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An End-to-End Neural Network for Polyphonic
Piano Music Transcription

Siddharth Sigtia, Emmanouil Benetos, Member, IEEE, and Simon Dixon

Abstract—We present a supervised neural network model for
polyphonic piano music transcription. The architecture of the
proposed model is analogous to speech recognition systems and
comprises an acoustic model and a music language model. The
acoustic model is a neural network used for estimating the prob-
abilities of pitches in a frame of audio. The language model is a
recurrent neural network that models the correlations between
pitch combinations over time. The proposed model is general
and can be used to transcribe polyphonic music without impos-
ing any constraints on the polyphony. The acoustic and language
model predictions are combined using a probabilistic graphical
model. Inference over the output variables is performed using the
beam search algorithm. We perform two sets of experiments. We
investigate various neural network architectures for the acous-
tic models and also investigate the effect of combining acoustic
and music language model predictions using the proposed archi-
tecture. We compare performance of the neural network-based
acoustic models with two popular unsupervised acoustic models.
Results show that convolutional neural network acoustic mod-
els yield the best performance across all evaluation metrics. We
also observe improved performance with the application of the
music language models. Finally, we present an efficient variant of
beam search that improves performance and reduces run-times
by an order of magnitude, making the model suitable for real-time
applications.

Index Terms—Automatic music transcription, deep learning,
recurrent neural networks, music language models.

1. INTRODUCTION

UTOMATIC Music Transcription (AMT) is a fundamen-

tal problem in Music Information Retrieval (MIR). AMT
aims to generate a symbolic, score-like transcription, given a
polyphonic acoustic signal. Music transcription is considered to
be a difficult problem even by human experts and current music
transcription systems fail to match human performance [1].
Polyphonic AMT is a difficult problem because concurrently
sounding notes from one or more instruments cause a com-
plex interaction and overlap of harmonics in the acoustic signal.
Variability in the input signal also depends on the specific type
of instrument being used. Additionally, AMT systems with
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unconstrained polyphony have a combinatorially very large out-
put space, which further complicates the modeling problem.
Typically, variability in the input signal is captured by mod-
els that aim to learn the timbral properties of the instrument
being transcribed [2], [3], while the issues relating to a large
output space are dealt with by constraining the models to have
a maximum polyphony [4], [5].

The majority of current AMT systems are based on the
principle of describing the input magnitude spectrogram as
a weighted combination of basis spectra corresponding to
pitches. The basis spectra can be estimated by various tech-
niques such as non-negative matrix factorisation (NMF) and
sparse decomposition. Unsupervised NMF approaches [6], [7]
aim to learn a dictionary of pitch spectra from the train-
ing examples. However purely unsupervised approaches can
often lead to bases that do not correspond to musical pitches,
therefore causing issues with interpreting the results at test
time. These issues with unsupervised spectrogram factorisation
methods are addressed by incorporating harmonic constraints in
the training algorithm [8], [9]. Spectrogram factorisation based
techniques were extended with the introduction of probabilis-
tic latent component analysis (PLCA) [10]. PLCA aims to fit a
latent variable probabilistic model to normalised spectrograms.
PLCA based models are easy to train with the expectation-
maximisation (EM) algorithm and have been extended and
applied extensively to AMT problems [3], [11].

As an alternative to spectrogram factorisation tech-
niques, there has been considerable interest in discriminative
approaches to AMT. Discriminative approaches aim to directly
classify features extracted from frames of audio to the out-
put pitches. This approach has the advantage that instead of
constructing instrument specific generative models, complex
classifiers can be trained using large amounts of training data
to capture the variability in the inputs. When using discrimina-
tive approaches, the performance of the classifiers is dependent
on the features extracted from the signal. Recently, neural
networks have been applied to raw data or low level representa-
tions to jointly learn the features and classifiers for a task [12].
Over the years there have been many experiments that evaluate
discriminative approaches for AMT. Poliner and Ellis [13] use
support vector machines (SVMs) to classify normalised magni-
tude spectra. Nam et. al. [14] superimpose an SVM on top of a
deep belief network (DBN) in order to learn the features for an
AMT task. Similarly, a bi-directional recurrent neural network
(RNN) is applied to magnitude spectrograms for polyphonic
transcription in [15].

In large vocabulary speech recognition systems, the informa-
tion contained in the acoustic signal alone is often not sufficient
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to resolve ambiguities between possible outputs. A language
model is used to provide a prior probability of the current word
given the previous words in a sentence. Statistical language
models are essential for large vocabulary speech recognition
[16]. Similarly to speech, musical sequences exhibit tempo-
ral structure. In addition to an accurate acoustic model, a
model that captures the temporal structure of music or a music
language model (MLM), can potentially help improve the per-
formance of AMT systems. Unlike speech, language models
are not common in most AMT models due to the challenging
problem of modelling the combinatorially large output space of
polyphonic music. Typically, the outputs of the acoustic models
are processed by pitch specific, two-state hidden Markov mod-
els (HMMs) that enforce smoothing and duration constraints
on the output pitches [3], [13]. However, extending this to
modelling the high-dimensional outputs of a polyphonic AMT
system has proved to be challenging, although there are some
studies that explore this idea. A dynamic Bayesian network is
used in [17], to estimate prior probabilities of note combina-
tions in an NMF based transcription framework. Similarly in
[18], a recurrent neural network (RNN) based MLM is used
to estimate prior probabilities of note sequences, alongside a
PLCA acoustic model. A sequence transduction framework is
proposed in [19], where the acoustic and language models are
combined in a single RNN.

The ideas presented in this paper are extensions of the
preliminary experiments in [20]. We propose an end-to-end
architecture for jointly training both the acoustic and the lan-
guage models for an AMT task. We evaluate the performance
of the proposed model on a dataset of polyphonic piano music.
We train neural network acoustic models to identify the pitches
in a frame of audio. The discriminative classifiers can in theory
be trained on complex mixtures of instrument sources, without
having to account for each instrument separately. The neural
network classifiers can be directly applied to the time-frequency
representation, eliminating the need for a separate feature
extraction stage. In addition to the deep feed-forward neural
network (DNN) and RNN architectures in [20], we explore
using convolutional neural nets (ConvNets) as acoustic models.
ConvNets were initially proposed as classifiers for object recog-
nition in computer vision, but have found increasing application
in speech recognition [21], [22]. Although ConvNets have been
applied to some problems in MIR [23], [24], they remain unex-
plored for transcription tasks. We also include comparisons
with two state-of-the-art spectrogram factorisation based acous-
tic models [3], [8] that are popular in AMT literature. As
mentioned before, the high dimensional outputs of the acoustic
model pose a challenging problem for language modelling. We
propose using RNNs as an alternative to state space models like
factorial HMMs [25] and dynamic Bayesian networks [17], for
modeling the temporal structure of notes in music. RNN based
language models were first used alongside a PLCA acoustic
model in [18]. However, in that setup, the language model is
used to iteratively refine the predictions in a feedback loop
resulting in a non-causal and theoretically unsatisfactory model.
In the hybrid framework, approximate inference over the out-
put variables is performed using beam search. However beam
search can be computationally expensive when used to decode

long temporal sequences. We apply the efficient hashed beam
search algorithm proposed in [26] for inference. The new infer-
ence algorithm reduces decoding time by an order of magnitude
and makes the proposed model suitable for real-time appli-
cations. Our results show that convolutional neural network
acoustic models outperform the remaining acoustic models over
a number of evaluation metrics. We also observe improved
performance with the application of the music language
models.

The rest of the paper is organised as follows: Section II
describes the neural network models used in the experiment,
Section III discusses the proposed model and the inference
algorithm, Section IV details model evaluation and experi-
mental results. Discussion, future work and conclusions are
presented in Section V.

II. BACKGROUND

In this section we describe the neural network models used
for the acoustic and language modelling. Although neural net-
works are an old concept, they have recently been applied to
a wide range of machine learning problems with great suc-
cess [12]. One of the primary reasons for their recent success
has been the availability of large datasets and large-scale com-
puting infrastructure [27], which makes it feasible to train
networks with millions of parameters. The parameters of any
neural network architecture are typically estimated with numer-
ical optimisation techniques. Once a suitable cost function
has been defined, the derivatives of the cost with respect to
the model parameters are found using the backpropagation
algorithm [28] and parameters are updated using stochastic
gradient descent (SGD) [29]. SGD has the useful property
that the model parameters are iteratively updated using small
batches of data. This allows the training algorithm to scale
to very large datasets. The layered, hierarchical structure of
neural nets makes end-to-end training possible, which implies
that the network can be trained to predict outputs from low-
level inputs without extracting features. This is in contrast
to many other machine learning models whose performance
is dependent on the features extracted from the data. Their
ability to jointly learn feature transformations and classifiers
makes neural networks particularly well suited to problems in
MIR [30].

A. Acoustic Models

1) Deep Neural Networks: DNNs are powerful machine
learning models that can be used for classification and regres-
sion tasks. DNNs are characterised by having one or more
layers of non-linear transformations. Formally, one layer of a
DNN performs the following transformation:

hiyr = f(Wihy + by). (1

In Equation (1), W;, b; are the weight matrix and bias for
layer [, 0 <[ < L and f is some non-linear function that is
applied element-wise. For the first layer, hy = x, where z is
the input. In all our experiments, we fix f to be the sigmoid
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Fig. 1. Neural network architectures for acoustic modelling.

function (f(z) = H_%) The output of the final layer Ay, is
transformed according to the given problem to yield a posterior
probability distribution over the output variables P(y|x, #). The
parameters 0 = {IV, bl}g , are numerically estimated with the
backpropagation algorithm and SGD. Figure 1a shows a graph-
ical representation of the DNN architecture, the dashed arrows
represent intermediate hidden layers. For acoustic modelling,
the input to the DNN is a frame of features, for example a mag-
nitude spectrogram or the constant Q transform (CQT) and the
DNN is trained to predict the probability of pitches present in
the frame p(y:|z+) at some time .

2) Recurrent Neural Networks: DNNs are good classifiers
for stationary data, like images. However, they are not designed
to account for sequential data. RNNs are natural extensions of
DNNs, designed to handle sequential or temporal data. This
makes them more suited for AMT tasks, since consecutive
frames of audio exhibit both short-term and long-term temporal
patterns [31]. RNNs are characterised by recursive connections
between the hidden layer activations at some time ¢ and the hid-
den layer activations at t — 1, as shown in Figure 1b. Formally,
the hidden layer of an RNN at time ¢ performs the following
computation:

hivy = FOW/hE+ Wh =+ by). )

In Equation (2), Wlf is the weight matrix from the input to
the hidden units, W} is the weight matrix for the recurrent con-
nection and b; are the biases for layer /. From Equation (2),
we can see that the recursive update of the hidden state at time
t, implies that h; is implicitly a function of all the inputs till
time t, 336. Similar to DNNs, RNNs are made up of one or more
layers of hidden units. The outputs of the final layer are trans-
formed with a suitable function to yield the desired distribution

L
over the ouputs. The RNN parameters 6 = {Wlf W, bl}
are calculated using the back propagation through time alg(g)-
rithm (BPTT) [32] and SGD. For acoustic modelling, the
RNN acts on a sequence of input features to yield a prob-
ability distribution over the outputs P(y|x}), where zf =
{-To,il'h ey xt}'

3) Convolutional Networks: ConvNets are neural nets with
a unique structure. Convolutional layers are specifically
designed to preserve the spatial structure of the inputs. In a con-
volutional layer, a set of weights act on a local region of the
input. These weights are then repeatedly applied to the entire
input to produce a feature map. Convolutional layers are char-
acterised by the sharing of weights across the entire input. As
shown in Figure 1c, ConvNets are comprised of alternating con-
volutional and pooling layers, followed by one or more fully
connected layers (same as DNNs). Formally, the repeated appli-
cation of the shared weights to the input signal constitutes a
convolution operation:

hjk = f <Z Wi iTrik—1+ bj) . 3)

The input z is a vector of inputs from different chan-
nels, for example RGB channels for images. Formally, x =
{xo, 1, ...}, where each input x; represents an input channel.
Each input band z; has an associated weight matrix. All the
weights of a convolutional layer are collectively represented
as a four dimensional tensor. Given an m X n region from
a feature map h, the max pooling function returns the maxi-
mum activation in the region. At any time ¢, the input to the
ConvNet is a window of 2k + 1 feature frames =/ }. The out-
puts of the final layer yield the posterior distribution distribution
Py 5)-

There are several motivations for using ConvNets for acous-
tic modelling. There are many experiments in MIR that suggest
that rather than classifying a single frame of input, better predic-
tion accuracies can be achieved by incorporating information
over several frames of inputs [26], [33], [34]. Typically, this
is achieved either by applying a context window around the
input frame or by aggregating information over time by calcu-
lating statistical moments over a window of frames. Applying
a context window around a frame of low level spectral features,
like the short time fourier transform (STFT) would lead to a
very high dimensional input, which is impractical. Secondly,
taking mean, standard deviation or other statistical moments
makes very simplistic assumptions about the distribution of
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data over time in neighbouring frames. ConvNets, due to their
architecture [12], can be directly applied to several frames of
inputs to learn features along both, the time and the frequency
axes. Additionally, when using an input representation like
the CQT, ConvNets can learn pitch-invariant features, since
inter-harmonic spacings in music signals are constant across
log-frequency. Finally, the weight sharing and pooling architec-
ture leads to a reduction in the number of ConvNet parameters,
compared to a fully connected DNN. This is a useful property
given that very large quantities of labelled data are difficult to
obtain for most MIR problems, including AMT.

B. Music Language Models

Given a sequence y = yj;, we use the MLM to define a prior
probability distribution P(y). y; is a high-dimensional binary
vector that represents the notes being played at ¢ (one time-step
of a piano-roll representation). The high dimensional nature
of the output space makes modelling y; a challenging prob-
lem. Most post-processing algorithms make the simplifying
assumption that all the pitches are independent and model their
temporal evolution with independent models [13]. However,
for polyphonic music, the pitches that are active concurrently
are highly correlated (harmonies, chords). In this section, we
describe the RNN music language models first introduced
in [35].

1) Generative RNN: The RNNs defined in the earlier sec-
tions were used to map a sequence of inputs x to a sequence of
outputs y. At each time-step ¢, the RNN outputs the conditional
distribution P(y;|zf). However RNNs can be used to define a
distribution over some sequence y by connecting the outputs of
the RNN at ¢t — 1 to the inputs of the RNN at ¢, resulting in a
distribution of the form:

P(y) = P(yo) [ Pluelws™) @
t>0

Although an RNN predicts y; conditioned on the high
dimensional inputs y ', the individual pitch outputs y; ()
are independent, where ¢ is the pitch index (Section IV-C).
As mentioned earlier, this is not true for polyphonic music.
Boulanger-Lewandowski et. al. [35] demonstrate that rather
than predicting independent distributions, the parameters of a
more complicated parametric output distribution can be condi-
tioned on the RNN hidden state. In our experiments, we use the
RNN to output the biases of a neural autoregressive distribution
estimator (NADE) [35].

2) Neural Autogressive Distribution Estimator: The NADE
is a distribution estimator for high dimensional binary data
[36]. The NADE was initially proposed as a tractable alterna-
tive to the restricted Boltzmann machine (RBM). The NADE
estimates the joint distribution over high dimensional binary
variables as follows:

P(a) = [] Plailai ™).

The NADE is similar to a fully visible sigmoid belief network
[37], since the conditional probability of z; is a non-linear

function of z}. The NADE computes the conditional distribu-
tions according to:

hi U(W,<il'é)71+bh) (5)
P(xi|xi™) = o(Vih; + 1) (6)

where W,V are weight matrices, W. .; is a submatrix of W
that denotes the first ¢ — 1 columns and by, b, are the hidden
and visible biases, respectively. The gradients of the likeli-
hood function P(z) with respect to the model parameters § =
{W,V, by, b, } can be found exactly, which is not possible with
RBMs [36]. This property allows the NADE to be readily com-
bined with other models and the models can be jointly trained
with gradient based optimisers.

3) RNN-NADE: 1In order to learn high dimensional, tem-
poral distributions for the MLM, we combine the NADE and
an RNN, as proposed in [35]. The resulting model yields a
sequence of NADEs conditioned on an RNN, that describe
a distribution over sequences of polyphonic music. The joint
model is obtained by letting the parameters of the NADE
at each time step be a function of the RNN hidden state
0% apr = f(ht). hy is the hidden state of final layer of the
RNN (Equation (2)) at time ¢. In order to limit the number of
free parameters in the model, we only allow the NADE biases
to be functions of the RNN hidden state, while the remaining
parameters (W, V') are held constant over time. We compute
the NADE biases as a linear transformation of the RNN hidden
state plus an added bias term [35]:

b, = by + Wik, )
b = by + Wah, @®)

W1 and Wy are weight matrices from the RNN hidden state
to the visible and hidden biases, respectively. The gradients
with respect to all the model parameters can be easily com-
puted using the chain rule and the joint model is trained using
the BPTT algorithm [35].

III. PROPOSED MODEL

In this section we review the proposed neural network model
for polyphonic AMT. As mentioned earlier, the model com-
prises an acoustic model and a music language model. In
addition to the acoustic models in [20], we propose the use
of ConvNets for identifying pitches present in the input audio
signal and compare their performance to various other acous-
tic models (Section IV-F). The acoustic and language models
are combined under a single training objective using a hybrid
RNN architecture, yielding an end-to-end model for AMT with
unconstrained polyphony. We first describe the hybrid RNN
model, followed by a description of the proposed inference
algorithm.

A. Hybrid RNN

The hybrid RNN is a graphical model that combines the
predictions of any arbitrary frame level acoustic model, with
an RNN-based language model. Let z = x be a sequence of
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Fig. 2. Graphical Model of the Hybrid Architecture.

inputs and let y = y be the corresponding transcriptions. The
joint probability of y, x can be factorised as follows:

P(y,z) = P(yo...yr,zo...27) €)

T
= P(yo)P(zolyo) H (welys™ ) P(elyr).

The factorisation in Equation (9) makes the following indepen-
dence assumptions:

Plylys "t agh) =

(xt|y0,x0 1) =

P(yt|y0 1)
P(z¢|y:)

(10)
(1)

These independence assumptions are similar to the assump-
tions made in HMMs [38]. Figure 2 is a graphical represen-
tation of the hybrid model. In equation (9), P(z:|y;) is the
emission probability of an input, given output y;. Using Bayes’s
rule, the conditional distribution can be written as follows:

T
P(ylx) oc P(yolxo) HP velye D P(elae), (12
=1

where the marginals P(y;) and priors P(yg), P(xzo) are
assumed to be fixed w.r.t. the model parameters.

With this reformulation of the joint distribution, we observe
that the conditional distribution P(y|x) is directly propor-
tional to the product of two distributions. The prior distribution
P(y;|ys ") is obtained using a generative RNN (Section II-B1)
and the posterior distribution over note-combinations P (y;|x)
can be modelled using any frame based classifier. The hybrid
RNN graphical model is similar to an HMM, where the state
transition probabilities for the HMM P(y:|y:—1) have been
generalised to include connections from all previous outputs,
resulting in the P(y, |y, ") terms in Equation (12).

For the problem of automatic music transcription, the input
time-frequency representation forms the input sequence =z,
while the output piano-roll sequence y denotes the transcrip-
tions. The priors P(y:|y,~") are obtained from the RNN-
NADE MLM, while the posterior distributions P(y;|x;) are
obtained from the acoustic models. The models can then be
trained by finding the derivatives of the acoustic and language
model objectives with respect to the model parameters and
training using gradient descent. The independent training of the
acoustic and language models is a useful property since datasets
available for music transcription are considerably smaller in

size as compared to datasets in computer vision and speech.
However large corpora of MIDI music are relatively easy to find
on the internet. Therefore in theory, the MLMs can be trained
on large corpora of MIDI music, analogous to language model
training in speech.

B. Inference

At test time, we would like to find the mode of the conditional
output distribution:

y* = argmax P(y|z) (13)
From Equation (12), we observe that the priors P(y:|y5 "),
tie the predictions of the acoustic model P(y;|x;) to all the
predictions made till time ¢. This prior term encourages coher-
ence between predictions over time and allows musicological
structure learnt by the language models to influence succes-
sive predictions. However, this more general structure leads
to a more complex inference (or decoding) procedure at test
time. This is due to the fact that at time ¢, the history y(tfl has
not been optimally determined. Therefore, the optimum choice
of y; depends on all the past model predictions. Proceeding
greedily in a chronological manner by selecting ¥, that opti-
mises P(y;|x;) does not necessarily yield good solutions. We
are interested in solutions that globally optimise p(y|x). But
exhaustively searching for the best sequence is intractable since
the number of possible configurations of y; is exponential in the
number of output pitches (2" for n pitches).

Beam search is a graph search algorithm that is commonly
used to decode the conditional outputs of an RNN [19], [26],
[39]. Beam search scales to arbitrarily long sequences and the
computational cost versus accuracy trade-off can be controlled
via the width of the beam. The inference algorithm is comprised
of the following steps: at any time ¢, the algorithm maintains
at most w partial solutions, where w is the beam width or the
beam capacity. The solutions in the beam at ¢ correspond to
sub-sequences of length t. Next, all possible descendants of
the w partial solutions in the beam are enumerated and then
sorted in decreasing order of log-likelihood. From these candi-
date solutions, the top w solutions are retained as beam entries
for further search. Beam search can be readily applied to prob-
lems where the number of candidate solutions at each step is
limited, like speech recognition [40] and audio chord estima-
tion [26]. However, using beam search for decoding sequences
with a large output space is prohibitively inefficient.

When the space of candidate solutions is large, the algorithm
can be constrained to consider only K new candidates for each
partial solution in the beam, where K is known as the branch-
ing factor. The procedure for selecting the K candidates can
be designed according to the given problem. For the hybrid
architecture, from Equation (12) we note:

YYP(ylyg )Pyl we)

At time ¢, the partial solutions in the beam correspond to
configurations of y.~'. Therefore given P(y, 'zfi™!), the
K configurations that maximise P(y:|y5 ") P(y:|z;) would
be a suitable choice of candidates for y;. However for many

P(yplzg) oc Pyg g (14)
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Algorithm 1. High Dimensional Beam Search

Algorithm 2. Description of beam objects given w, fp,, k

Find the most likely sequence y given x with a beam width w
and branching factor K.
beam <— new beam object
beam.insert(0, {})
fort=1toT do
new_beam <— new beam object
for [, s, m,, m; in beam do
for k = 1to K do
y' = my.next_most_probable()
' =log Pi(y'|s)Pua(y'|z:) — log P(y')
mj < my withy, :== 3/
ml < mg with 1= 2414
new_beam.insert(l + ', {s,y' },mq,my)
beam < new_beam
return beam.pop()

families of distributions, it might not be possible to enumerate
y; in decreasing order of likelihood. In [19], the authors
propose forming a pool of K candidates by drawing random
samples from the conditional output distributions. However,
random sampling can be inefficient and obtaining independent
samples can be very expensive for many types of distributions.
As an alternative, we propose to sample solutions from the
posterior distribution of the acoustic model P(y:|x;) [20].
There are 2 main motivations for doing this. Firstly, the outputs
of the acoustic model are independent class probabilities.
Therefore, it is easy to enumerate samples in decreasing order
of log-likelihood [19]. Secondly, we avoid the accumulation
of errors in the RNN predictions over time [41]. The RNN
models are trained to predict y;, given the frue outputs yf)*l.
However at test time, outputs sampled from the RNN are fed
back as inputs at the next time step. This discrepancy between
the training and test objectives can cause prediction errors to
accumulate over time.

Although generating candidates from the acoustic model
yields good results, it requires the use of large beam widths.
This makes the inference procedure computationally slow and
unsuitable for real-time applications [20]. In this study, we pro-
pose using the hashed beam search algorithm proposed in [26].
Beam search is fundamentally limited when decoding long tem-
poral sequences. This is due to the fact that solutions that differ
at only a few time-steps, can saturate the beam. This causes
the algorithm to search a very limited space of possible solu-
tions. This issue can be solved by efficient pruning. The hashed
beam search algorithm improves efficiency by pruning solu-
tions that are similar to solutions with a higher likelihood. The
metric that determines the similarity of sequences can be cho-
sen in a problem dependent manner and is encoded in the form
of a locality sensitive hash function [26]. In Algorithm 1, we
outline the beam search algorithm algorithm used for our exper-
iments, while Algorithm 2 describes the hash table beam object.
In Algorithms 1 and 2, s is a sequence v, [ is log-likelihood of
s, mgq, my are acoustic and language model objects and f, is
the hash function.

There are two key differences between Algorithm 1 and the
algorithm in [20]. First, the priority queue that stores the beam

Initialise beam object
beam.hashQ = defaultdict of priority queues™
beam.queue = indexed priority queue of length w**
Insert [, s into beam
key= fu(s)
queue = beam.queue
hashQ = beam.hashQ[key]
fits_in_queue = not queue.full() or [ >queue.min()
fits_in_hashQ = not hashQ.full() or /[ >hashQ.min()
if fits_in_queue and fits_in_hashQ then
hashQ.insert(l, s)
if hashQ.overfull() then
item = hashQ.del_min()
queue.remove(item)
queue.insert(l, s)
if queue.overfull() then
item = queue.del_min()
beam.hashQ][ f3, (item.s)].remove(item)
* A priority queue of length £ maintains the top k entries at all
times.
** An indexed priority queue allows efficient random access
and deletion.

is replaced by a hash table beam object (see Algorithm 2).
Secondly, for each entry in the beam we evaluate K candidate
solutions. This is in contrast to the algorithm in [20], where
once the beam is full, only w candidate solutions are evalu-
ated per iteration. It might appear that the hashed beam search
algorithm might be more expensive, since it evaluates w * K
candidates instead of w candidates. However, by efficiently
pruning similar solutions, the algorithm yields better results for
much smaller values of w, resulting in a significant increase in
efficiency (Section I'V-F, Figure 3).

Algorithm 2 describes the hash table beam object. The
hashed beam search algorithm offers several advantages
compared to the standard beam search algorithm. The notion
of similarity of solutions can be encoded in the form of hash
functions. For music transcription, we choose the similarity
function to be the last n frames in a sequence s. n = 1 cor-
responds to a dynamic programming like decoding (similar to
HMMs) where all sequences with the same final state y, are
considered to be equivalent, and the sequence with the high-
est log-likelihood is retained. n = len(sequence) corresponds to
regular beam search. Additionally, the hash beam search algo-
rithm can maintain > 1 solution per hash key through a process
called chaining [42].

IV. EVALUATION

In this section we describe how the performance of the
proposed model is evaluated for a polyphonic transcription task.

A. Dataset

We evaluate the proposed model on the MAPS dataset [43].
The dataset consists of audio and corresponding annotations for



SIGTIA et al.: END-TO-END NEURAL NETWORK FOR POLYPHONIC PIANO MUSIC TRANSCRIPTION 933

isolated sounds, chords and complete pieces of piano music. For
our experiments, we use only the full musical pieces for train-
ing and testing the neural network acoustic models and MLMs.
The dataset consists of 270 pieces of classical music and MIDI
annotations. There are 9 categories of recordings correspond-
ing to different piano types and recording conditions, with 30
recordings per category. 7 categories of audio are produced
by software piano synthesisers, while 2 sets of recordings are
obtained from a Yamaha Disklavier upright piano. Therefore
the dataset consists of 210 synthesised recordings and 60 real
recordings.

We perform 2 sets of investigations in this paper. The first set
of experiments investigate the effect of the RNN MLMs on the
predictions of the acoustic models. For this task, we divide the
entire dataset set into 4 disjoint train/test splits, as to ensure that
the folds are music piece-independent. Specifically, for some of
the musical pieces in the dataset, audio for each piece is ren-
dered using more than one piano. Therefore while creating the
splits, we ensure that the training and test data do not contain
any overlapping pieces!. For each split, we select 80% of the
data for training (216 musical pieces) and the remaining for
testing (54 pieces). From each training split, we hold out 26
tracks as a validation set for selecting the hyper-parameters for
the training algorithm (Section IV-D). All the reported results
are mean values of the evaluation metrics over the 4 splits.
From now on, this evaluation configuration will be named as
Configuration 1.

Although the above experimental setup is useful for inves-
tigating the effectiveness of the RNN MLMs, the training set
contains examples from piano models which are used for test-
ing. This is usually not true in practice, where the instrument
models/sources at test time are unknown and usually do not
coincide with the instruments used for training. A majority
of experiments with the MAPS dataset train and test model
on disjoint instrument types [2], [3], [44]. We thus perform
a second set of experiments to compare performance of the
different neural network acoustic models in a more realistic
setting. We train the acoustic models using the 210 tracks cre-
ated using synthesized pianos (180 tracks for training and 30
tracks for validation) and we test the acoustic models on the
60 audio recordings obtained from Yamaha Disklavier piano
recordings (models ‘ENSTDkAm’ and ‘ENSTDKCI’ in the
MAPS database). In this experiment, we do not apply the
language models since the train and test sets contain overlap-
ping musical pieces. In addition to the neural network acoustic
models, we include comparisons with two state-of-the-art unsu-
pervised acoustic models [3], [8] for both experiments. This
instrument source-independent evaluation configuration will be
named from now on as Configuration 2.

B. Metrics

We use both frame and note based metrics to assess the per-
formance of the proposed system [45]. Frame-based evaluations
are made by comparing the transcribed binary output and the
MIDI ground truth frame-by-frame. For note-based evaluation,

"Details available at: http://www.eecs.qmul.ac.uk/ sss31/TASLP/info.html

the system returns a list of notes, along with the corresponding
pitches, onset and offset time. We use the F-measure, precision,
recall and accuracy for both frame and note based evaluation.
Formally, the frame-based metrics are defined as:

a TP[]
P= ; TP[t] + FP{]

« TP[t]
R= ; TPl + FN[]

T
_ TPt
A= ; TP[t]+ FP[t]+ FN[t]
2xPxR
=%

where TP[t] is the number of true positives for the event at ¢,
FP is the number of false positives and FN is the number of
false negatives. The summation over 7' is carried out over the
entire test data. Similarly, analogous note-based metrics can be
defined [45]. A note event is assumed to be correct if its pre-
dicted pitch onset is within a £50 ms range of the ground truth
onset.

C. Preprocessing

We transform the input audio to a time-frequency representa-
tion which is then input to the acoustic models. In [20], we used
the magnitude short-time Fourier transform (STFT) as input
to the acoustic models. However, here we experiment with the
constant Q transform (CQT) as the input representation. There
are two motivations for this. Firstly, the CQT is fundamentally
better suited as a time-frequency representation for music sig-
nals, since the frequency axis is linear in pitch [46]. Another
advantage of using the CQT is that the resulting representa-
tion is much lower dimensional than the STFT. Having a lower
dimensional representation is useful when using neural network
acoustic models as it reduces the number of parameters in the
model.

We downsample the audio to 16 kHz from 44.1 kHz. We then
compute CQTs over 7 octaves with 36 bins per octave and a
hop size of 512 samples, resulting in a 252 dimensional input
vector of real values, with a frame rate of 31.25 frames per sec-
ond. Additionally, we compute the mean and standard deviation
of each dimension over the training set and transform the data
by subtracting the mean and diving by the standard deviation.
These pre-processed vectors are used as inputs to the acoustic
model. For the language model training, we sample the MIDI
ground truth transcriptions of the training data at the same rate
as the audio (32 ms). We obtain sequences of 88 dimensional
binary vectors for training the RNN-NADE language models.
The 88 outputs correspond to notes A0-C8 on a piano.

The test audio is sampled at a frame rate of 100 Hz yielding
100 % 30 = 3000 frames per test file. For 54 test files over 4
splits, we obtain a total of 648, 000 frames at test time?.

21t should be noted that carrying out statistical significance tests on a track
level is an over-simplification in the context of multi-pitch detection, as argued
in [47].
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D. Network Training

In this section we describe the details of the training pro-
cedure for the various acoustic model architectures and the
RNN-NADE language model. All the acoustic models have
88 units in the output layer, corresponding to the 88 out-
put pitches. The outputs of the final layer are transformed by
a sigmoid function and yield independent pitch probabilities
P(y:(i) = 1]z). All the models are trained by maximising the
log-likelihood over all the examples in the training set.

1) DNN Acoustic Models: For DNN training, we constrain
all the hidden layers of the model to have the same number
of units to simplify searching for good model architectures.
We perform a grid search over the following parameters:
number of layers L € {1,2,3,4}, number of hidden units
H € {25,50,100, 125, 150, 200, 250}, hidden unit activations
act € {ReLU, sigmoid} where ReLU is the rectified linear
unit activation function [48]. We found Dropout [49] to be
essential for improving generalisation performance. A Dropout
rate of 0.3 was used for the input layer and all the hid-
den layers of the network. Rather than using learning rate
and momentum update schedules, we use ADADELTA [50]
to adapt the learning over iterations. In addition to Dropout,
we use early stopping to minimise overfitting. Training was
stopped if the cost over the validation set did not decrease for
20 epochs. We used mini batches of size 100 for the SGD
updates.

2) RNN Acoustic Models: For RNN training, we constrain
all the hidden layers to have the same number of units. We per-
form a grid search over the following parameters: L € {1,2, 3},
H e {25,50,100, 150, 200, 250}. We fix the hidden activations
of the recurrent layers to be the hyperbolic tangent function.
We found that ADADELTA was not particularly well suited for
training RNNs. We use an initial learning rate of 0.001 and
linearly decrease it to O over 1000 iterations. We use a con-
stant momentum rate of 0.9. The training sequences are further
divided into sub-sequences of length 100. The SGD updates are
made one sub-sequence at a time, without any mini batching.
Similar to the DNNs, we use early stopping and stop training
if validation cost does not decrease after 20 iterations. In order
to prevent gradient explosion in the early stages of training, we
use gradient clipping [51]. We clipped the gradients, when the
norm of the gradient was greater than 5.

3) ConvNet Acoustic Models: The input to the ConvNet
is a context window of frames and the target is the central
frame in the window [26]. The frames at the beginning and
end of the audio are zero padded so that a context window
can be applied to each frame. Although pooling can be per-
formed along both axes, we only perform pooling over the
frequency axis. We performed a grid search over the fol-
lowing parameters: window size ws € {3,5,7,9} number of
convolutional layers L. € {1,2,3,4}, number of filters per
layer n; € {10,25,50, 75,100}, number of fully connected
layers L. € {1,2,3}, number of hidden units in fully con-
nected layers H € {200,500, 1000}. The convolution activa-
tion functions were fixed to be the hyperbolic tangent func-
tions, while all the fully connected layer activations were
set to the sigmoid function. The pooling size is fixed to be

P = (1, 3) for all convolutional layers. Dropout with rate 0.5
is applied to all convolutional layers. We tried a large per-
mutation of window shapes for the convolutional layer and
the following subset of window shapes yielded good results:
w e {(3,3),(3,5), (5,5), (3,25), (5,25), (3,75), (5,75)}. We
observed that classification performance deteriorated sharply
for longer filters along the frequency axis. 0.5 Dropout was
applied to all the fully connected layers. The model parameters
were trained with SGD and a batch size of 256. An initial learn-
ing rate of 0.01 was linearly decreased to 0 over 1000 iterations.
A constant momentum rate 0.9 was used for all the updates. We
stopped training if the validation error did not decrease after 20
iterations over the entire training set.

4) RNN-NADE Language Models: The RNN-NADE
models were trained with SGD and with sequences of
length 100. We performed a grid search over the fol-
lowing parameters: number of recurrent units Hpypy
€ {50,100, 150, 200, 250,300} and number of hidden units
for the NADE Hyapp € {50,100, 150,200, 250,300}. The
model was trained with an initial learning rate of 0.001 which
was linearly reduced to O over 1000 iterations. A constant
momentum rate of 0.9 was applied throughout training.

We selected the model architectures by performing a grid
search over the parameter values described earlier in the
section. The various models were evaluated on one train/test
split and the best performing architecture was then used for
all other experiments. The best performing architectures are
presented in Table I'V.

E. Comparative Approaches

For comparative purposes, two state-of-the-art polyphonic
music transcription methods were used for experiments [3], [8].
In both cases, the non-binary pitch activation output of the
aforementioned methods was extracted, for performing an
in-depth comparison with the proposed neural network models.
The multi-pitch detection method of [8] is based on non-
negative matrix factorization (NMF) and operates by decom-
posing an input time-frequency representation as a series of
basis spectra (representing pitches) and component activations
(indicating pitch activity across time). This method models each
basis spectrum as a weighted sum of narrowband spectra repre-
senting a few adjacent harmonic partials, enforcing harmonicity
and spectral smoothness. As input time-frequency representa-
tion, an Equivalent Rectangular Bandwidth (ERB) filterbank is
used. Since the method relies on a dictionary of (hand-crafted)
narrowband harmonic spectra, system parameters remain the
same for the two evaluation configurations.

The multiple-instrument transcription method of [3] is based
on shift-invariant PLCA (a convolutive and probabilistic coun-
terpart of NMF). In this model, the input time-frequency repre-
sentation is decomposed into a series of basis spectra per pitch
and instrument source which are shifted across log-frequency,
thus supporting tuning changes and frequency modulations.
Outputs include the pitch activation distribution and the instru-
ment source contribution per pitch. Contrary to the parametric
model of [8], the basis spectra are pre-extracted from isolated
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TABLE 1
F-MEASURES FOR MULTIPLE PITCH DETECTION ON THE MAPS DATASET, USING EVALUATION CONFIGURATION 1

Post Processing Thresholding

HMM Hybrid Architecture

Acoustic Model | Frame Note

Frame Note Frame Note

Benetos [3] 64.20 65.22

64.84 66.05 65.10 66.48

Vincent [8] 58.95 68.5

60.37 68.87 | 59.78 69.00

DNN 67.54 60.02

68.32 62.26 67.92 63.18

RNN 68.38  63.84

68.09 64.50 69.25 65.24

ConvNet 73.57 65.35

73.75 66.20 | 74.45 67.05

musical instrument sounds. As in the proposed method, the
input time-frequency representation of [3] is the CQT. For the
investigations with MLMs (configuration 1), the PLCA mod-
els are trained on isolated sound examples from all 9 piano
models from the MAPS database (in order for the experi-
ments to be comparable with the proposed method). For the
second set of experiments which investigate the generalisa-
tion capabilities of the models (configuration 2), the PLCA
acoustic model is trained on isolated sounds from the sysnthe-
sised pianos and tested on recordings created using the Yamaha
Disklavier piano.

F. Results

In this section we present results from the experiments on
the MAPS dataset. As mentioned before, all results are the
mean values of various metrics computed over the 4 differ-
ent train/test splits. The acoustic models yield a sequence of
probabilities for the individual pitches being active (posteri-
ograms). The post-processing methods are used to transform
the posteriograms to a binary piano-roll representation. The
various performance metrics (both frame and note based) are
then computed by comparing the outputs of the systems to the
ground truth.

We consider 3 kinds of post-processing methods. The sim-
plest post-processing method is to apply a threshold to the
output pitch probabilities obtained from the acoustic model.
We select the threshold that maximises the F-measure over
the entire training set and use this threshold for testing.
Pitches with probabilities greater than the threshold are set
to 1, while the remaining pitches are set to 0. The sec-
ond post-processing method considered uses individual pitch
HMMs for post-processing similar to [13]. The HMM parame-
ters (transition probabilities, pitch marginals) are obtained by
counting the frequency of each event over the MIDI ground
truth data. The binary pitch outputs are obtained using Viterbi
decoding [38], where the scaled likelihoods are used as emis-
sion probabilities. Finally, we combine the acoustic model
predictions with the RNN-NADE MLMs and obtain binary
transcriptions using beam search.

In Table I, we present F-scores (both frame and note based)
for all the acoustic models and the 3 post-processing methods
using Configuration 1. From the table, we note that all the neu-
ral network models outperform the PLCA and NMF models in
terms of frame-based F-measure by 3% — 9%. The DNN and
RNN acoustic model performance is similar, while the ConvNet
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Fig. 3. Effect of beam width (w) on F-measure using evaluation Configuration
l.Lk=2K =4, f, = yt.

acoustic model clearly outperforms all the other models. The
ConvNets yield an absolute improvement of ~5% over the
other neural network models, while outperforming the spectro-
gram factorisation models by ~10% in frame-wise F-measure.
For the note-based F-measure, the RNN and ConvNet models
perform better than the DNN acoustic model. This is largely
due to the fact that these models include context information in
their inputs, which implicitly smooths the output predictions.
We compare the different post-processing methods for
Configuration 1 by observing the rows of Table I. We note that
the MLM leads to improved performance on both frame-based
and note-based F-measure for all the acoustic models. The
performance increase is larger on the note-based F-measure.
The relative improvement in performance is maximum for the
DNN acoustic model, compared to the RNN and the ConvNet.
This could be due to the fact that the independence assump-
tion in Equation (11) is violated by the RNN and ConvNet,
which include context information while making predictions.
This leads to some factors being counted twice and we observe
a smaller performance improvement in this case. From Rows 1
and 2 of Table I we observe that the RNN-NADE MLM yields a
performance increase for the PLCA and NMF acoustic models,
though the relative improvement is less as compared to the neu-
ral network acoustic models. This might be due to the fact that
unlike the neural network models, these models are not trained
to maximise the conditional probability of output pitches given
the acoustic inputs. Another contributing factor is the fact that
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TABLE I1
PRECISION, RECALL AND ACCURACY FOR MULTIPLE PITCH DETECTION ON THE MAPS DATASET USING THE HYBRID ARCHITECTURE
(w=10,K =4,k =2, fr,(y5) = yt), USING EVALUATION CONFIGURATION |

P R A
Acoustic Model | Frame Note Frame Note Frame Note
Benetos [3] 59.54 73.51 69.51 60.67 48.47 49.03
Vincent [8] 52.71 79.93 69.04 60.69 43.04 52.92
DNN 65.66 62.62 70.34 63.75 51.76 45.33
RNN 67.89 64.64 70.66 65.85 54.38 48.18
ConvNet 72.45 67.75 76.56 66.36 | 58.87 50.07

TABLE III

F-MEASURES FOR ACOUSTIC MODELS TRAINED ON SYNTHESISED PIANOS AND TESTED ON REAL RECORDINGS (EVALUATION CONFIGURATION 2)

Acoustic Model Benetos [3] | Vincent [8] DNN RNN | ConvNet

F-measure (Frame) 59.31 59.60 59.91 | 57.67 64.14

F-measure (Note) 54.29 59.12 49.43 | 49.20 54.89
the PLCA and NMF posteriograms represent the energy dis- TABLE IV
tribution over pitches rather than CXpliCit pitCh probabilities, MODEL CONFIGURATIONS FOR THE BEST PERFORMING ARCHITECTURES
which results in many activations being greater than 1. This Model Architecture
discrepancy in the scale of the acoustic and language predic- EENN éf 32 = égg
tions leads to an unequal weighting of predictions when used ConvNet we =T, Lo =2, Lyo = ’27w1 =(5,%5), 0 = (1,3)
in the hybrid RNN framework. In Table I we observe that the wy = (3,5), B, = (1,3),m1 = ny = 50, hy = 1000, hy = 200

RNN-NADE HenN = 200, Hyapg = 150

acoustic model in [8] outperforms all other acoustic models on
the note-based F-measure, while the frame based F-measure is
significantly lower. This can be attributed to the use of an ERB
filterbank input representation, which offers improved temporal
resolution over the CQT for lower frequencies.

In Table II, we present additional metrics (precision, recall
and accuracy) for the all the acoustic models after decoding
with an RNN-MLM, using Configuration 1. We observe that
that the NMF and PLCA models have low frame-based pre-
cision and high recall and the converse for the note-based
precision. For the neural network models, we observe smaller
differences between the both frame-based and note-based preci-
sion and recall values. Amongst all the neural network models,
we observe that the ConvNet outperforms all the other models
on all the metrics.

In Table III, we present F-measures for experiments where
the acoustic models are trained on synthesised data and tested
on real data (Configuration 2). From the table we note that
frame based F-measure for the DNN and RNN models is sim-
ilar to the PLCA model and the model in [8]. We note that the
ConvNet outperforms all other models on the frame-based F-
measure by ~5%. On the note based evaluations, we observe
that both RNN and DNN are outperformed by all the other mod-
els. The ConvNet performance is similar to the PLCA model,
while the acoustic model from [8] again has best performance
on the note based metrics.

We now discuss details of the inference algorithm. The high
dimensional hashed beam search algorithm has the following
parameters: the beam width w, the branching factor K, number
of entries per hash table entry k and the similarity metric fj,
(Algorithm 2). We observed that a value of K > 4 produced

good results. Larger values of K do not yield a significant
performance increase and result in much longer run times,
therefore we set K' = 4 for all experiments. We observed that
small values of k£ (number of solutions per hash table entry),
1 <k <4 produced good results. Decoding accuracies dete-
riorate sharply for large values of k, as observed in [26].
Therefore, we set the number of entries per hash key k = 2 for
all experiments. We let the similarity metric be the last n emit-
ted symbols, fr,(y5) = yi_,,. We experimented with varying the
values of n and observed that we were able to achieve good
performance for small n, 1 <n < 5. We did not observe any
performance improvement for large n, therefore for all experi-
ments we fix fp,(y$) = y.. Figure 3 is a plot showing the effect
of beam width w on transcription performance. The results are
average values of decoding accuracies over 4 splits. We com-
pare performance of the hashed beam search with the high
dimensional beam search in [20]. From Figure 3 we observe
that the hashed beam search algorithm is able to achieve per-
formance improvement with significantly smaller beam-widths.
For instance, the high dimensional beam search algorithm takes
20 hours to decode the entire test set with w = 100, while
the hashed beam search takes 22 minutes, with w = 10 and
achieves better decoding accuracy.

Figure 4 is a graphical representation of the outputs of a
ConvNet acoustic model. We observe that some of the longer
notes are fragmented and the offsets are estimated incorrectly.
One reason for this is that the ground truth offsets don’t nec-
essarily correspond to the offset in the acoustic signal (due
to effects of the sustain pedal), implying noisy offsets in the
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Fig. 4. a) Pitch-activation (posteriogram) matrix for the first 30 seconds of track MAPS_MUS-chpn_op27_2_AkPnStgb produced by a ConvNet acoustic model.
b) Binary piano-roll transcription obtained from posteriogram in a) after post processing with RNN MLM and beam search. ¢) Corresponding ground truth piano

roll representation.

ground truth. We also observe that the model does not make
many harmonic errors in its predictions.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we present a hybrid RNN model for poly-
phonic AMT of piano music. The model comprises a neural
network acoustic model and an RNN based music language
model. We propose using a ConvNet for acoustic modelling,
which to the best of the authors’ knowledge, has not been
attempted before for AMT. Our experiments on the MAPS
dataset demonstrate that the neural network acoustic models,
especially the ConvNet, outperform 2 popular acoustic models
from the AMT literature. We also observe that the RNN MLMs
consistently improve performance on all evaluation metrics.
The proposed inference algorithm with the hash beam search
is able to yield good decoding accuracies with significantly

shorter run times, making the model suitable for real-time
applications.

We now discuss some of the limitations of the proposed
model. As discussed earlier, one of the main contributing fac-
tors to the success of deep neural networks has been the avail-
ability of very large datasets. However datasets available for
AMT research are considerably smaller than datasets available
in speech, computer vision and natural language processing
(NLP). Therefore the applicability of deep neural networks for
acoustic modelling is limited to datasets with large amounts
of labelled data, which is not common in AMT (at least in
non-piano music). Although the neural network acoustic mod-
els perform competitively, their performance could be further
improved in many ways. Noise or deformations can be added to
training examples to encourage the classifiers to be invariant to
commonly encountered input transformations. Additionally, the
CQT input representation can be replaced by a representation
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with higher temporal resolution (like the ERB or a variable-Q
transform), to improve performance on note based metrics.

The abundance of musical score data and recent progress
in NLP tasks with neural networks provide strong motivation
for further investigations into MLMs for AMT. Although our
results demonstrate some improvement in transcription perfor-
mance with MLMs, there are several limitations and open ques-
tions that remain. The MLMs are trained on binary vectors sam-
pled from the MIDI ground truth. Depending on the sampling
rate, most note events are repeated many times in this represen-
tation. The MLMs are trained to predict the next frame of notes,
given an input sequence of binary note combinations. In cases
where the same notes are repeated many times, log-likelihood
can be trivially maximised by repeating previous inputs. This
causes the MLM to perform a smoothing operation, rather
than imposing any kind of musical structure on the outputs. A
potential solution would be to perform beat-aligned language
modelling for the training and the test data, rather than sam-
pling the MIDI at some arbitrary sampling rate. Additionally,
RNNs can be extended to include duration models for each of
their pitch outputs, similar to second order HMMs. However,
this is a challenging problem and currently remains unexplored.
It would also be interesting to encourage RNNs to learn longer
temporal note patterns by interfacing RNN controllers with
external memory units [52] and also to incorporate a notion of
timing or metre in the input representation for the MLMs.

The effect of tonality on the performance of the MLMs
should be further investigated. The MLMs should ideally be
invariant to transpositions of a musical piece to different
pitches. The MIDI ground truth can be easily transposed to
any tonality. MLMs can be trained on inputs with transposed
tonalities or individual MLMs for each key can be trained.
Additionally, the fully connected input layer of the RNN MLM
can be substitued with a convolutive layer, with convolutions
along the pitch axis to encourage the network to be invariant to
pitch transpositions.

Another limitation of the proposed hybrid model is that the
conditional probability in Equation (11) is derived by assuming
that the predictions at time ¢ are only a function of the input at ¢
and independent of all other inputs and outputs. The violation of
this assumption leads to certain factors being counted twice and
therefore reduces the impact of the MLMs. The results clearly
demonstrate that improvements with the MLM are maximum
when the acoustic model is frame-based.
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