab/Python

In Matlab:

• A’: Hermitian transpose (conjugate transpose) of matrix A;

• A.’: transpose of matrix A (without complex conjugation);

• A(l1:l2,c1:c2): matrix extracted from A between rows l1 and l2 (inclusive) and columns c1
and c2 (inclusive).

In Python:

• A.conj().T: Hermitian transpose (conjugate transpose) of matrix A;

• A.T: transpose of matrix A (without complex conjugation);

• A[l1:l2,c1:c2]: matrix extracted from A between rows l1 and l2 (excluded) and columns c1
and c2 (excluded).

3 Synthetic signal

Here we consider a synthetic signal of length N, consisting of a sum of two complex exponentials, whose
frequencies are separated by an interval ∆ f = 1

N (which corresponds to the resolution limit of Fourier
analysis). The phases are drawn randomly, according to a uniform probability distribution on (−π, π).
We do not add noise to this signal, so that that the observed signal x[t] is equal to s[t]. You can use the
following parameters: N = 63, f0 = 1

4 , f1 = f0 + 1
N , a0 = 1, a1 = 10, δ0 = 0, δ1 = −0.05. In order to

synthesize it, you can call the provided function

x = Synthesis(N,delta,f,a,phi);

whose arguments are N, the vector delta of damping factors δk, the vector f of frequencies fk, the vector
a of amplitudes ak, and the vector phi of phases φk.

3.1 Spectral analysis by Fourier transform

Observe the periodogram of this signal. Briefly study the separability of the two spectral lines, without
zero-padding (Nfft = N) and with zero-padding (Nfft = 1024 > N).
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3.2 High resolution methods

Our goal is to write functions

MUSIC(x,n,K) and [delta,f] = ESPRIT(x,n,K)

which analyze the signal x of length N by using methods MUSIC and ESPRIT, with a signal subspace
of dimension K and a noise subspace of dimension n − K, and the data vectors of length n ranging from
K + 1 to N − K + 1. In order to process the synthetic signals, you can choose n = 32 and K = 2. The two
methods share the following steps:

1. Computation of the empirical covariance matrix

The empirical covariance matrix of the observed signal is defined by the equation

R̂xx =
1
l

X XH

where X is an n × l Hankel matrix containing the N = n + l − 1 samples of the signal:

X =



x[0] x[1] . . . x[l − 1]
x[1] x[2] . . . x[l]
...

...
. . .

...

x[n − 1] x[n] . . . x[N − 1]



Matrix X can be constructed with function hankel.

2. Estimation of the signal subspace

Matrix R̂xx can be diagonalized with the command [U1,Lambda,U2] = svd(Rxx). Matrix R̂xx

being positive semidefinite, the column vectors of the n×n matrices U1 and U2 are the eigenvectors
of R̂xx, corresponding to the n eigenvalues sorted in the diagonal matrix Λ in decreasing order (we
thus have R̂xx = U1 Λ UH

1 = U2 Λ UH
2 ). Therefore you can extract from U1 (or from U2) an n × K

basis of the signal subspace W.

3.2.1 ESPRIT method

In a first stage, the ESPRIT method consists in estimating the frequencies and damping factors:

3. Estimation of the frequencies and damping factors

In order to estimate the frequencies, you can proceed in the following way:

• extract from W the matrices W↓ (obtained by removing the last row of W) and W↑ (obtained
by removing the first row of W);

• compute Φ =

((
WH
↓W↓

)−1
WH
↓
)

W↑ = W†↓W↑, where the symbol † denotes the pseudo in-
verse operator (Matlab function pinv or Python function numpy.linalg.pinv).

• compute the eigenvalues of Φ by using the Matlab function eig or the Python function
numpy.linalg.eig (we remind that the eigenvalues of Φ are the poles zk = eδk+i2π fk ). Then
compute δk = ln(|zk|) and fk = 1

2π angle(zk).
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4. Estimation of the amplitudes and phases

We now aim to write a function

[a,phi] = LeastSquares(x,delta,f)

which estimates the amplitudes ak and phases φk by means of the least squares method, given
the signal x, the damping factors δk and the frequencies fk. The complex amplitudes are thus
determined by the equation

α =

(
(VN HVN)−1VN H

)
x = VN† x (1)

where x is the vector [x[0], . . . , x[N−1]]> and VN is the N×K Vandermonde matrix, whose entries
are such that VN

(t,k) = zk
t for all (t, k) ∈ {0 . . .N − 1} × {0 . . .K − 1}. In order to compute matrix

VN , it is possible of avoid using a for loop by noting that ln
(
VN

(t,k)

)
= t(δk + i2π fk). Therefore,

the matrix containing the coefficients ln
(
VN

(t,k)

)
can be expressed as the product of a column vector

and a row vector. Then compute ak = |αk| and φk = angle(αk) for all k ∈ {0 . . .K − 1}.

5. Application to synthetic signals

Apply functions ESPRIT and LeastSquares to the previously synthesized signal. Comment.

3.2.2 MUSIC method

We remind that the MUSIC pseudo-spectrum is defined as P(z) =
1

‖WH
⊥vn(z)‖2 , where matrix W⊥ spans

the noise subspace.

6. MUSIC pseudo-spectrum

Write a function MUSIC(x,n,K) which plots the logarithm of the pseudo-spectrum as a function
of the two variables f ∈ [0, 1] and δ ∈ [−0.1, 0.1] (you can use the Matlab function surf or the
Python Matplotlib function plot_surface). Apply function MUSIC to the previously synthesized
signal, and check that the pseudo-spectrum makes the two poles zk = eδk+i2π fk clearly visible.

4 Audio signals

We now propose to apply the functions developed in the previous part to bell sounds.

4.1 Spectral analysis by Fourier transform

Look at the periodogram of the signal ClocheA.wav or ClocheB.wav, and compare the series of its
eigenfrequencies with the values given in the introduction.
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4.2 High resolution method

We now want to apply the ESPRIT method to this signal. Let K = 54, n = 512 and l = 2n = 1024 (hence
N = n + l − 1 = 1535).

In order to guarantee that the signal model holds on the analysis window (exponential damping),
we will extract a segment of length N whose beginning is posterior to the maximum of the waveform
envelope. We may thus start at the 10000th sample.

Apply function ESPRIT to the extracted signal in order to estimate the eigenfrequencies and the corre-
sponding damping factors. Then estimate the amplitudes and phases by calling function LeastSquares.
Finally, listen to the signal resynthesized with function Synthesis (on a duration longer than the ex-
tracted segment, in order to clearly highlight the sound resonances), and comment.
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