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ACVAE-VC: Non-Parallel Voice Conversion With
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Abstract—This paper proposes a non-parallel voice conversion
(VC) method using a variant of the conditional variational au-
toencoder (VAE) called an auxiliary classifier VAE. The proposed
method has two key features. First, it adopts fully convolutional
architectures to construct the encoder and decoder networks so
that the networks can learn conversion rules that capture the time
dependencies in the acoustic feature sequences of source and tar-
get speech. Second, it uses information-theoretic regularization for
the model training to ensure that the information in the attribute
class label will not be lost in the conversion process. With regular
conditional VAEs, the encoder and decoder are free to ignore the
attribute class label input. This can be problematic since in such
a situation, the attribute class label will have little effect on con-
trolling the voice characteristics of input speech at test time. Such
situations can be avoided by introducing an auxiliary classifier and
training the encoder and decoder so that the attribute classes of the
decoder outputs are correctly predicted by the classifier. We also
present several ways to convert the feature sequence of input speech
using the trained encoder and decoder and compare them in terms
of audio quality through objective and subjective evaluations. We
confirmed experimentally that the proposed method outperformed
baseline non-parallel VC systems and performed comparably to an
open-source parallel VC system trained using a parallel corpus in
a speaker identity conversion task.

Index Terms—Voice conversion (VC), variational autoencoder
(VAE), non-parallel VC, auxiliary classifier VAE (ACVAE), fully
convolutional network.

I. INTRODUCTION

VOICE CONVERSION (VC) is a technique for converting
para/non-linguistic information contained in a given utter-

ance without changing the linguistic information. This technique
can be applied to various tasks such as speaker-identity modifi-
cation for text-to-speech (TTS) systems [2], speaking assistance
[3], [4], speech enhancement [5]–[7], and pronunciation conver-
sion [8].

One widely studied VC framework involves Gaussian mixture
model (GMM)-based approaches [9]–[11], which utilize acous-
tic models represented by GMMs for feature mapping. Recently,
a neural network (NN)-based framework [8], [12]–[20] and an
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exemplar-based framework using non-negative matrix factoriza-
tion (NMF) [21], [22] have also attracted particular attention. Ex-
amples of the acoustic models for the NN-based framework in-
clude restricted Boltzmann machines [12], [13], fully-connected
NNs [14], [15], recurrent NNs (RNNs) [16], [17] and convo-
lutional NNs (CNNs) [8]. While many VC methods including
those mentioned above require accurately aligned parallel data
of source and target speech, in general scenarios, collecting par-
allel utterances can be a costly and time-consuming process.
Even if we were able to collect parallel utterances, we typically
need to perform automatic time alignment procedures, which
becomes relatively difficult when there is a large acoustic gap be-
tween the source and target speech. Since many frameworks are
weak with respect to the misalignment found with parallel data,
careful pre-screening and manual correction is often required to
make these frameworks work reliably. To sidestep these issues,
this paper aims to develop a non-parallel VC method that re-
quires no parallel utterances, transcriptions, or time alignment
procedures.

The quality and conversion effect obtained with non-parallel
methods are generally poorer than with methods using parallel
data since there is a disadvantage related to the training condi-
tion. Thus, it would be challenging to achieve as high a quality
and conversion effect with non-parallel methods as with par-
allel methods. Several non-parallel methods have already been
proposed [19], [20], [23], [24]. For example, a method using au-
tomatic speech recognition (ASR) was proposed in [23] where
the idea is to convert input speech under a restriction, namely
that the posterior state probability of the acoustic model of an
ASR system is preserved. Since the performance of this method
depends heavily on the quality of the acoustic model of ASR, it
can fail to work if ASR does not function reliably. A method
using i-vectors [25], which is known to be a powerful feature for
speaker verification, was proposed in [24] where the idea is to
shift the acoustic features of input speech towards target speech
in the i-vector space so that the converted speech is likely to be
recognized as the target speaker by a speaker recognizer. While
this method is also free of parallel data, one limitation is that it
is applicable only to speaker identity conversion tasks.

Recently, a framework based on conditional variational au-
toencoders (CVAEs) [26], [27] was proposed in [19], [28]. As
the name implies, VAEs are a probabilistic counterpart of au-
toencoders (AEs), consisting of encoder and decoder networks.
Conditional VAEs (CVAEs) [27] are an extended version of
VAEs with the only difference being that the encoder and de-
coder networks take an attribute class label c as an additional
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input. By using acoustic features associated with attribute labels
as the training examples, the networks learn how to convert an
attribute of source speech to a target attribute according to the
attribute label fed into the decoder. While this VAE-based VC
approach is notable in that it is completely free of parallel data
and works even with unaligned corpora, there are three major
drawbacks. Firstly, the devised networks are designed to pro-
duce acoustic features frame-by-frame, which makes it difficult
to learn time dependencies in the acoustic feature sequences of
source and target speech. Secondly, one well-known problem as
regards VAEs is that outputs from the decoder tend to be over-
smoothed. This can be problematic for VC applications since
it usually results in poor quality buzzy-sounding speech. One
powerful framework that can potentially overcome the weak-
ness of VAEs involves generative adversarial networks (GANs)
[29]. GANs offer a general framework for training a data gen-
erator in such a way that it can deceive a real/fake discriminator
that attempts to distinguish real data and fake data produced by
the generator. One natural way of alleviating the oversmoothing
effect in VAEs would be to incorporate the GAN concept into
VAE [30]. A non-parallel VC method based on this VAEGAN
framework has already been proposed in [20]. With this method,
the adversarial loss designed using a GAN discriminator is in-
corporated into the training loss to make the decoder outputs
of a CVAE indistinguishable from real speech features. While
this method is able to produce more realistic-sounding speech
than the regular VAE-based method [19], as will be shown in
Section IV, the audio quality and conversion effect are still lim-
ited. Thirdly, in the regular CVAEs, the encoder and decoder
are free to ignore the additional input c by finding networks that
can reconstruct any data without using c. In such a situation, the
attribute class label c will have little effect on controlling the
voice characteristics of the input speech.

To overcome these drawbacks and limitations, in this paper
we describe two modifications to the conventional VAE-based
approach. First, we use fully convolutional architectures to de-
sign the encoder and decoder networks so that the networks can
learn conversion rules that capture short- and long-term depen-
dencies in the acoustic feature sequences of source and target
speech. Secondly, we propose using information-theoretic reg-
ularization for the model training to ensure that the attribute
class information will not be lost in the conversion process. This
can be done by introducing an auxiliary classifier whose role
is to predict to which attribute class an input acoustic feature
sequence belongs and by training the encoder and decoder so
that the attribute classes of the decoder outputs are correctly
predicted by the classifier. We will show in Section IV that these
modifications improve on the VAE and VAEGAN frameworks
[19], [20] in terms of audio quality and speaker identity conver-
sion performance. We call the proposed VAE variant an auxil-
iary classifier VAE (or ACVAE). We also present several ways
to convert the feature sequence of input speech using the trained
encoder and decoder and compare them in terms of the effect on
audio quality.

Meanwhile, we previously proposed a non-parallel VC
method using a GAN variant called the cycle-consistent GAN
(CycleGAN) [31], which was originally proposed as a method

for translating images using unpaired training examples [32]–
[34]. This method allows us to learn mappings of acoustic fea-
tures between two domains through a training loss that combines
an adversarial loss and a cycle-consistency loss. The former en-
courages the output of each mapping to be indistinguishable
from real speech samples in the target domain whereas the lat-
ter encourages each mapping to preserve linguistic information
by requiring that mapping input speech to the target domain and
then mapping back to the source domain will result in the original
input speech. Although this method was shown to work reason-
ably well, one major limitation is that it is designed to learn only
mappings between two domains. To overcome this limitation,
we subsequently proposed in [35] a non-parallel VC method
incorporating an extension of CycleGAN called StarGAN [36].
This method is capable of simultaneously learning mappings be-
tween multiple domains using a single generator network where
the attributes of the generator outputs are controlled by an aux-
iliary input. As with the CycleGAN-based method, it uses an
adversarial loss and a cycle-consistency loss for generator train-
ing so that the generator outputs become indistinguishable from
real speech samples in the target domain and so that each map-
ping preserves the linguistic information contained in the input
speech. In Section IV, the proposed method is compared with
this StarGAN-based VC method.

II. VAE VOICE CONVERSION

A. Variational Autoencoder (VAE)

VAEs [26], [27] are stochastic neural network models con-
sisting of encoder and decoder networks. The encoder net-
work generates a set of parameters for the conditional distri-
bution qφ(z|x) of a latent space variable z given input data x,
whereas the decoder network generates a set of parameters for
the conditional distribution pθ(x|z) of the data x given the la-
tent space variable z. Given a training dataset S = {xm}Mm=1,
VAEs learn the parameters of the entire network so that the
encoder distribution qφ(z|x) becomes consistent with the pos-
terior pθ(z|x) ∝ pθ(x|z)p(z). By using Jensen’s inequality, the
log marginal distribution of the data x can be lower-bounded by

log pθ(x) = log

∫
qφ(z|x)pθ(x|z)p(z)

qφ(z|x) dz

≥
∫
qφ(z|x) log pθ(x|z)p(z)

qφ(z|x) dz

= Ez∼qφ(z|x)[log pθ(x|z)]−KL[qφ(z|x)‖p(z)],
(1)

where the difference between the left- and right-hand sides
of this inequality is equal to the Kullback-Leibler divergence
KL[qφ(z|x)‖pθ(z|x)], which is minimized when

qφ(z|x) = pθ(z|x). (2)

This means we can make qφ(z|x) and pθ(z|x) ∝ pθ(x|z)p(z)
consistent by maximizing the lower bound of Eq. (1). One typ-
ical way of modeling qφ(z|x), pθ(x|z) and p(z) is to assume
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Gaussian distributions

qφ(z|x) = N (z|μφ(x), diag(σ2
φ(x))), (3)

pθ(x|z) = N (x|μθ(z), diag(σ2
θ(z))), (4)

p(z) = N (z|0, I), (5)

where μφ(x) and σ2
φ(x) are the outputs of an encoder network

with parameter φ, and μθ(z) and σ2
θ(z) are the outputs of a

decoder network with parameter θ. The first term of the lower
bound can be interpreted as an autoencoder reconstruction error.
By using a reparameterization z = μφ(x) + σφ(x)� ε with
ε ∼ N (ε|0, I), sampling z from qφ(z|x) can be replaced by
sampling ε from the distribution, which is independent of θ.
This allows us to compute the gradient of the lower bound with
respect to θ by using a Monte Carlo approximation of the expec-
tation Ez∼qφ(z|x)[·]. The second term is given as the negative KL
divergence between qφ(z|x) and p(z) = N (z|0, I). This term
can be interpreted as a regularization term that forces each el-
ement of the encoder output to be uncorrelated and normally
distributed.

Conditional VAEs (CVAEs) [27] are an extended version of
VAEs with the only difference being that the encoder and de-
coder networks can take an auxiliary variable c as an additional
input. With CVAEs, Eqs. (3) and (4) are replaced with

qφ(z|x, c) = N (z|μφ(x, c), diag(σ2
φ(x, c))), (6)

pθ(x|z, c) = N (x|μθ(z, c), diag(σ2
θ(z, c))), (7)

and the variational lower bound to be maximized becomes

J (φ, θ) = E(x,c)∼pd(x,c)
[
Ez∼q(z|x,c)[log p(x|z, c)]
−KL[q(z|x, c)‖p(z)]], (8)

where E(x,c)∼pd(x,c)[·] denotes the sample mean over the train-
ing examples {xm, cm}Mm=1.

B. Non-Parallel Voice Conversion Using CVAE

By letting x ∈ RQ and c be an acoustic feature vector and an
attribute class label, respectively, a non-parallel VC problem can
be formulated using the CVAE [19], [20]. Given a training set
of acoustic features with attribute class labels {xm, cm}Mm=1,
the encoder learns to map an input acoustic feature x and an
attribute class label c to a latent space variable z (expected to
represent phonetic information), and then the decoder recon-
structs an acoustic feature x̂ conditioned on the encoded latent
space variable z and the attribute class label c. At test time, we
can generate a converted feature by feeding an acoustic feature
of the input speech into the encoder and a target attribute class
label into the decoder.

III. PROPOSED METHOD

A. Fully Convolutional VAE

Although the model in [19], [20] is designed to convert acous-
tic feature vectors frame-by-frame and fails to learn conversion
rules that reflect time-dependencies in feature vector sequences,
we propose extending it to a sequential version to overcome this

limitation. Namely, we consider a CVAE that takes an acoustic
feature vector sequence instead of a single-frame feature vector
as an input and outputs a feature vector sequence of the same
length. Hence, in the following we assume that x ∈ RD×N is a
feature vector sequence of length N and that the encoder and
decoder networks are designed to generate the sequences of the
means and logarithmic variances of qφ and pθ:

[
μφ(x, c); log σ

2
φ(x, c)

]
= Enc(x, c), (9)

[
μθ(z, c); log σ

2
θ(z, c)

]
= Dec(z, c), (10)

where [; ] denotes concatenation along the channel dimension.
Although RNN-based architectures are a natural choice for mod-
eling sequential data, model training becomes challenging as the
network becomes deeper. Furthermore, it is difficult to employ
parallel implementations for RNNs, and so both the training and
conversion processes can be computationally demanding. Moti-
vated by the recent success of sequential modeling using CNNs
in the field of natural language processing [37] and the fact that
CNNs are well suited to parallel implementations, we use fully
convolutional networks to design Enc and Dec, as detailed in
III-D.

B. Auxiliary Classifier VAE

We hereafter assume that a class label comprises one or more
categories, each consisting of multiple classes. We thus represent
c as a concatenation of one-hot vectors, each of which is filled
with 1 at the index of a class in a certain category and with 0
everywhere else. For example, if we consider speaker identities
as the only class category, c will be represented as a single one-
hot vector, where each element is associated with a different
speaker.

The regular CVAEs impose no restrictions on the manner
in which the encoder and decoder may use the attribute class
label c. Hence, the encoder and decoder are free to ignore
c by finding distributions satisfying qφ(z|x, c) = qφ(z|x) and
pθ(x|z, c) = pθ(x|z). This can occur for instance when the en-
coder and decoder have sufficient capacity to reconstruct any
data without using c. In such a situation, c will have little effect
on controlling the voice characteristics of input speech. To avoid
such situations, we introduce information-theoretic regulariza-
tion [38] to assist the decoder output to be correlated as far as
possible with c.

The mutual information for x ∼ pθ(x|z, c) and c conditioned
on z can be written as

I(θ) =
∑
c′

∫
p(c′,x) log

p(c′,x)
p(c′)p(x)

dx

=
∑
c′

∫
p(x)p(c′|x) log p(c′|x)dx+H

= Ex∼pθ(x|z,c),c′∼p(c|x)[log p(c
′|x)] +H, (11)

where H represents the entropy of c, which can be considered
a constant term. In practice, I(θ) is hard to optimize directly
since it requires access to the posterior p(c|x). Fortunately, we
can obtain a lower bound of the first term of I(θ) by introducing
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Fig. 1. Illustration of the structure of the proposed ACVAE-VC.

an auxiliary distribution r(c|x)

Ex∼pθ(x|z,c),c′∼p(c|x)[log p(c
′|x)]

= Ex∼pθ(x|z,c),c′∼p(c|x)

[
log

r(c′|x)p(c′|x)
r(c′|x)

]

≥ Ex∼pθ(x|z,c),c′∼p(c|x)[log r(c
′|x)]

= Ex∼pθ(x|z,c)[log r(c|x)]. (12)

This technique of lower bounding mutual information is called
variational information maximization [39]. The last line of
Eq. (12) follows from the lemma presented in [38]. The equal-
ity holds in Eq. (12) when r(c|x) = p(c|x). Hence, maximizing
the lower bound Eq. (12) with respect to r(c|x) corresponds to
approximating p(c|x) by r(c|x) as well as approximating I(θ)
by this lower bound. We can therefore indirectly increase I(θ)
by increasing the lower bound with respect to pθ(x|z, c) and
r(c|x). One way to do this involves expressing r(c|x) using an
NN and training it along with qφ(z|x, c) and pθ(x|z, c). Here-
after, we use rψ(c|x) to denote the auxiliary classifier NN with
parameter ψ. As detailed in III-D, we also design the auxiliary
classifier using a fully convolutional network, which takes an
acoustic feature sequence as the input and generates a sequence
of class probabilities. The regularization term that we would like
to maximize with respect to φ, θ and ψ becomes

Q(φ, θ, ψ)
= E(c̃,x̃)∼pd(x̃,c̃),z∼qφ(z|x̃,c̃)

[
Ec∼p(c),x∼pθ(x|z,c)[log rψ(c|x)]

]
,

(13)

where E(x̃,c̃)∼pd(x̃,c̃)[·] denotes the sample mean over the train-
ing examples {x̃m, c̃m}Mm=1. This criterion can be understood
as follows. For each training example, the encoder generates z
and then the decoder produces a set of samples x by using all
possible target labels c. The classifier then infers the log prob-
ability that each of the generated samples x correctly belong
to the corresponding class. Q(φ, θ, ψ) is defined as the mean
of these log probabilities. Here, it should be noted that to com-
pute Q(φ, θ, ψ), we must sample z from qφ(z|x, c) and x from
pθ(x|z, c). Fortunately, we can use the same reparameterization
trick as in II-A to compute the gradients of Q(φ, θ, ψ) with re-
spect to φ and θ. Since we can also use the training examples

{x̃m, c̃m}Mm=1 to train the auxiliary classifier rψ(c|x), we in-
clude the cross-entropy

R(ψ) = E(x̃,c̃)∼pd(x̃,c̃)[log rψ(c̃|x̃)], (14)

in our training criterion. The entire training criterion is thus given
by

J (φ, θ) + λQQ(φ, θ, ψ) + λRR(ψ), (15)

where λQ ≥ 0 and λR ≥ 0 are regularization parameters, which
weigh the importances of the regularization terms relative to the
VAE training criterion J (φ, θ).

Although the idea of using an auxiliary classifier for GAN-
based image synthesis [36], [40] and voice conversion [35] has
already been proposed, to the best of our knowledge, it has yet
to be proposed for use with the VAE framework. We call our
VAE variant an auxiliary classifier VAE (or ACVAE).

C. Conversion Process

Although it would be interesting to develop an end-to-end
model by directly using a time-domain signal or a magnitude
spectrogram as x, given the recent significant advances in high-
quality neural vocoder systems [41]–[51], we still find it useful
to develop VC systems that are designed to convert acoustic fea-
tures such as the mel-cepstral coefficients (MCCs) [52], since
we can expect to generate high-fidelity signals by using a neural
vocoder once acoustic features are obtained. In such systems,
the model size for the convertor can be made small enough to
allow the system to work well even when a limited amount of
training data is available and possibly allow real-time implemen-
tations. Motivated by this, in this paper we use as x a sequence
of MCCs computed from a spectral envelope sequence obtained
using WORLD [53].

There are several ways to convert an input feature sequence
x at test time after training φ and θ. One simple way involves
using the means of the encoder and decoder distributions

x̂mean = μθ(μφ(x, c), ĉ), (16)

where c and ĉ denote the source and target attribute class la-
bels, respectively. Once a feature sequence is obtained, we can
reconstruct a time-domain signal with a vocoder. However, the
converted feature sequence x̂mean obtained with this procedure
can be over-smoothed as with other conventional VC methods
and can result in buzzy-sounding synthetic speech. Since the
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Fig. 2. MCC sequences generated using Eqs. (16), (18) and (20) along with those of the real speech of the target speaker reading the same sentence.

reconstructed feature sequence

x̄mean = μθ(μφ(x, c), c), (17)

can also be over-smoothed, one reasonable way of avoiding
buzzy-sounding speech would be to add the difference between
x and x̄mean to x̂mean

x̂diff = x− x̄mean + x̂mean, (18)

so that the spectral details of the input speech are transplanted
into its converted version. Whilex− x̄mean can be thought of as
the spectral detail contained in the input speech, x̂mean − x̄mean

can be viewed as the predicted spectral difference between
source and target speech. Thus, Eq. (18) can also be interpreted
as the process of adding the spectral difference x̂mean − x̄mean

to the raw input x. It should be noted that a similar idea has
already been introduced in the GMM-based framework [54].
Another way to produce feature sequences with realistic spec-
tral details would be to use random sampling according to the
encoder and decoder distributions

ẑ ∼ qφ(z|x, c), (19)

x̂samp ∼ pθ(x|ẑ, ĉ). (20)

Examples of the MCC sequences generated using Eqs. (16),
(18) and (20) are shown in Fig. 2. As can be seen from these
examples, while x̂mean has been over-smoothed, both x̂diff and
x̂samp have succeeded in recovering spectral details that resem-
ble those found in real speech. The effects of these methods on
audio quality are evaluated in Section IV.

D. Network Architectures

As detailed in Figs. 3–6, all the networks are designed using
fully convolutional architectures with gated linear units (GLUs)
[37]. The output of the GLU block used in the proposed model
is defined as GLU(X) = B1(L1(X))� σ(B2(L2(X)))whereX
is the layer input, L1 and L2 denote convolution layers, B1 and
B2 denote batch normalization layers, and σ denotes a sigmoid
gate function. We used 2D or 1D convolutions to design the con-
volution layers in the encoder, decoder and auxiliary classifier,
where we treated x as an image of sizeD ×N with 1 channel in
the 2D case and as an image of size 1×N withD channel in the
1D case. The dimension of the latent variable space was set at J
and so z is treated as an image of size 1×N ′ with J channels.
At each GLU block in the encoder and decoder, a broadcast ver-
sion of c is appended along the channel dimension to the output
of the previous GLU block. It should be noted that since the en-
tire architecture is fully convolutional with no fully-connected
layers, it can take an entire sequence with an arbitrary length as
an input and generate an acoustic feature sequence of the same
length. This can be ensured by properly padding zeros before
each convolution. The final output of the auxiliary classifier is
given by the product of all the elements of the output produced
from a convolution layer and followed by a softmax operation.

It should be noted that the conventional VAE-based methods
[19], [20] are designed so that the encoder is not conditioned on
a speaker label and our method can also be designed in the same
way. In our preliminary experiments, we tested both the uncon-
ditional and conditional versions and found their performance
to be comparable.
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Fig. 3. Network architectures of the encoder and decoder designed using 2D convolution layers. Here, the input and output of each of the networks are interpreted
as images, where “h”, “w” and “c” denote the height, width and channel number, respectively. “Conv”, “Batch norm”, “GLU”, “Deconv” “Softmax” and “Product”
denote convolution, batch normalization, gated linear unit, transposed convolution, softmax, and product pooling layers, respectively. “k”, “c” and “s” denote the
kernel size, output channel number and stride size of a convolution layer, respectively.

Fig. 4. Network architectures of the encoder and decoder designed using 1D convolution layers. The notation follows that in Fig. 3.

Fig. 5. Network architecture of the auxiliary classifier designed using 2D
convolution layers. “Slice” denotes an operation of extracting only the lower
region of an input. The notation follows that in Fig. 3.

IV. EXPERIMENTS

A. Experimental Settings

To confirm the effects of the ideas presented in III-A, III-C and
III-B, we conducted objective and subjective evaluation experi-
ments involving a non-parallel speaker identity conversion task.
We used the Voice Conversion Challenge (VCC) 2018 dataset
[55], which consists of recordings of six female and six male
US English speakers. We used a subset of speakers for training
and evaluation. Specifically, we selected two female speakers,
‘SF1’ and ‘SF2’, and two male speakers, ‘SM1’ and ‘SM2’.
Thus, c is represented as a four-dimensional one-hot vector and
in total there were twelve different combinations of source and
target speakers. The audio files for each speaker were manu-
ally segmented into 116 short sentences (about 7 minutes long
in total) where 81 and 35 sentences (respectively, about 5 and
2 minutes long in total) were provided as training and evalua-
tion sets, respectively. The training and test datasets consisted
of speech samples of each speaker reading the same sentences.

Fig. 6. Network architecture of the auxiliary classifier designed using 1D
convolution layers. “Slice” denotes an operation of extracting only the lower
channels of an input. The notation follows that in Fig. 3.

Although this means we could actually construct a parallel cor-
pus, we took care not to take advantage of it to simulate a non-
parallel training scenario. All the speech signals were sampled
at 22,050 Hz. For each utterance, a spectral envelope, a logarith-
mic fundamental frequency (log F0), and aperiodicities (APs)
were extracted every 5 ms using the WORLD analyzer [53],
[56]. 36 mel-cepstral coefficients (MCCs) were then extracted
from each spectral envelope using the Speech Processing Toolkit
(SPTK) [57]. The F0 contours were converted using the loga-
rithm Gaussian normalized transformation described in [58].
The aperiodicities were used directly without modification. The
network architectures we investigated in these experiments are
shown in detail in Figs. 3–6. The signals of the converted speech
were obtained using the methods described in III-C.

B. Pre- and Post-Processing

At training time, each element xd,n of the feature sequence x
of each speaker was normalized to

xd,n ← xd,n − αd
βd

, (21)
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where αd and βd are the mean and standard deviation of the d-th
dimension of the feature vectors within all the voiced segments
of the training samples of the same speaker. At test time, the
mean and variance of the generated feature sequence were ad-
justed so that they matched the pretrained mean and variance of
the feature vectors of the target speaker.

C. Hyperparameter Settings

The regularization parameters were set at λQ = λR = 1when
θ and φ were updated, and at λQ = 0, λR = 1 when ψ was up-
dated. All the networks were trained simultaneously with ran-
dom initialization. Adam optimization [59] was used for model
training where the mini-batch size was 8 and 12,000 iterations
were run. The learning rate for Adam was set at 0.001 for the
encoder/decoder and at 2.5× 10−5 for the auxiliary classifier.
The exponential decay rate for the first moment was set at 0.9 for
the encoder/decoder and at 0.5 for the auxiliary classifier. The
network architectures we tested in our experiments are shown
in Figs. 3–6.

D. Objective Performance Measure

The test dataset consists of speech samples of each speaker
reading the same sentences. Thus, the quality of a converted
feature sequence can be assessed by comparing it with the feature
sequence of the target speaker reading the same sentence.

Given two mel-cepstra, [x1, . . . , xD]T and [y1, . . . , yD]
T, we

can use the mel-cepstral distortion (MCD):

MCD [dB] =
10

ln 10

√
2
∑D

d=2
(xd − yd)2, (22)

to measure their difference. Here, we used the average of the
MCDs taken along the dynamic time warping (DTW) path be-
tween converted and target feature sequences as the objective
performance measure for each test utterance.

E. Baseline Methods

We chose the VAE-based [19], VAEGAN-based [20] and
our previously proposed StarGAN-based [35] non-parallel VC
methods for comparison. To clarify how close the proposed
method can get to the performance achieved by one of the best
performing parallel VC methods, we also chose an open-source
system called “sprocket” [60] for comparison. Since sprocket
is a parallel VC system, we used a parallel corpus only for the
model training for sprocket. To run these methods, we used the
source codes provided by the authors [61]–[63].

F. Objective Evaluations

1) Comparison of Different Network Configurations: First,
we evaluated the performance of the proposed method with six
different network configurations. The detailed settings for these
configurations are shown in Figs. 3–6 and Table I, where I ,
J and K are the channel numbers of the middle layers in the
encoder, decoder and auxiliary classifier, respectively. Types 1,
2 and 6 adopt 2D convolution layers and Types 3, 4 and 5 adopt
1D convolution layers in the encoder and decoder. Types 1, 2, 3

TABLE I
CONFIGURATIONS FOR ARCHITECTURE TYPES 1–6

and 4 adopt 2D convolution layers and Types 5 and 6 adopt 1D
convolution layers in the auxiliary classifier.

Table II shows the average MCDs with 95% confidence inter-
vals obtained using the six network configurations for each of the
source and target speaker combinations. As the results show, the
MCDs were all comparable, indicating that the choices between
the 2D and 1D models did not significantly affect the quality of
the converted speech.

2) Effect of Fully Convolutional Architecture Design: The
proposed model of Architecture Type 5 reduces to a frame-
independent model that uses fully-connected networks to con-
vert feature vectors frame-by-frame, when the kernel sizes of
all the convolutions in the encoder, decoder and auxiliary clas-
sifier are set at 1× 1. To confirm the effect of our fully convo-
lutional architecture design, we compared the MCDs obtained
with the proposed model of Architecture Type 5 and its frame-
independent counterpart. Table III shows the results obtained
with these models. As the results show, the proposed model ob-
tained significantly smaller MCDs than the frame-independent
model for all speaker combinations, thus showing the advantage
of capturing time dependencies.

3) Effect of Auxiliary Classifier: To confirm the effect of the
incorporation of the auxiliary classifier, we compared the pro-
posed model with and without the auxiliary classifier. Table IV
shows the MCDs obtained using the proposed model of Archi-
tecture Type 1. As the results show, the proposed model per-
formed significantly better when using the auxiliary classifier,
thus demonstrating its positive effect.

4) Comparison of Conversion Methods: We compared the
performance of the proposed method obtained when using Eqs.
(16) and (18). Table IV compares the MCDs obtained using the
model of Architecture Type 1. As the results show, it transpired
that using the spectral detail transplantation technique did not
have a positive impact as regards improving the MCDs. This
was not unexpected since the spectral details of source and target
speech are usually different.

5) Comparisons With Baseline Methods: According to the
results of the objective evaluations described above, we chose
the proposed method using Architecture Type 1 with no spectral
detail transplantation for comparison in the following experi-
ments. Table VI shows the MCDs obtained with the proposed
and baseline methods. As the results show, the proposed method
significantly outperformed the other non-parallel methods for all
the source and target speaker pairs. It is also worth noting that
the proposed method performed better than even the parallel VC
method for most of the speaker pairs.
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TABLE II
MCDS [DB] WITH 95% CONFIDENCE INTERVALS OBTAINED WITH THE PROPOSED METHOD USING DIFFERENT ARCHITECTURE TYPES

TABLE III
MCDS [DB] OBTAINED WITH FULLY CONVOLUTIONAL AND

FRAME-INDEPENDENT MODELS

TABLE IV
MCDS [DB] OBTAINED WITH THE PROPOSED MODEL WITH AND WITHOUT

THE AUXILIARY CLASSIFIER

6) Comparison of Modulation Spectra: The modulation
spectra of MCC sequences are known to be quantities that are
closely related to perceived quality and naturalness of speech
[64]. By definition, the modulation spectrum of a feature se-
quence represents the interdependencies of the elements in the
sequence. Thus, our fully convolutional architecture design is
expected to be effective in generating feature sequences with
modulation spectra similar to those of real speech.

In the following, we use the abbreviations ACVAE (mean),
ACVAE (diff) and ACVAE (sampling) to indicate the proposed
method using Eqs. (16), (18) and (20) for the conversion process.
Fig. 7 shows an example of the average modulation spectra of

TABLE V
MCDS [DB] OBTAINED WITH THE PROPOSED METHOD USING DIFFERENT

CONVERSION METHODS

the converted MCC sequences obtained with the proposed and
baseline methods along with those of the real speech of the tar-
get speaker. As can be seen from these graphs, the modulation
spectra obtained with the proposed method provide a good match
with those of the target speaker below 20 Hz, however they tend
to deviate in the higher frequency range. Meanwhile, it tran-
spired that the modulation spectra obtained with the StarGAN-
based method were relatively close to those of real speech over
the entire frequency range, thanks to both an adversarial training
strategy and a fully convolutional architecture design. By con-
trast, the modulation spectra obtained with the VAE-based and
VAEGAN-based methods were relatively distant from those of
real speech. This could be because these methods employed
frame-independent models, which were incapable of captur-
ing temporal dependencies. Even though the VAEGAN-based
method uses adversarial training for model training, it will have
a limited effect on obtaining realistic modulation spectra as long
as the model is incapable of learning temporal dependencies.

It is interesting to compare the modulation spectra obtained
with ACVAE (mean/diff/sampling). As can be seen from Fig. 7,
the spectral detail transplanting process and the random sam-
pling process exhibited similar effects in recovering realistic
modulation spectra especially in the higher frequency range.

G. Subjective Listening Tests

We conducted a mean opinion score (MOS) test to compare
the sound quality of the converted speech samples obtained
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TABLE VI
COMPARISONS WITH THE CONVENTIONAL NON-PARALLEL AND PARALLEL METHODS

Fig. 7. Average modulation spectra of the 5-th, 10-th and 20-th dimensions of the converted MCC sequences obtained with the baseline methods and the proposed
method with and without spectral detail transplantation.

with the proposed and baseline methods. We also conducted
ABX tests to compare the similarity to the target speaker of
the converted speech samples, where “A” and “B” were con-
verted speech samples obtained with the proposed and baseline
methods, respectively, and “X” was a real speech sample of the

target speaker. Here, we use the abbreviations ACVAE and AC-
VAE+ to indicate the proposed method using Eqs. (16) and (18)
for the conversion process. With the sound quality test, we in-
cluded real speech samples and the converted speech samples
obtained with the proposed method with and without spectral
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Fig. 8. Results of the MOS test for sound quality.

Fig. 9. Results of the ABX test for speaker similarity.

detail transplantation, namely ACVAE and ACVAE+, respec-
tively, and all the baseline methods, namely the VAE-based,
VAEGAN-based and StarGAN-based methods and sprocket in
the stimuli. With the speaker similarity tests, we chose the
VAEGAN-based method and sprocket as the baseline methods.
With all these listening tests, speech samples were presented
in random orders to eliminate bias as regards the order of the
stimuli. Ten listeners participated in our listening tests. For the
MOS test of sound quality, each listener was presented 7× 10
utterances and asked to evaluate the naturalness by selecting “5:
Excellent”, “4: Good”, “3: Fair”, “2: Poor”, or “1: Bad” for each
utterance. For the ABX tests of speaker similarity, each listener
was presented {“A”, “B”, “X”}× 24 utterances and asked to lis-
ten beyond any audio distortion, concentrate on identifying the
voice, and evaluate which of the two was more likely to be pro-
duced by the speaker of X by selecting “A”, “B” or “fair” for each
utterance. The results are shown in Figs. 8 and 9. According to
the two-sided Mann-Whitney test performed on the MOS scores
for each method pair, the p-values for all the pairs except for the
ACVAE and ACVEA+ pair were less than 0.05, indicating that
the proposed method significantly outperformed all the baseline
non-parallel VC methods (namely, VAE, VAWGAN and Star-
GAN) in terms of sound quality. It should be noted that the best
choice for the architecture design and hyperparameter setting for
the StarGAN-based method are currently under investigation,
and so the current performance may not do it full justice. We
also confirmed that the proposed method could not yield higher

sound quality than sprocket. Given the fact that the proposed
method outperformed sprocket in terms of the MCD measure,
this result may indicate the possibility that the use of different
implementations for the vocoding systems including the F0 es-
timation modules has caused a difference in the sound quality.
Another finding was that the MOS scores obtained with ACVAE
and ACVAE+ were comparable to each other, indicating that the
effect of spectral detail transplantation was marginal. According
to a binomial test with a 1/3 test proportion performed on the
result of the target speaker similarity comparison between the
proposed method and VAWGAN, the p-values for the choices of
A and B were less than 0.05, indicating that the preference for the
proposed method was statistically significant. As for the com-
parison between the proposed method and sprocket, the p-value
for each of the choices was greater than 0.05, indicating that
none of the choices were statistically significant. This result is
noteworthy considering the fact that sprocket had the advantage
of using parallel data for the model training. Since the proposed
method is already advantageous in that it can be applied in non-
parallel training scenarios, we consider the current result to be
promising.

Audio samples generated using the proposed method are pro-
vided at [65].

V. CONCLUSIONS

This paper proposed a non-parallel VC method using a VAE
variant called an auxiliary classifier VAE (ACVAE). The pro-
posed method has two key features. First, we adopted fully
convolutional architectures to construct the encoder and de-
coder networks so that the networks could learn conversion
rules that capture time dependencies in the acoustic feature se-
quences of source and target speech. Second, we proposed using
information-theoretic regularization for the model training to en-
sure that the information in the latent attribute label would not be
lost in the generation process. We also presented several ways of
converting the feature sequence of input speech using the trained
encoder and decoder. Through objective evaluation experiments
on a non-parallel speaker identity conversion task, we confirmed
the individual effect of each of these ideas and showed that the
proposed method obtained smaller MCDs than baseline meth-
ods including a parallel VC method. By undertaking subjective
evaluation experiments, we showed that the proposed method
obtained higher sound quality and speaker similarity than the
VAEGAN-based method.

As with the best performing systems [66] in VCC 2018, we
are interested in incorporating a neural vocoder in our system in
place of the WORLD vocoder to realize further improvements
in sound quality.

Note that a preprint version of this work is provided at [1].
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