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The head-related transfer function (HRTF) describes the sound transmission characteristics from a sound
source to a listener’s ears. Recently, spherical harmonic decomposition has been extensively used for
modeling the HRTF spatial patterns. Despite its advantage of approximating the coarse structure of
HRTF spatial variations with modeling up to a low order, there are still some limitations since spherical
harmonics take significant values in all directions. First, rapidly changing HRTF spatial variations in some
local regions may require modeling up to a rather high order; this is not wise in terms of the modeling
efficiency. Second, the expansion coefficients of the spherical harmonics describe the spatial frequency of
the target dataset in all directions, and thus have difficulties in revealing the direction dependent HRTF
characteristics. In this study, a method for locally modeling HRTF spatial patterns is proposed based on
spherical wavelets, which take significant values only over a local region on the sphere. Results of numer-
ical experiments show that our proposed method yields smaller approximation errors than the conven-
tional method when representing HRTFs inside the local regions under evaluation. Furthermore, the
expansion coefficients in the proposed method could well correspond to the HRTF local features on the
sphere, which makes it a useful tool for the analysis and visualization of HRTF spatial patterns.

� 2018 Elsevier Ltd. All rights reserved.
1. Introduction

Spatial hearing ability is mainly attributed to the discrimination
of acoustic characteristics and their interaural differences arising
from the reflections and diffraction of the sound waves by the
human body (i.e., pinnae, head, and torso) during the transmission
from the source positions to the listener’s eardrums. These trans-
mission characteristics are described by the head-related transfer
function (HRTF) [1–3]. With a knowledge of the HRTFs of a certain
position, a corresponding virtual sound source in space can be syn-
thesized [4,5]. HRTFs have been utilized as an important way to
generate virtual auditory stimuli that are used in spatial hearing
experiments, as well as the development of next generation audio
systems [6,7].

HRTFs are generally obtained through measurement of the
acoustic impulse responses [3,8,9], or are calculated based on
three-dimensional model acquisition and numerical simulation
methods [10–12] at discrete directions around the listener’s head.
There are several HRTF datasets that include HRTFs of a dummy
head or real subjects [13–19]. The originally obtained HRTF data-
set, in which the HRTF samples are represented point-by-point
for each temporal or frequency bin and direction, is inconvenient
for the analysis of HRTFs. An HRTF analysis method consists of rep-
resenting the original HRTFs using mathematical models with a
small number of coefficients. Generally, the HRTF is represented
as a function with the indices of frequency and direction, which
are independent variables. Therefore, HRTF modeling can normally
be classified as the frequency domain approach [20,21] and the
spatial domain approach [22,23], which model the HRTF along
the frequency in each direction, and along the direction at each fre-
quency bin, respectively. These modeling methods can effectively
reduce the HRTF data size, as well as manipulate the HRTF data.

This study focuses on representing HRTFs in the spatial domain,
which has many advantages. The directional representation allows
for HRTF interpolation in space, which is beneficial for efficient
representation of the HRTF. Recently, spatial descriptions of HRTFs
have been studied based on spherical harmonics [22,24,25]. In this
method, the HRTF is represented by a weighted sum of spherical
harmonics up to a truncated order. Thus, an HRTF dataset can be
represented by a set of expansion coefficients that accounts for
the spatial spectrum at a certain temporal frequency. This popular
modeling method provides a good approximation of the HRTF
coarse structure, even using a small number of coefficients [26],
and thus is suitable for the efficient representation of the HRTF.
In addition, the decomposition based on spherical harmonics,
which are continuous functions on a sphere, allows for convenient
interpolation of HRTFs [25,27].
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Despite the success of modeling HRTFs using spherical harmon-
ics, there are still some limitations since spherical harmonics are
global functions, that is, they take significant values in all direc-
tions on a sphere. Each expansion coefficient driven by the global
function, the spherical harmonic, is an overall description of the
HRTF spatial spectrum in all directions. However, the spatial peaks
and notches of HRTFs that reveal the acoustic filtering effects are
direction dependent, that is, they are distributed in different
regions on the sphere. Some suddenly changing variations of HRTF
spatial patterns in local regions require modeling with spherical
harmonics up to a high order, which is not efficient for the purpose
of data modeling and compression. In addition, previous percep-
tual studies suggest that the minimum audible angle that can be
used to characterize human sound localization depends on the
source direction [28]. Furthermore, the directional resolution of
HRTFs required in binaural synthesis varies for all directions on
the sphere around the head [29]. For these reasons, methods are
needed for analyzing the HRTFs at different resolutions for differ-
ent directions.

To analyze the direction–dependent features of HRTFs, we pre-
viously proposed a method that uses local functions on the sphere
[30,31] for representing HRTF spatial patterns. The results showed
that the proposed method yields a smaller approximation error
than the spherical harmonics method for a local region when pro-
viding a comparable number of analysis functions. In addition,
there is a correspondence between the local features and some
expansion coefficients of the local analysis functions, which may
provide another way for the visualization and analysis of HRTF spa-
tial patterns. However there is some redundancy among the anal-
ysis functions due to the lack of orthogonality on the sphere. If the
orthogonality is further improved, the target HRTF can be more
sparsely represented, and the level of detail in a local region can
be better controlled with the expansion coefficients. The corre-
spondence between the HRTF local features and the expansion
coefficients may be improved as well.

Recently, P. Bates et al. proposed to use Slepian functions which
are orthogonal inside a certain local region for the purpose of HRTF
representation; this method is reasonable if HRTFs only inside that
region are of interest [32]. However the generation of the Slepian
functions depends on the predefined local region and do not con-
sider other regions. This makes it difficult to locally control the
spatial resolution of the HRTFs over the entire sphere, and wavelet
analysis on the sphere may be a solution to this limitation. In the
classic wavelet theory, a series of wavelets for different scales
and positions is constructed by dilation and translation of a mother
wavelet [33]. However, the extension of this construction method
to the sphere is not straightforward. Although many previous
attempts have been made to construct continuous wavelets or
localized functions on a sphere [34,35], modeling discrete data effi-
ciently on a sphere still remains difficult, and it is also difficult for
the purpose of HRTF modeling. To construct discrete wavelets for
representing functions on a sphere, Schröder and Sweldens pro-
posed the lifting scheme and validated its effectiveness [36].
Fig. 1. Multiresolution analysis using spher
Although spherical wavelets based on the lifting scheme have been
widely applied to computer graphics, to the best of the authors’
knowledge, these spherical wavelets have not yet been applied to
HRTF modeling. The present study proposes to represent HRTFs
using biothorgonal spherical wavelets based on the lifting scheme.
Unlike spherical harmonics that consider all directions simultane-
ously, spherical wavelets take significant values locally and have
different scales on the sphere. The proposed method is expected
to provide a good description of HRTF local features with the
expansion coefficients, which reveals the direction-dependent fil-
tering effects at different spatial frequencies. This paper is orga-
nized as follows. Section 2 introduces the spherical wavelets
based on lifting scheme. Our proposed method is formulated in
Section 3. In Section 4, the proposed method is evaluated by
numerical experiments. Here, the approximation errors for all
directions and a local region of HRTF are compared between the
spherical harmonic-based modeling and the proposed method.
Our conclusions are presented in Section 5.
2. Introduction of spherical wavelet analysis based on the lifting
scheme

This section gives a brief introduction into multiresolution anal-
ysis using spherical wavelets based on lifting schemes [36], which
splits a signal spectrum into two parts: the approximation part and
the detail part, as if the signal is processed by a low-pass and a
high-pass filter, respectively. This multiresolution analysis based
on lifting scheme is very similar to that of classic wavelet theory.
As shown in Fig. 1, a high-pass filter (High) and a low-pass filter
(Low) calculate the wavelet coefficientsW ‘ and scaling coefficients
S‘ at a certain scale level ‘ ¼ 1; . . . ; L� 1, which corresponds to the
detail and approximation parts, respectively.

Before introducing the lifting scheme, let us first design some
variables. Considering the case of an icosahedron and its subdivi-
sions, a vertex set at level ‘ is defined as V ‘ ¼ ~v‘;i

� �
i¼1;...;I‘ , where

~v‘;i denotes a vertex at level ‘, and I‘ is the total number of vertices
at this scale. The next level vertex set V ‘þ1 can be obtained by add-
ing midpoints at every edge of the previous level and then project-
ing them on the sphere; this midpoint set is denoted as
M‘ ¼ ~m‘;j

� �
j¼I‘þ1;...;I‘þ1 , where ~m‘;j denotes the midpoint at level ‘.

A vertex set can be divided into a lower-scale vertex set and the
corresponding midpoint set, namely V ‘þ1 ¼ V ‘ [M‘. For example,
as shown in Fig. 2, an icosahedron sampling set can be defined as
a root level set V1, which has a total of 12 points. By adding a mid-
point at every edge, the vertex set of the following levels
(‘ ¼ 2;3;4; . . .) can be generated.

Spherical wavelet transforms are calculated by using a local
naming scheme, where each ~m‘;j 2 M‘ is only filtered over a small
neighborhood. For example, in Fig. 3, the neighborhood Nð~mÞ
around a midpoint ~m 2 M‘ consists of 8 surrounding points
(Nð~mÞ ¼ ~v ðkÞ; k ¼ 1; . . . ;8) [36]. To perform the forward transform
of a target function, the vertex level goes from the leaf level to
ical wavelets based on lifting schemes.



Fig. 2. Sampling of an icosahedron V1 and its following subdivisions V2;V3, and V4 from left to right, with the vertex number of 12;42;162, and 642, respectively.

Fig. 3. Local neighborhoods (Nð~mÞ ¼ ~v ðkÞ; k ¼ 1; . . . ;8g) of a point ~m 2 M‘ � V ‘þ1
using the local naming scheme. The dashed-lines are the edges of next subdivision.
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the root level as ‘ decreases. The inverse transform can be per-
formed by the above two steps, but backwards. The general form
of this process can be described as follows.

� Forward step 1:
8~v‘;i�V ‘ : Sð~v‘;iÞ  Sð~v‘þ1;iÞ

8~m‘;j�M‘ : Wð~m‘;jÞ ¼ Sð~v ‘þ1;jÞ �
X

~v‘;i�Nð~m‘;jÞ
zw‘;i;jSð~v‘;iÞ

Here Sð~v ‘;iÞ is the scaling coefficient corresponding to a point ~v‘;i

on V ‘, andWð~m‘;jÞ is the wavelet coefficient corresponding to the

point ~m‘;j on M‘;~v ‘;i and ~m‘;j are included in ~V ‘þ1. The forward
transform starts from the target function H which is set to be
the scaling coefficients at the finest level L, namely
Hð~vL;iÞ ¼ Sð~vL;iÞ; zw‘;i;j are the filtering weights for the neighbor-

hood set Nð~m‘;jÞ around a midpoint ~m‘;j�M‘. In this study,
spherical wavelets with a butterfly subdivision scheme [36]
are used; thus, zw‘;1;j ¼ zw‘;2;j ¼ 1=2; zw‘;3;j ¼ zw‘;4;j ¼ 1=4, and
zw‘;5;j ¼ zw‘;6;j ¼ zw‘;7;j ¼ zw‘;8;j ¼ �1=16.

� Forward step 2:
After calculating Wð~m‘;jÞ in step 1, the scaling coefficients Sð~v‘;iÞ
are updated as:
8~m‘;j�M‘ : Sð~v ‘;v1 Þ ¼ Sð~v ‘;v1 Þ þ zs‘;1;jWð~m‘;jÞ;
Sð~v ‘;v2 Þ ¼ Sð~v‘;v2 Þ þ zs‘;2;jWð~m‘;jÞ:

Here ~v‘;v1 and ~v‘;v2 are the two endpoints on the parent edge of
~m‘;j; zs‘;i;j are weights chosen so that the resulting wavelet has a
vanishing integral: zs‘;i;j ¼ I‘þ1;j=2I‘;i, where I‘;i denotes the integral

of the scaling function corresponding to ~v ‘;i.
Fig. 4. Lifting scheme forw
Fig. 4 shows the float chart of this forward transform, where the
sampling points V ‘þ1 corresponding to the scaling coefficients
SðV ‘þ1Þ are split into two parts, the lower-scale vertex set V ‘ and
the midpoint set M‘. The coefficients of V ‘ are used to ‘‘Predict”
the coefficients of midpoint set M‘ and the prediction difference is
used as the wavelet coefficients WðM‘Þ, which corresponds to the
‘‘Forward step 1”. In ‘‘Forward step 2”, the calculated wavelets coef-
ficientsWðM‘Þ update the coefficients of V ‘ and result in SðV ‘Þwhich
represent the approximation of SðV ‘þ1Þ. The forward step 1 and 2
actually correspond to the high-pass filter and low-pass filter in
Fig. 1 which calculate the wavelet coefficients and scaling coeffi-
cients, respectively.

The inverse transform can be performed by the above two steps,
but backwards.

� Backward Step 1:
Calculate Sð~v ‘;iÞ:
8~m‘;j�M‘ : Sð~v ‘;v1 Þ ¼ Sð~v ‘;v1 Þ � zs‘;1;jWð~m‘;jÞ
Sð~v ‘;v2 Þ ¼ Sð~v ‘;v2 Þ � zs‘;2;jWð~m‘;jÞ.
� Backward Step 2:
8~v ‘;i�V ‘ : Sð~v ‘þ1;iÞ  Sð~v ‘;iÞ
8~m‘;j�M‘ : Sð~v ‘þ1;jÞ ¼Wð~m‘;jÞ þ

P
~v‘;i�Nð~m‘;jÞz

w
‘;i;jSð~v ‘;iÞ

In spherical wavelet analysis, the forward transform calculates
the scaling coefficients S and wavelet coefficients W of a target
function H, while the backward step synthesizes the target func-
tion from the obtained coefficients. The forward and backward
transform (both to the end level) are denoted as W and W�1,
respectively. The coefficients S and W compose the set of analysis
coefficients C ¼ fS;Wg in the spherical wavelet decomposition,
which are calculated as C ¼WfHg. The target function can be syn-
thesized with the obtained coefficients, namely H ¼W�1fCg.

The lifting scheme does not construct wavelets directly. How-
ever, by implementing the inverse transform with the coefficient
set as 1 for a single position and 0 for the rest, the corresponding
wavelet or scaling function can be obtained. In such a manner,
the analysis function of level ‘ and position ~m‘;p or~v‘;p in the spher-
ical wavelet analysis can be obtained with the following equation:

Y ‘;p ¼W�1
‘;pfCg: ð1Þ

where,W�1
‘;p implements the backward transform W�1 from the root

to the leaf level, where the expansion coefficient c‘;p 2 C is set as 1,
and the rest of the coefficients are set as 0. The scaling function of
scale level ‘ ¼ 1 and spherical wavelets from scale ‘ ¼ 1 to 3 are
ard wavelet transform.



Fig. 5. Analysis functions in Eq. (1) for the spherical wavelet transform (the leaf level is set to scale level 6) based on the lifting scheme with the butterfly subdivision: scaling
function of scale level 1 (left-most), and wavelets of scale level 1, 2, and 3 from second to the right. The finest resolution corresponds to level 6.

Fig. 6. Original HRTFs (left ear) at 7.4 kHz. The panels from left to right are the HRTF
with views of (80�, �22�) and (�95�, �10�), respectively.

84 S. Hu et al. / Applied Acoustics 146 (2019) 81–88
shown in Fig. 5. The center positions for locating the scaling func-
tion and wavelets on the sphere correspond to the mesh vertex in
Fig. 2. The low-scale wavelets have greater support, while the
high-scales have more compact support, which accounts for the
low spatial frequency and high spatial frequency, respectively.

3. Application of spherical wavelets to HRTF representation

This paper focuses on the modeling of the magnitude part of the
HRTF, which is a function on a sphere that depends on the direction
of the sound source. The sound source direction, at a certain dis-
tance in spherical coordinates, is specified by its azimuthal angle
h 2 ½�180�;180�� and elevation angle / 2 ½�90�;90��, in which
ð0�;0�Þ and ð90�;0�Þ represent the front and left direction, respec-
tively. The decomposition of the target HRTF magnitudes Hðh;/Þ
can be described using the following matrix form:

Hðh;/Þ ¼
X

~v1;i2V1

Sð~v1;iÞu1;iðh;/Þ þ
XL�1

‘¼1

X

~m‘;j2M‘

Wð~m‘;jÞ � w‘;jðh;/Þ: ð2Þ

Here, u1;iðh;/Þ and w‘;jðh;/Þ are the scaling function and spherical
wavelet corresponding to ~v1;i and ~m‘;j, respectively; Sð~v1;iÞ and
Wð~m‘;jÞ are the expansion coefficients in the decomposition. It
should be noted that, in order to implement this method, the sam-
pling positions ðh;/Þ of the target HRTF dataset should match a cer-
tain kind of sampling scheme such as the icosahedron subdivision
in the spherical wavelet analysis. This can be handled by properly
interpolating the HRTF at the needed positions or generating the
HRTF at the corresponding positions with a calculation method
such as the boundary element method (BEM) [11]. An example of
a scaling functionu1;iðh;/Þ of scale level ‘ ¼ 1 and spherical wavelet
w‘;jðh;/Þ of scale level ‘ ¼ 1;2;3, and the corresponding meshes for
locating these analysis functions are shown in Figs. 5 and 2, respec-
tively. In practice, ‘ is truncated to a level to approximate the target
function. The expansion coefficients can be calculated using the lift-
ing scheme introduced in Section 2.

4. Evaluation of the proposed method

In this section, numerical experiments are conducted to validate
the effectiveness of the method described in Section 3.

4.1. Objective measurement

The goal of this study is to approximate the original HRTF mag-
nitudes using a set of analysis functions. To measure the approxi-
mation error in the spatial domain, the mean normalized error is
used, which is defined as

Emnl ¼ 1
N

XN

m¼1

jHsynthðhm;/mÞ � Htargetðhm;/mÞj
jHtargetðhm;/mÞj

; ð3Þ
where Hsynthðhm;/mÞ and Htargetðhm;/mÞ are the reconstructed HRTF
magnitude and target HRTF magnitude at direction ðhm;/mÞ, respec-
tively; and N is the total number of HRTF samples under study.

4.2. HRTF database

HRTF datasets are generally obtained through measurements at
predefined grid positions or are calculated through simulation
methods at arbitrary positions. For the introduced spherical wave-
let transform, the sampling distribution of the target dataset
matches the vertex of the icosahedron subdivisions. Besides the
use of icosahedral grids, the proposed method can also be applied
in other hierarchical sampling schemes that are constructed by
subdividing the edges of Platonic solids where suitable weighting
parameters for the lifting scheme are necessary. The target dataset
used for the simulation in the present study is calculated using the
BEM for the SAMRAI (Koken) dummy head [11]. The HRTF data for
sound sources at 1:5 m were calculated at frequencies between
93:75 and 20;000 Hz, with intervals of 93:75 Hz and samples at
directions according to the vertex of the icosahedron subdivision
V6. The number of the HRTF samplings along the direction is
10242 at each frequency bin. This number of samplings is high
enough to recover HRTFs at all directions within the audible fre-
quency range [24], and allows for visualizing the fine details of
HRTF spatial patterns. The target HRTF at 7.4 kHz for the left ear
is shown in Fig. 6.

4.3. HRTF representation using the proposed method

By using the spherical wavelets, the target HRTF magnitudes
whose sampling points match the icosahedron subdivision of scale
level ‘ ¼ 6 (10242 points in total) are decomposed to a root level
‘ ¼ 1. The spatial variations of the HRTF magnitudes can be
smoothed by truncating ‘ to a certain level in the reconstruction.
Fig. 7 shows that the original HRTF with a total sampling number
of 10242 is approximated up to scale 1 (number of coefficients
¼ 42), 2 (number of coefficients ¼ 162), 3 (number of coefficients



Fig. 7. Approximated HRTF (left ear) in Eq. (2) with spherical wavelets up to different scales.

Fig. 8. Expansion coefficient values of spherical wavelets at each scale in the decomposition of the target HRTF at 7.4 kHz (Fig. 6) from the scale level ‘ ¼ 1 to the scale level
‘ ¼ 5.

1 The required number of samples S for modeling with spherical harmonics up to
order N with a well-conditioned sampling scheme is denoted as S ¼ ðN þ 1Þ2. For
modeling with spherical wavelets up to the level L, the required number of samples is
denoted as S ¼ 10� 4L þ 2. Therefore, the relationship between modeling with
spherical harmonics up to N (spatial frequency) and modeling with spherical wavelets
up to L can be given as ðN þ 1Þ2 ¼ 10� 4L þ 2.
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¼ 642), and 4 (number of coefficients ¼ 2562), which yield
Enml ¼ 0:260;0:105;0:048 and 0:009 respectively. The expansion
coefficients from scale level 1 to 5 are shown in Fig. 8. The target
HRTF magnitude is equal to the scaling function at scale level 6.
This result suggests that the higher scale spherical wavelets catch
finer details, while the low scale spherical wavelets approximate of
the coarse structure of the HRTF. Thus, the original target HRTF
with a high sampling amount can be represented by the expansion
coefficients. A perfect reconstruction of the target HRTF can be
realized by implementing the backward transform using all 5
scale’s expansion coefficients.

One of the motivations of this study is to visualize and describe
the HRTF local features using the expansion coefficients. In the
previous work of the authors’ group, the coefficients of a set of
local analysis function could describe the local features to some
degree [31].

By observing the expansion coefficients in Fig. 8, some interest-
ing guesses may be made. The lowest scale (scale 1) coefficients
may describe the spatial filtering effects excluding the pinna
effects; the significant differences between the coefficient values
of the ipsilateral and contralateral sides clearly reveal the head
shadow effect. For the expansion coefficients of scale 5, most of
their values are nearly 0. It suggests that the spatial spectrum at
this scale plays little role in the composition of the target HRTF.
The coefficient values of scale 4 are also close to 0 except at some
small local regions that corresponds to distributions of the sharp
spatial variations of the original HRTFs. For the coefficients of
scales higher than 1, most of their values are small and the signif-
icant values are only taken at some local regions. Since the pinna
effects are more likely involved in the fast-changing spatial details
[37], these higher scale coefficients seem to have a closer relevance
to the pinna effects, which highly depend on the direction. The dis-
tribution of the expansion coefficients at different scales not only
classify the acoustic effects of different anatomical parts, but also
exhibits in which direction those filtering effects take place. This
is a significant advantage over spherical harmonic decomposition.1

Therefore, the proposed method provides a tool for visualization and
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insights of the spatial filtering effects inside the HRTF data. Further-
more, the distribution of the expansion coefficients should also have
the individual information across different subject, this may also
open a means for HRTF individualization.

4.4. Efficient representation of the HRTF using the proposal

Fig. 8 shows that the expansion coefficients are close to 0 in
most directions at the higher levels. This indicates that the rapidly
changing spatial variations mainly occur in some small and local
regions. An assumption can be made that those low–value coeffi-
cients play little role in the reconstruction and could be removed
to more efficiently represent the HRTF. To perform the compres-
sion, the analysis functions of each scale are first normalized to
the same energy. The expansion coefficients with the absolute val-
ues above a certain threshold after the normalization are preserved
to reconstruct the HRTF. In this manner, the HRTF can be repre-
sented by a small number of coefficients.

The following part of this section evaluates this efficient repre-
sentation of the HRTF in all directions and compares it with the
spherical harmonic method when using same number of analysis
functions. The comparison is further extended to evaluations of
HRTFs in some local regions on the sphere.

4.4.1. Comparison with spherical harmonics in all directions
The spatial representation of the HRTF in all directions is con-

ducted with the same target HRTF as above. To compare the perfor-
mance with spherical harmonics, the approximation errors are
evaluated using the same number of analysis functions between
the two methods. Namely, the approximation errors using spheri-
cal wavelets (SWs) with the number of coefficients of
121;441;676;961 for reconstruction are compared to the errors
when using spherical harmonics (SHs) up to order 10;20;25, and
30, respectively, which represent the HRTF with different spatial
accuracy. Please note that in this study, we use real spherical har-
monic representations with icosahedron samplings, which are
well-conditioned for the spherical harmonic decomposition,
because the orthonormality error decreases [38]. Fig. 9 plots the
comparison results. It shows that our proposed method is slightly
better or at least comparable with the conventional method based
Fig. 9. Comparisons of Emnl for the target HRTF in all directions betweeen the approxim
coefficients for reconstruction and spherical harmonics (SHs) up to order 10, 20, 25, and

Fig. 10. Four local regions (in white) selected fo
on real-valued spherical harmonics in terms of the approximation
error when representing the HRTF magnitudes in all directions
with a same number of analysis functions in the above conditions.

4.4.2. Comparisons with spherical harmonics at local regions
An expected advantage of the proposed method over the spher-

ical harmonic method is to better represent the HRTF local fea-
tures. Next, comparisons with the spherical harmonic method are
conducted with the HRTF represented at some local regions. To
perform this local representation, only the significant–value spher-
ical wavelets corresponding to the target local region are selected
for the reconstruction; this selection is done in two steps. The first
selecting step depends on the local area under evaluation. Because
the low–scale spherical wavelets contribute to the coarse structure
and have an influence over a larger area on the sphere, all analysis
functions of scale 1 are preserved in the reconstruction. For the
higher–scale spherical wavelets, only those close to the area under
evaluation are used. More specifically, the spherical wavelets
whose radius of influence intersects the area under evaluation
are selected for this local representation. The radius of influence
of a spherical wavelet is defined as the distance between its center
position (where it has its maximum value) and the position where
its amplitude decreases to the minimum value. Second, among the
selected wavelets in the first step, only the spherical wavelets with
significant expansion coefficient values are preserved.

The target HRTFs at the audible frequencies are reconstructed
inside four spherical caps that are centered at (90�;�48�),
(90�;48�), (�90�;48�), and (�90�;�48�), respectively, all with a size
of 1:40 steradians, and denoted as local region 1;2;3, and 4, respec-
tively. These four regions together cover most directions in space,
as shown in Fig. 10. For these four local regions, the Emnl values
are compared between the approximation using spherical wavelets
with 121 and 441 highest coefficients for reconstruction, and real-
valued spherical harmonics up order 10 (number of harmon-
ics = 121) and order 20 (number of harmonics = 441), respectively.
The results shown in Fig. 11 suggest that when using these same
number of analysis functions, our proposed method yields smaller
approximation errors than for the spherical harmonic method.
Therefore, the efficiency of modeling HRTF local features using
spherical wavelets is validated.
ation using spherical wavelets (SWs) while keeping 121, 441, 676, and 961 highest
30, respectively.

r the evaluation of the local representation.



Fig. 11. Comparisons of Emnl for representing target HRTFs inside four local regions between the approximation using the same number of spherical wavelets (SWs) and
spherical harmonics (SHs).
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5. Conclusions

In this study, we represented the HRTF spatial variations using
the lifting scheme based spherical wavelets, which are widely used
in the field of computer graphics. Numerical experiments showed
that when using the same number (121 and 441) of analysis func-
tions, approximation of the HRTF at the evaluated local regions
based on spherical wavelets yields smaller errors than for the
spherical harmonic method. In addition, the expansion coefficients
of the spherical wavelets could well correspond to the direction
dependent HRTF local features. This provides a tool for visualizing
and analyzing the acoustic filtering effects inside the target HRTF
data. Future work will consider evaluations of several individual
HRTFs to study the individual information that benefits from the
proposed method.
Acknowledgments

This study was partly supported by JSPS KAKENHI Grant Nos.
JP24240016, JP16H01736, the A3 Foresight Program for ”Ultra-
realistic acoustic interactive communication on next-generation
Internet.” The BEM solver used was developed by Dr. Makoto Otani.
References

[1] Mellert V, Siebrasse K, Mehrgardt S. Determination of the transfer function of
the external ear by an impulse response measurement. J Acoust Soc Am
1974;56(6):1913–5.

[2] Shaw E. Transformation of sound pressure level from the free field to the
eardrum in the horizontal plane. J Acoust Soc Am 1974;56(6):1848–61.

[3] Blauert J. Spatial hearing: the psychophysics of human sound localization. MIT
press; 1997.

[4] Morimoto M, Ando Y. On the simulation of sound localization. J Acoust Soc
Japan (E) 1980;1(3):167–74.

[5] Wightman FL, Kistler DJ. Headphone simulation of free-field listening. i:
Stimulus synthesis. J Acoust Soc Am 1989;85(2):858–67.

[6] Suzuki Y, Brungart D, Iwaya Y, Iida K, Cabrera D, Kato H. Principles and
applications of spatial hearing. World Scientific; 2011.

[7] Salvador CD, Sakamoto S, Treviño J, Suzuki Y. Design theory for binaural
synthesis: combining microphone array recordings and head-related transfer
function datasets. Acoust Sci Technol 2017;38(2):51–62.

[8] Suzuki Y, Asano F, Kim H-Y, Sone T. An optimum computer-generated pulse
signal suitable for the measurement of very long impulse responses. J Acoust
Soc Am 1995;97(2):1119–23.

[9] Majdak P, Balazs P, Laback B. Multiple exponential sweep method for fast
measurement of head-related transfer functions. J Audio Eng Soc 2007;55(7/
8):623–37.

[10] Katz BF. Boundary element method calculation of individual head-related
transfer function. i. rigid model calculation. J Acoust Soc Am 2001;110
(5):2440–8.
[11] Otani M, Ise S. Fast calculation system specialized for head-related transfer
function based on boundary element method. J Acoust Soc Am 2006;119
(5):2589–98.

[12] Kreuzer W, Majdak P, Chen Z. Fast multipole boundary element method to
calculate head-related transfer functions for a wide frequency range. J Acoust
Soc Am 2009;126(3):1280–90.

[13] Gardner WG, Martin KD. Hrtf measurements of a kemar. J Acoust Soc Am
1995;97(6):3907–8.

[14] Algazi VR, Duda RO, Thompson DM, Avendano C. The cipic hrtf database. IEEE;
2001. p. 99–102.

[15] Watanabe K, Iwaya Y, Suzuki Y, Takane S, Sato S. Dataset of head-related
transfer functions measured with a circular loudspeaker array. Acoust Sci
Technol 2014;35(3):159–65.

[16] Wierstorf H, Geier M, Spors S. A free database of head related impulse response
measurements in the horizontal plane with multiple distances. Audio
Engineering Society Convention, 130. Audio Engineering Society; 2011.

[17] Jin CT, Guillon P, Epain N, Zolfaghari R, Van Schaik A, Tew AI, et al. Creating the
sydney york morphological and acoustic recordings of ears database. IEEE
Trans Multimedia 2014;16(1):37–46.

[18] Majdak P, Noisternig M. Aes69-2015: Aes standard for file exchange-spatial
acoustic data file format. Audio Engineering Society; 2015.

[19] Salvador CD, Sakamoto S, Treviño J, Suzuki Y. Dataset of near-distance head-
related transfer functions calculated using the boundary element method. In:
Audio Engineering Society International Conference on Spatial Reproduction —
Aesthetics and Science—, Tokyo, Japan, 2018.

[20] Asano F, Suzuki Y, Sone T. Role of spectral cues in median plane localization. J
Acoust Soc Am 1990;88(1):159–68.

[21] Haneda Y, Makino S, Kaneda Y. Common acoustical pole and zero modeling of
room transfer functions. IEEE Trans Speech Audio Process 1994;2(2):320–8.

[22] Evans MJ, Angus JA, Tew AI. Analyzing head-related transfer function
measurements using surface spherical harmonics. J Acoust Soc Am 1998;104
(4):2400–11.

[23] Xie B-S. Recovery of individual head-related transfer functions from a small set
of measurementsa). J Acoust Soc Am 2012;132(1):282–94.

[24] Zhang W, Abhayapala TD, Kennedy RA, Duraiswami R. Insights into head-
related transfer function: Spatial dimensionality and continuous
representation. J Acoust Soc Am 2010;127(4):2347–57.

[25] Duraiswaini R, Zotkin DN, Gumerov NA. Interpolation and range extrapolation
of hrtfs [head related transfer functions], Vol. 4. IEEE; 2004. p. iv–45.

[26] Romigh GD, Brungart DS, Stern RM, Simpson BD. Efficient real spherical
harmonic representation of head-related transfer functions. IEEE J Select Top
Sig Process 2015;9(5):921–30.

[27] Pollow M, Nguyen K-V, Warusfel O, Carpentier T, Müller-Trapet M, Vorländer
M, et al. Calculation of head-related transfer functions for arbitrary field points
using spherical harmonics decomposition. Acta Acust United Acust 2012;98
(1):72–82.

[28] Mills AW. On the minimum audible angle. J Acoust Soc Am 1958;30
(4):237–46.

[29] Minnaar P, Plogsties J, Christensen F. Directional resolution of head-related
transfer functions required in binaural synthesis. J Audio Eng Soc 2005;53
(10):919–29.

[30] Trevino J, Hu S, Salvador C, Sakamoto S, Li J, Suzuki Y-O. A compact
representation of the head-related transfer function inspired by the wavelet
transform on the sphere, In: 2015 International Conference on Intelligent
Information Hiding and Multimedia Signal Processing (IIH-MSP). IEEE; 2015. p.
372–5.

[31] Hu S, Trevino J, Salvador C, Sakamoto S, Li J, Suzuki Y. A local representation
of the head-related transfer function. J Acoust Soc Am 2016;140(3):
EL285–90.

http://refhub.elsevier.com/S0003-682X(18)30139-7/h0005
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0005
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0005
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0010
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0010
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0015
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0015
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0020
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0020
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0025
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0025
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0030
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0030
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0035
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0035
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0035
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0040
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0040
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0040
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0045
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0045
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0045
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0050
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0050
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0050
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0055
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0055
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0055
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0060
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0060
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0060
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0065
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0065
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0070
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0070
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0075
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0075
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0075
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0080
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0080
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0080
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0085
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0085
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0085
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0090
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0090
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0095
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0095
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0095
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0095
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0100
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0100
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0105
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0105
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0110
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0110
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0110
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0115
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0115
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0120
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0120
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0120
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0125
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0125
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0130
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0130
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0130
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0135
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0135
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0135
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0135
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0140
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0140
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0145
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0145
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0145
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0150
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0150
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0150
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0150
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0150
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0155
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0155
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0155


88 S. Hu et al. / Applied Acoustics 146 (2019) 81–88
[32] Bates AP, Khalid Z, Kennedy RA. On the use of slepian functions for the
reconstruction of the head-related transfer function on the sphere, In: 2015
9th International Conference on Signal Processing and Communication
Systems (ICSPCS). IEEE; 2015. p. 1–7.

[33] Mallat S. A wavelet tour of signal processing. Academic press; 1999.
[34] McEwen JD, Hobson MP, Mortlock DJ, Lasenby AN. Fast directional continuous

spherical wavelet transform algorithms. IEEE Trans Sig Process 2007;55
(2):520–9.

[35] Khalid Z, Kennedy RA, Durrani S, Sadeghi P, Wiaux Y, McEwen JD. Fast
directional spatially localized spherical harmonic transform. IEEE Trans Signal
Process 2013;61(9):2192–203.
[36] Schröder P, Sweldens W. Spherical wavelets: efficiently representing functions
on the sphere, In: Proceedings of the 22nd annual conference on Computer
graphics and interactive techniques. ACM; 1995. p. 161–72.

[37] Sekimoto S, Ogasawara R, Iwaya Y, Suzuki Y, Takane S. Numerical investigation
of effects of head sizes and ear positions on head-related transfer functions, In:
Proc. of The Japan-China Joint Conference of Acoustics 2007, Vol. 6.

[38] Salvador CD, Sakamoto S, Treviño J, Suzuki Y. Boundary matching filters for
spherical microphone and loudspeaker arrays. IEEE/ACM Trans Audio, Speech,
Language Process 2018;26(3):461–74.

http://refhub.elsevier.com/S0003-682X(18)30139-7/h0160
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0160
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0160
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0160
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0165
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0170
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0170
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0170
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0175
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0175
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0175
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0180
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0180
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0180
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0185
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0185
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0185
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0190
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0190
http://refhub.elsevier.com/S0003-682X(18)30139-7/h0190

	Modeling head-related transfer functions with spherical wavelets
	1 Introduction
	2 Introduction of spherical wavelet analysis based on the lifting scheme
	3 Application of spherical wavelets to HRTF representation
	4 Evaluation of the proposed method
	4.1 Objective measurement
	4.2 HRTF database
	4.3 HRTF representation using the proposed method
	4.4 Efficient representation of the HRTF using the proposal
	4.4.1 Comparison with spherical harmonics in all directions
	4.4.2 Comparisons with spherical harmonics at local regions


	5 Conclusions
	Acknowledgments
	References


