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Audio Signal Analysis, Indexing and Transformation

◼ Aim of the course:

• To span several domains of audio signal processing including:  

• Audio indexing/recognition or Machine listening

• Audio models (High-resolution spectral analysis)

• Sound rendering and transformation 

(3D audio, audio effects, source separation)  

◼ Philosophy of the course:

• Lectures (15h) followed by Labs (TP, 7,5h) in Python (or Matlab if preferred)

• Course validation: papers reading/presentation + reports on Labs

◼ Professors: Gaël Richard and Roland Badeau
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Audio Signal Analysis, Indexing and Transformation
some details

◼ Audio Indexing or Machine listening (3H lecture, 1,5H TP): 
• audio signal analysis for content-based information retrieval (automatic

music genre recognition, automatic musical instrument identification, tempo 
or downbeat estimation,...), Deep learning for audio.

◼ High resolution methods (3H lecture, 3H TP)
• Beyond Fourier resolution, ESPRIT, MUSIC, sinusoidal models

◼ Audio source separation (3H lecture; 1,5H TP):
• Audio source models, Mixing models (instantaneous, convolutive). Blind 

source separation methods, time vs Frequency domains methods, under-
determined case, sparse models, DUET

◼ 3D audio rendering (3H lecture; 3H TP):  
• Perceptual vs physical based approaches (binaural/transaural, holophony). 

Sound effects synthesis (artificial reverberation, distorsion, flanger,…)  

◼ Sound transformation (1,5H lecture, 1,5 TP)
• Pitch scaling, time scaling, phase vocoder..
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Audio Signal Analysis, Indexing and Transformation
Planning

◼ All lectures/TP @ Telecom Paris, 19 place M. Perey, Palaiseau, Wednesday afternoon from

January 7th to March 18th (oral exam)  

• More info on the dedicated web site:

─ https://perso.telecom-paristech.fr/grichard/Enseignements/MVA/

─ Documents: « polycopié » + slides + research papers

5

https://perso.telecom-paristech.fr/grichard/Enseignements/MVA/


Institut Mines-Télécom

Objective of this lecture
Audio Indexing and machine listening

◼ Understanding what is an audio signal

◼ Understanding how to represent essential dimensions of 

the audio signal

◼ Illustrating specific machine learning tasks in audio with

some examples

◼ A view of Deep learning for audio

◼ A Lab (TP) on « multiple frequency estimation »
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Audio Indexing and machine listening : Content

◼ Introduction

• Interest and some applications 

• A few dimensions of musical signals

• Some basics in signal processing

◼ Analysing the music signal

• Pitch and Harmony,…
─ Pitch estimation, Chord recognition, Audio recognition

• Tempo and rhythm,…

• Timbre and musical instruments,..

◼ A view of Deep learning for audio

◼ Some other machine listening applications 

• Audio scene recognition

• Audio-based video search for music videos



Institut Mines-Télécom

Foreword….

◼ Lecture largely based on : 

• M. Mueller, D. Ellis, A. Klapuri, G. Richard « Signal Processing for 

Music Analysis, IEEE Trans. on Selected topics of Signal Processing, 

Oct. 2011

◼ With the help for some slides from : 

• O. Gillet, 

• A. Klapuri

• M. Mueller

• S. Fenet

• V. Bisot

• O. Cifka

• S. Durand

• S. Leglaive
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Machine listening
AI applied to Audio analysis, understanding and synthesis by a 

machine

A fast growing interdisciplinary field with many applications

Entertainment, Creativity

Transport & Communications

Industry

Audio surveillance, Audio scene analysis

Predictive maintenance

Autonomous cars, audio enhancement

Music recommendation, sound design

Music recognition & synthesis

Security, Health monitoring, bioacoustics
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Search by content…..
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Why analysing the music signal ?

◼ Search by content
• From a music piece …

• From a hummed query…

• New music that I will like/love   ….

• A cover version of my favorite title

• A video that matches a music piece..

• …

New applications
• Semantic playlist (play music pieces

that are gradually faster …)

• « Smart » Karaoké (the music follows

the singer…)

• Predict the potential success of a 

single  

• Automatic mixing, Djing, music 

synthesis

• Active listening, style stransfer,…

Musical Jogging

Music source separation

Music generation

Search by voice

Automatic music score

Music streaming services
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Acoustic scene and sound event recognition

◼ Acoustic scene recognition: 

• « associating a semantic label to an audio stream that

identifies the environment in which it has been produced »

• Related to CASA (Computational Auditory Scene

Recognition) and SoundScape cognition (psychoacoustics)

12

D. Barchiesi, D. Giannoulis, D. Stowell and M. Plumbley, « Acoustic Scene Classification », IEEE Signal Processing Magazine 

[16], May 2015

Acoustic Scene

Recognition System

Subway?

Restaurant ?
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Acoustic scene and sound event recognition

◼ Sound event recognition

• “aims at transcribing an audio signal into a symbolic 

description of the corresponding sound events present in an 

auditory scene”.
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Sound event

Recognition System

Bird

Car horn

Coughing

Symbolic description
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Applications of scene and events recognition

◼ Smart hearing aids (Context recognition for adaptive 

hearing-aids, Robot audition,..)

◼ Security

◼ indexing, 

◼ sound retrieval, 

◼ predictive maintenance, 

◼ bioacoustics, 

◼ environment robust speech recognition, 

◼ ederly assistance, smart homes

◼ ….. The Rowe Wildlife Acoustic lab

From ST Microelectronics
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Classification systems

◼ Several problems, a similar approach

• Speaker identification/recognition

• Automatic musical genre recognition

• Automatic music instruments recognition.

• Acoustic scene recognition

• Sound samples classification.

• Sound track labeling (speech, music, special effects etc…).

• Automatically generated Play list  

• Hit predictor...
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Traditional Classification system

From G. Richard, S. Sundaram, S. Narayanan, “Perceptually-motivated audio indexing and classification”, Proc. of the IEEE, 2013
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Current trends in audio classification

◼ Deep learning now widely adopted

• For example under the form of encoder/decoder for representation

learning



Institut Mines-Télécom

A little bit of signal processing
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……A little bit of signal processing

◼ Let x(t) be a continuous signal (e.g. captured by a 

microphone):

◼ Let x(nT) be the discrete signal sampled at time t=nT

x(t)

t

x(n)=x(nT)

t

T
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Time-Frequency representation

◼ Fourier Transform

xn |Xk|
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Spectral analysis of an audio signal (1)
(drawing from J. Laroche)
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Spectral analysis of an audio signal (2)

xn |Xk|

Spectrogram
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Audio signal representations

◼ Example on a music signal: note C (262 Hz) produced by a 

piano and a violin.

Temporal Signal

Spectrogram

From M. Mueller & al. « Signal Processing for Music Analysis, IEEE Trans. On Selected topics of Signal 

Processing, oct. 2011
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A bit more details on the Fourier analysis

◼ Fourier transform and inverse Fourier transform

◼ Some properties
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Effect of sampling: Poisson formula

◼ Interpretation:  Sampling  Spectrum periodisation
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Towards reconstruction

◼ 2 situations:
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Sampling of an analog signal

◼ Important to filter the analog signal before sampling
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A bit more details on the Fourier analysis

◼ Importance of the analysis window

◼ We recall that :  

◼ Then we have 



Institut Mines-Télécom

A bit more details on the Fourier analysis

◼ Some examples of analysis windows

• Rectangular window: 

─ Width of the main lobe:
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A bit more details on the Fourier analysis

An example:
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A bit more details on the Fourier analysis

The notion of precision and resolution in discrete time:

Zero padding

N points 

N/2 points 

Nfft/2 points 
Nfft points 
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A bit more details on the Fourier analysis

◼ Some examples of analysis windows (size N)

• Width of the main lobe: 

Rectangular: 2/N

Hamming: 4/N
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Z transform/ Discrete Fourier Trnasform

◼ Z-transform of a signal x(n) is given by:

with

◼ Links Z-transform /DFT  

• This corresponds to a sampling of the Z-transform with N 
points regularly spaced on the unit circle. 

 

Re(z) 

Im(z) 

N/2
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Digital filtering

◼ Linear shift invariant system

R[]
x(nT) y(nT)

Input sequence =Excitation
output sequence

Filter characterised by its impulse response, or transfer function

Y(nT) = R[x(nT)] where T is the sampling period. 

By choosing T=1, we have:   Y(n) = R[x(n)]
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Gaël RICHARD – Master of Science - Filtering 
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Digital filtering

◼ Linear constant-coefficient Difference Equations (a sub

class of shift invariant systems)

◼ Causal recursive filters

◼ Causal non-recursive filters
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Digital filtering: convolution

◼ Convolution allows to represent the intput-output 

transformation realised by a linear shift-invariant filter

Gaël RICHARD – Master of Science - Filtering 

36

❑ The impulse response is also the response to            the 

unit sample at n=k:
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A widely used model: the source filter model

 

Resonator 

(Vocal tract) 

Source signal 

(Vocal folds)  

Filter 

Speech 

X(f) H(f) Y(f)
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Some dimensions of the musical signal …

Pitch, Harmony.. Tempo, rhythme,…

Timbre, instruments,… Polyphony, melody, ….
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A quasi-periodic sound

T0

F0=1/T0

How can we estimate the height 

(pitch) of a note 

or 

How to estimate the fundamental 

periode (T0) 

or frequency (F0) ?

A piano sound (C3)

Spectrum of a piano sound
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Signal Model

•

• normalised fundamental frequency

• H is the number of harmonics

• Amplitudes {Ak} are real numbers > 0

• Phases {k} are independant r.v. uniform on [0, 2 [

• w is a centered white noise of variance 2, independent of phases  {
k
} 

• x(n) is a centered second order process with autocovariance
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Time domain methods

◼ Autocovariance estimation (biased)
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Time domain methods

◼ Autocorrelation
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Maximum likelihood approach

• Signal model:
─ a is a deterministic signal of period T0

─ w is white Gaussian noise of variance 2

• Observation likelihood

• Log-likelihood

• Method: maximise successively L with respect to a, then 2 

and then T0.
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Maximum likelihood approach

• It can be shown that maximisation of L  with respect to   is

is equivalent to maximise the spectral sum

• The spectral sum is
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The spectral sum: a bit more explanation

• For a given (e.g. frequency),          corresponds to the 

addition of the H spectral values : 

• It can be seen as the scalar product of the original spectrum

with a perfect comb of H teeth with a first tooth localised at

• If     corresponds to a fundamental frequency,          will be the 

sum of the first H harmonics and leads to a maximum
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A practical mean to compute the spectral sum (H=3)
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Spectral product

• By analogy to spectral sum (often more robust)  
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Pitch Features
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Pitch Features

Model assumption:    Equal-tempered scale

▪ MIDI pitches: 

▪ Piano notes: 

▪ Concert pitch: 

▪ Center frequency: 
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Pitch Features

Logarithmic frequency distribution

Octave: doubling of frequency

A2

110 Hz

A3

220 Hz

A4

440 Hz
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Towards a more specific representation

Idea: Binning of Fourier coefficients

• Divide up the frequency axis into logarithmically spaced 

“pitch regions”

• …and combine spectral coefficients (e.g.       ) of each 

region to form a single pitch coefficient.
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Towards a more specific representation

Towards a Constant-Q time-frequency transform:

Windowing in the time domain 

Windowing 

in the 

frequency 

domain 
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Towards a more specific representation

From M. Mueller & al. « Signal Processing for Music Analysis, IEEE Trans. On Selected topics of Signal Processing, oct. 

2011



Institut Mines-Télécom

Towards a more specific representation

◼ In practice:

• Solution is only partially satisfying

◼ More appropriate solution: Use temporal windows of 

different size for each frequency bin k’

Bin kN’

Bin k2’

Bin k1’

J. Brown and M. Puckette, An efficient algorithm for the calculation of a constant Q transform, JASA, 92(5):2698–2701, 1992.

J. Prado, Une inversion simple de la transformée à Q constant, technical report, 2011, (in French)

http://www.tsi.telecom-paristech.fr/aao/en/2011/06/06/inversible-cqt/
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Towards a more specific representation

Example: Chromatic scale
(Credit M. Mueller)
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Towards a more specific representation

Example: Chromatic scale
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Some dimensions of the musical signal …

Pitch, Harmony.. Tempo, rhythme,…

Timbre, instruments,… Polyphony, melody, ….
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Detecting multiple notes 
(e.g. multipitch estimation)

◼ Why it is challenging ?

◼ How would you do it ?
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Detecting multiple notes 
(e.g. multipitch estimation)

◼ Why it is challenging ?

◼ How would you do it ?

◼ Different families of methods

• Time domain approaches

• Frequency domain approaches

• Statistical modelling, Decomposition models

• Machine learning based (Bayesian models, classification 

models, deep neurla networks).
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Exploiting  basic iterative source separation  

principles

◼ Iterative multi-pitch extraction …
• First, detect the most prominent note …

• Subtract this note from the polyphony

• Then, detect the next most prominent note  

• Soustract this note from the polyphony

• Etc… until all notes are found

◼ Spectral smoothness

A. Klapuri, Multiple Fundamental Frequency Estimation Based on Harmonicity and Spectral Smoothness, 

IEEE Trans. On Speech and Sig. Proc., 11(6), 2003

A. Klapuri “Multipitch Analysis of Polyphonic Music and Speech Signals Using an Auditory Model”, IEEE 

Trans. On ASLP, Feb. 2008



Institut Mines-Télécom

Iterative multipitch estimation

Detect the most prominent note (in red)Chord of two synthetic notes  C – F#

Subtract the detected note Detect the next most prominent note

There is no more notes….chord C – F#  is recognized
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Harmony: the chroma features 

▪ Pitches are perceived as related (or harmonically similar) if 

they differ by an octave (the notes have the same name)

idea: build parameters which gather this „similar“ 

information

▪ We consider the 12 traditionnal notes of the tempered scale

▪ Chromas are obtained, for a given note, by adding up 

contributions of all his octaves  

Obtention of a vector of dimension 12 (the „chromas“)
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Chroma Features
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Chroma Features

C2 C3 C4

Chroma  C
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Chroma Features

C#2 C#3 C#4

Chroma  C#
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Chroma Features

D2 D3 D4

Chroma  D
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Chroma Features

Shepard‘s helix of pitch perceptionChromatic circle

http://en.wikipedia.org/wiki/Pitch_class_space

[Bartsch/Wakefield, IEEE-TMM 2005][Gómez, PhD 2006]

http://upload.wikimedia.org/wikipedia/commons/d/d0/Pitch_class_space.svg
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Chroma Features

Example: Chromatic scale
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Chroma Features

Example: Chromatic scale
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Chroma Features

Example: Chromatic scale
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Application to Chord recognition …

◼ Using theoretical chroma templates  

• Examples of 2 chromas templates with or without integrating 

higher harmonics  

C Major (1 harmonic) C Major (6 harmonics)
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Application to Chord recognition …

◼ Chords or/and tonality recognition ,…

• Other applications:
─ Audio/Audio or Audio/Score alignment

─ Audiofingerprint, ….

From L.Oudre, PhD. Telecom ParisTech 2010
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Automatic chord recognition

◼ A (historical) list of references

as usual, the first systems define the task, the performance measures, and provide a first test-set; 

later systems deals with scalability issues and create large test-set; current systems use this large dataset to train systems 
using deep-learning  

– Frame-based/ template-based approach 

• 1999   T. Fujishima. "Realtime chord recognition of musical sound: a system using common lisp music". In Proc. of 
ICMC,1999. 

– Hidden-Markov-Model (HMM) based approaches 

• 2003   A. Sheh and D. P. W. Ellis. "Chord segmentation and recognition using em-trained hidden Markov models". In Proc. 
of ISMIR, 2003 

• 2007   H. Papadopoulos and G. Peeters. "Large-scale study of chord estimation algorithms based on chroma
representation". In Proc. of IEEE CBMI, 2007 

– Splitting into bass/middle/chroma

• 2012   Yizhao Ni, Matt McVicar, Raul Santos-Rodriguez, and Tijl De Bie. "An end-to-end machine learning system for 
harmonic analysis of music". IEEE TASLP, 2012.  

–

Deep learning approaches 

• 2013   Nicolas Boulanger-Lewandowski, Yoshua Bengio, and Pascal Vincent. "Audio chord recognition with recurrent 
neural networks". In ISMIR, 2013  

• 2016   Filip Korzeniowski and Gerhard Widmer. "Feature learning for chord recognition: the deep chroma extractor". In 
ISMIR, 2016.  

• 2017   B. McFee and J. P. Bello. "Structured training for large-vocabulary chord recognition". In Proc. of ISMIR, 2017 

• 2021  C. Weiß and G. Peeters. "Training deep pitch-class representations with a multi-label CTC loss". In Proc. of ISMIR, 
2021
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How to perform Music recognition or 

Audiofingerprint ?
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Audio Identification  ou AudioID

◼ Audio ID = find high-level metadata from a music 

recording

◼ Challenges:

• Efficiency in adverse conditions (distorsion, noises,..)

• Scale to “Big data” (bases > millions of titles)

• Rapidity / Real time

◼ Product example : Shazam

Audio 

identification

Information of the 

recording (e.g. fro 

music: title, artist, 

etc.., …)
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Audio fingerprinting 

◼ Audio Fingerprinting: One possible approach

◼ Principle :

• For each reference, a unique “fingerprint” is computed  

• Music recordings recognition: compute its “fingerprint” and 
comparison with a database of reference fingerprints .

Identify

Fingerprint Processing
Excerpt ID

result

Information about the 

excerpt (e.g. for a 

music: title, album, 

artist, …)

Database Creation

Fingerprint

Data Base
Fingerprints of the 

references

DB query

Reference 

audio 

tracks

DB answer

Figure from Sébastien Fenêt
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Signal model : from spectrogram to 

“schematic binary spectrogram”

◼ 1st step: split the spectrogram in time-requency

zones

From A. Wang, “An industrial strength audio search algorithm,” in ISMIR, 2003. (The original Shazam algorithm) 
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Signal model : from spectrogram to 

“schematic binary spectrogram”

◼ 2nd step: peak one maximum per zone

06/01/2

026
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Efficient research strategy  

◼ Towards idetifying an Unknown 

recording using a large database of 

known references

 Potential strategies

• Direct comparison with each reference of the 

database (with all possible time-shifts)  

• Use “black dots” as index  (see figure)

• Alternative: ?

Test fingerprint
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Efficient research strategy  

◼ Towards idetifying an Unknown 

recording using a large database of 

known references

 Potential strategies

• Direct comparison with each reference of the 

database (with all possible time-shifts)  

• Use “white dots” as index  (see figure)

• Alternative: Use pairs of “white dots”  

Test fingerprint
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Find the best reference  

◼ To be efficient: necessity to rely on an « index »

◼ For each pair, a query is made in the database for obtaining

all references who has this pair, and at what time it appears

◼ If the pair appears at T1 in the unknown recording and at T2 

in the reference, we have a time shift of:  

• ΔT(pair)=T2-T1

◼ In summary, the algorithm is :  

For each pair:

Get the references having the pair;

For each reference found:

Store the time-shift;

Look for the reference with the most frequent time-shift;
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Find the best reference  

◼ The three main steps for the recognition:

1. Extraction of pair maxima (with their position in time) 
from the unknown recording. Each pair is a « key » and is
encoded as a vector [ f1, f2,t2 −t1] where (f1t1) (resp. (f2,t2) is
the time-spectral position of the first (resp. second) maximum 

2. Search in the database for all candidate references (e.g. 
those who have common pairs with the unknown recording). 
For each key, the time shift Δt = t1 - tref where t1 and tref are 
respectively the time instant of the first maximum of the key in 
the unknown and in the reference recording. 

3. Recognition: The reference which has the most keys in 
common at a constant Δt is the recognized recording
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Find the best reference : Illustration of the 

histogram of Δt with 3 references

Recognized recording

Reference 1

Reference 2

Reference 3

Histogram of common keys
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Detection of an “out-of-base” recording  : 

local decision fusion  

◼ The unknown recording is divised in sub-segments 

◼ For each sub-segment, the algorithm gives back a best candidate

◼ If a reference appears predominantly (or more than a predefined 

number of time), it is a valid recording to be recognized  

◼ Otherwise, the query is rejected   

◼ High rate can be achieved (over 90%)  

UNKNOWN  EXCERPT

Best 

match #1

Best 

match #2

Best 

match #3

Best 

match #4
Best 

match #5

Best 

match #6
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Limitations and other solutions

◼ Not robust to time-scale or frequency scale transformations
• e.g. change of speed or transposition

• Solutions ?
─ Change of the time-frequency representation (CQT, …) [1]

─ Design of a compact representation more invariant to time-frequency
(geometric hash representations of quadruples
of points) [2]

─ Exploit invariant image features (e.g. SIFT) [3]

─ Exploit evolution of energy in spectral bands [4]

◼ Can only recognize the same recording
• Solutions ?

─ Approach the problem as cover song recognition

─ Approximate matching

[1] S. Fenet, G. Richard, Y. Grenier. A Scalable Audio Fingerprint Method with Robustness to Pitch-Shifting. In Proc. of ISMIR, 2011

[2] R. Sonnleitner, G. Widmer, "Robust Quad-Based Audio Fingerprinting," in IEEE/ACM Transactions on Audio, Speech, and Language

Processing, vol. 24, no. 3, pp. 409-421, March 2016

[3] X. Zhang & al. SIFT-based local spectrogram image descriptor: a novel feature for robust music identification, “Eurasip Journal on 

Audio Speech and Music Processing, 2015

[4] M. Ramona and G. Peeters, “Audioprint: An efficient audio fingerprint system based on a novel cost-less synchronization scheme,” in 

Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., 2013
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Extension : « Approximate » Real-time Audio 

identification 
(Fenet & al.)

◼ Audio recordings recognition
• Identical

• Approximate (live vs studio)

• For music recommendation, second screen applications, …

G. Richard & al. “De Fourier à reconnaissance musicale”, Revue Interstices, Fev. 2019, online at: 

https://interstices.info/de-fourier-a-la-reconnaissance-musicale/ (in French)

S. Fenet & al. An Extended Audio Fingerprint Method with Capabilities for Similar Music Detection. ISMIR 2013
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Some dimensions of the musical signal …

Pitch, Harmony.. Tempo, rhythme,…

Timbre, instruments,… Polyphony, melody, ….
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Interest of rhythmic information 

◼ Rhythm: is an essential component of the musical signal

◼ Numerous applications:

• Automatic mixing, DJing : synchronisation of tempo, rhythm,.. 

• Smart Karaoké 

• Automatic playlists (podcast,…)…

• Genre reconnaissance

• Music/video synchronisation

• Smart jogging shoes ? »

• ..
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Rhythm or Tempo estimation 

◼ Rythme: An intuitive concept easy to understand but 

difficult to define !!

◼ Handel (1989): « The experience of rhythm involves

movement regularity, grouping and yet accentuation and 

differentiation »

◼ There is not not a unique perception of rythm !
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Rhythm or “Tempo” Extraction

◼ Principle

Rythmic

Description

Musical 

events 

detection

Periodicity 

estimation

Periodicity 

tracking

Metrical 

level 

selection

Filterbanks

Scheirer98, Alonso07

Low level features

Sethares04, Gouyon05

Temporal methods

Seppanen01, Foote01

Frequency methods

Gouyon05, Peeters05

Network of Oscillators

Scheirer98, Klapuri04

Probabilistic methods

Laroche01, Sethares05

Probabilistic

Hainsworth03, Sethares05

Deterministic

Laroche03, Collins05, Alonso07

Agents/Histograms

Dixon01, Eck05
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Discovering the rhythmic information… 

◼ Use of filterbanks (e.g. separating the frequency information…)

• Bands 8-16 (3500 – 8000 Hz)

Band 4 (1500 – 2000 Hz)

Band 7 (3000 – 3500 Hz)

Band 6 (2500 – 3000 Hz)

Band 5 (2000 – 2500 Hz)

Band 3 (1000-1500 Hz)

Band 2 (500 – 1000 Hz)

Band 1 (0 – 500 hZ)

Musical signal in different bands (Fs=16kHz)
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Rhythm or “Tempo” Extraction

Autocorrelation

Signal + Onsets

« Detection function »

Periodicity tracking (« tempogramme»)

Metrical level selectionTempo 

Musical 

events 

detection

Periodicity 

estimation

Periodicity 

tracking

Metrical 

level 

selection
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Tempo and beat extraction

◼ A filterbank approach (Scheirer, 1998)

Page 97
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Rhythm and tempo estimation : a feature a great interest

◼ Audio-based video retrieval

◼ Exploit semantic correlations sémantiques between audio and vidéo

◼ Application: search for audio that « fits » the video stream

O. Gillet, S. Essid and G. Richard, On the Correlation of Audio and Visual Segmentations of Music Videos. IEEE Transactions on 

Circuits and Systems for Video Technology, 17 (2), March 2007, pp 347-355. 
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Current trends …

◼ Estimate rhytms (tatums,tempo) but also

downbeat (but higher level semantic)

◼ To exploit machine learning (and deep learning in 

particular)

◼ Use and combine multiple representations

• Rhythm is intrinsically multi-dimensionnal

• Downbeat depends on melody, chords, bass, etc …  



Institut Mines-Télécom

Some dimensions of the musical signal …

Pitch, Harmony.. Tempo, rhythme,…

Timbre, instruments,… Polyphony, melody, ….
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Traditional Classification system

From G. Richard, S. Sundaram, S. Narayanan, “Perceptually-motivated audio indexing and classification”, Proc. of the IEEE, 2013
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▪ A possible definition: « The attribute of auditory perception that

allows to differentiate 2 sounds of equal pitch and equal intensity.»

▪ Closely related to sound source identification and auditory 

organization

▪ Examples of sounds with the same pitch and root-mean-square

(RMS) levels, but different timbre:

▪ Early work (PhD theses) addressing musical instrument recognition:

[Essid06], [Kitahara-07], [Eronen-09]

Timbre: What is this ?
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Features for describing the timbre ?

◼ Numerous feature were proposed:

• Spectral centroid

• Spectral flux (e.g derivative of spectrogram)

• Log attack time

• Spectral irregularity

• Spectral envelope

• Perceptual model

• Onset Spectral « Asynchrony »

• Wavelet coefficient

• Harmonic / noise separation

• Entropy,

• Entropy variation,

• Mel-Frequency Cepstral Coefficients (MFCC)
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Features for describing the timbre 

◼ Why it is interesting to rely on a filterbank analysis

• Allows to separate the information localised in specific

frequency regions

• Mimics (in a rudimentary way) the human auditory

perception

• Possibility to use perceptual scales

─ Mel scale: corresponds to an approximation of perception of sound

pitch (e.g. Tonie)  
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Filter banks distributed on a Mel Scale

◼ Mel scale filtering (from Rabiner93)

Energy in each band
Sj SN

S1
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Cepstral représentation

◼ Interest

• Source/filter model of speech production 

✓ Source-filter model in the cepstral domain 

✓ Cepstre (real): a sum of two almost non-overlapping terms
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Cepstral Representation (from Furui2001)

◼ Examples:

• of Spectrum (left) 

• of Cepstrum  c() (right)

◼  is homogeneous with a time

and is called quefrency
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Cepstral Representation 

◼ Separation of the vocal tract contribution and of the source 

contribution by liftering
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MFCC
« Mel-Frequency Cepstral Coefficients »

◼ The most common features (from Furui, 2001)
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Cepstral smoothing

◼ Envelope estimation by cepstrum:

• Compute real cesptrum Cn, , then low quefrency liftering

• (log) Spectral envelope reconstruction  E =FFT(Cn)

Gaël RICHARD – SI350 – Juin 2007 113
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Classification
With the example of “automatic musical instrument recognition”

◼ Aim of classification:

• Find the class (i.e the instrument) from the features computed on 

the music signal
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Some of the most common classifications 

schemes used in audio classifications

◼ K-nearest neighbors (for simple problems)

◼ Gaussian Mixture Models (GMM)

◼ Support Vector machines

◼ Linear Regression

◼ Decision tree, Random forest

◼ …

◼ And more recently Deep neural networks

• Recurrent Neural networks (RNN) , Gated Recurrent Units (GRU)

• Convolutional Neural Networks (CNN applied on spectrograms)

• Long-Short Term Memory (LSTM)

• Generative Adversarial Networks (GANs)
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A view of Deep learning for 

audio
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Deep learning for audio

◼ Differences between an image and audio representation

◼ G. Peeters, G. Richard, « Deep learning for audio» , Multi-faceted Deep Learning: Models and Data, Edited by Jenny Benois-Pineau, Akka

Zemmari, Springer-Verlag, 2021 

• x and y axes: same concept (spatial position). 

• Image elements (cat’s ear) : same meaning independently of 
their positions over x and y.

• Neighbouring pixels : often correlated, often belong to the 
same object  

• CNN are appropriate :

─ Hidden neurons locally connected to the input image,

─ Shared parameters between various hidden neurons of a 
same feature map 

─ Max pooling allows spatial invariance

• x and y axes: different concepts (time and frequency).

• Spectrogram elements (e.g. a time-frequency area 
representing a sound source): same meaning 
independently in time but not over frequency.

• No invariance over y (even with log-frequency 
representations): neighboring pixels of a spectrogram are 
not necessarily correlated since an harmonic sound can 
be distributed overt he whole frequency in a sparse way 

• CNN not as appropriate than it is for natural images
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A typical CNN

From https://en.wikipedia.org/wiki/Convolutional_neural_network
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Music automatic tagging with CNN

◼ Good results,…. despite the pure 

« image based » architecture 

(due to mel-spectrogram ?)

◼ But can be improved…..

Tags are include: 

- emotion (sad, anger, 

happy), 

- genre (jazz, classical) 

- instrumentation (guitar, 

strings, vocal, instrumental). 

From: K. Choi & al. Automatic tagging usingdeep convolutional neural networks. InProc. of 

ISMIR (International Society for Music Information Retrieval), New York, USA, 2016.
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An interesting idea: designing musically 

motivated convolutional neural networks

◼ Using specific filters

• Temporal features

- Filters can learn musical concepts at different 

time-scales 

- Onsets, attack-sustain-release: 

- BPM and rhythm patterns:

• Frequency filters

─ Timbre + note: 

─ Timbre: 

• Rectangular filters

─ Filters can learn different aspects depending on 

m and n

J.Pons & al.Experimenting with  musically motivated convolutional neural 

networks. InProc. of IEEE CBMI, 2016
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Using different input representations

◼ Time domain waveform (end-to-end approaches)

J. Lee & al. Sample-level deep convolutional neural networks for music 

auto-tagging using raw waveforms.arXiv preprint arXiv:1703.01789, 2017.
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Popular architectures for Audio

◼ Temporal Neural Networks

• Main concept for tractable complexity: Dilated convolutions

Input to network Strided convolutions
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Popular architectures for Audio

◼ Recurrent Neural Networks (RNN)

• CNN allows representing the spatial correlations of the data, but 

they do not allow to represent the sequential aspect of the data 

• Theoretically can represent long-term dependencies but suffer from

the vanishing gradient problem

https://en.wikipedia.org/wiki/Recurrent_neural_network

CC BY-SA 4.0

https://en.wikipedia.org/wiki/Recurrent_neural_network
https://creativecommons.org/licenses/by-sa/4.0
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Popular architectures for Audio

◼ Recurrent Neural Networks (RNN)

• Long-Short-term (LSTM)

• Gated recurrent unit  (fewer parameters)

https://en.wikipedia.org/wiki/Recurrent_neural_network CC BY-SA 4.0

https://creativecommons.org/licenses/by-sa/4.0
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Some examples of pitch 

estimation with Deep learning
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CREPE: A deep learning model for monopitch

estimation (1/2)

◼ Exploiting deep learning for pitch estimation

◼ Output:
• 360 nodes (20 cents apart (1/5th of a semitone) from C1 ou B7)

• Pitch estimate is the weighted mean of the output:

• Trained with binary cross entropy loss

Kim, Jong Wook et al. “Crepe: A Convolutional Representation for Pitch Estimation.” 2018 IEEE International Conference on Acoustics, 
Speech and Signal Processing (ICASSP) (2018): 161-165.



Institut Mines-Télécom

CREPE: A deep learning model for 

monopitch estimation (2/2)

◼ A few results

◼ Better performances for low frequencies*

*: some errors due to small

Numbers of sound

exemples for some instruments
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Multipitch estimation using neural networks

◼ An early example by M. Marolt (2004) for piano sounds

Marolt, Matija. (2004). A Connectionist Approach to Automatic Transcription of Polyphonic Piano Music. Multimedia, IEEE 
Transactions on. 6. 439 - 449. 10.1109/TMM.2004.827507. 
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Multipitch estimation using neural networks

◼ Use of a specific input representation: the harmonic-CQT

◼ CNN architecture with Relu ; Last layer with sigmoid

◼ The predicted saliency map can be interpreted as a likelihood score of 

each time-frequency bin belonging to an f0 contour. 

Input H(1) output groundtruth

Bittner, Rachel & McFee, Brian & Salamon, Justin & Li, Peter & Bello, Juan. (2017). Deep Salience Representations for f0 Estimation in 
Polyphonic Music. In proc ISMIR 2017
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An extension with focus on singing voices

H. Cuesta, B. McFee, and E. Gomez, “Multiple f0 estimation in vocal ensembles using convolutional neural 

networks,” in Proc. ISMIR, 2020,
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An extension focus on singing voices

◼ Extended input features with HCQT Phase

(phase is directly linked to Instantaneous

frequency)

◼ New architectures (with fusion of input)
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An extension with focus on singing voices

◼ An idea of the performances (test sets > 3000 

audio files)
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Multipith estimation using Unets (with 

spectrogram reconstruction)

◼ Intuition: we mimic the human behaviour when evaluating a 

transcription:

• We « listen » to the transcription 

• We optimise the algorithm to reduce the errors

Cheuk, Kin Wai et al. “The Effect of Spectrogram Reconstruction on Automatic Music Transcription: An Alternative Approach to 
Improve Transcription Accuracy.” 2020 25th International Conference on Pattern Recognition (ICPR) (2020): 9091-9098.
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U-net architectures for multipitch estimation

C. Weiß and G. Peeters, "Comparing Deep Models and Evaluation Strategies for Multi-Pitch Estimation in Music Recordings," 

in IEEE/ACM Trans. On AASP, vol. 30, pp. 2814-2827, 2022, doi: 10.1109/TASLP.2022.3200547



Institut Mines-Télécom

Multipitch estimation using neural networks: other neural 

approaches

• Deep spiking networks [5]

• Multi-resolution spectrogram as input with LSTM networks [4]

• Use of a kind of “language model” in Neural Autoregressive Distribution Estimator, also known as 

NADE (similar to wavenet architecture) [3]

• A succession of 2 bi-LSTM networks (for note onset detection and note duration estimation), in [2]

• Unet networks (with self-attention [6], spectrogram reconstruction [7], varied architectures [8])

• Unsupervised approaches (but here only for monopitch estimation) [9]

• An interesting reading: [1]

« Yet, despite these [...] limitations, NMF-based methods remain competitive or even exceed the 

results achieved using NNs.”

[5] Qian, Hanxiao et al. “Robust Multipitch Estimation of Piano Sounds Using Deep Spiking Neural Networks.” 2019 IEEE Symposium Series on 
Computational Intelligence (SSCI) (2019): 2335-2341.
[6]Y. -T. Wu, B. Chen and L. Su, "Multi-Instrument Automatic Music Transcription With Self-Attention-Based Instance Segmentation," in IEEE/ACM 
Transactions on Audio, Speech, and Language Processing, vol. 28, pp. 2796-2809, 2020, doi: 
[8] C. Weiß and G. Peeters, "Comparing Deep Models and Evaluation Strategies for Multi-Pitch Estimation in Music Recordings," in IEEE/ACM Trans. 
On AASP, vol. 30, pp. 2814-2827, 2022, doi: 10.1109/TASLP.2022.3200547. 
[9] A. Riou, B. Torres, B. Hayes, S. Lattner, G. Hadjeres, et al.. PESTO: Real-Time Pitch Estimation with Self-Supervised Transposition-Equivariant 
Objective. Transactions of the International Society for Music Information Retrieval (TISMIR), 2025, 8 (1), 

[4] S. Böck and M. Schedl, “Polyphonic piano note transcription with recurrent neural networks,” in Proc. IEEE Int. Conf. Acoustics, Speech, and 
Signal Processing, 2012, pp. 121–124.

[3] S. Sigtia, E. Benetos, and S. Dixon, “An end-to-end neural network for polyphonic piano music transcription,” IEEE/ACM Trans. Audio, Speech, 
Language Process., vol. 24, no. 5, pp. 927–939, 2016.

[2] C. Hawthorne, E. Elsen, J. Song, A. Roberts, I. S. C. Raffel, J. Engel, S. Oore, and D. Eck, “Onsets and frames: Dual-objective piano transcription,” 
in Proc. Int. Society Music Information Retrieval Conf., 2018, pp. 50–57.

[1] E. Benetos, S. Dixon, Z. Duan and S. Ewert, "Automatic Music Transcription: An Overview," in IEEE Signal Processing Magazine, vol. 36, no. 1, pp. 
20-30, Jan. 2019, doi: 10.1109/MSP.2018.2869928.
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An example in Downbeat

estimation
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Downbeat estimation
(Durand & al. 2017)
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Downbeat estimation
(Durand & al. 2017)

S Durand & al., "Robust Downbeat Tracking Using an Ensemble of Convolutional Networks", IEEE/ACM 

Transactions on Audio, Speech, and Language Processing, Vol 25, N°1, 2017 
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Downbeat estimation: démo

◼ Examples at the output of each network  

• https://simondurand.github.io/dnn_audio.html

◼ Video example

• directory: Démos

◼ Other audio example

JBB (Downbeat)

JBB (Tatum)

Exemple (Downbeat)

Exemple (Tatum)

https://simondurand.github.io/dnn_audio.html
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Some examples in Chords

recognition

Slides from G. Peeters



Institut Mines-Télécom

Automatic Chords recognition with deep learning (1)

Korzeniowski and Gerhard Widmer. "Feature learning for chord recognition: the deep chroma

extractor". In ISMIR, 2016.] 
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Automatic Chords recognition with deep learning (2)

[C. Weiß and G. Peeters. "Training deep pitch-class representations with a multi-label CTC loss". In 

Proc. of ISMIR, 2021]
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Automatic Chords recognition with deep learning (2)

[C. Weiß and G. Peeters. "Training deep pitch-class representations with a multi-label CTC loss". In 

Proc. of ISMIR, 2021]
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Automatic Chords recognition with deep learning (2)

[C. Weiß and G. Peeters. "Training deep pitch-class representations with a multi-label CTC loss". In 

Proc. of ISMIR, 2021]
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Automatic Chords recognition with deep learning (2)

[C. Weiß and G. Peeters. "Training deep pitch-class representations with a multi-label CTC loss". In 

Proc. of ISMIR, 2021]
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Automatic Chords recognition with deep learning
Another approach

McFee and J. P. Bello. "Structured training for large-vocabulary chord recognition". In Proc. of 

ISMIR, 2017] 
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An example in Music style 

transfer
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Symbolic music style transfer

◼ … Or playing a given music file in the style of another music excerpt.  

148

[13] Ondrej Cifka, Umut Simsekli, Gaël Richard, “Groove2Groove: One-Shot Music Style Transfer with Supervision from Synthetic Data”, 

IEEE/ACM Transactions on Audio, Speech, and Language Processing, (preprint) accepted for publication, 2020 

Sound examples at : https://groove2groove.telecom-paris.fr

Signal 

representation

Swing jazz Samba

Analysis, Transformation and Recognition of audio signals
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Recognize, Transform, Synthetize …
Symbolic music style transfer

◼ A short demo

(more sound examples at : https://groove2groove.telecom-paris.fr)

149

[13] Ondrej Cifka, Umut Simsekli, Gaël Richard, “Groove2Groove: One-Shot Music Style Transfer with Supervision from Synthetic Data”, 

IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 28, 2020 

Sound examples at : https://groove2groove.telecom-paris.fr

Analysis, Transformation and Recognition of audio signals

https://groove2groove.telecom-paris.fr/
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Numerous « meta-structures »

◼ Auto- encoders

• Variational Auto-encoders

◼ Generative Adversarial Networks (GAN)

◼ Attention models

◼ Transformers

◼ …

◼ For more examples with applications to audio, see

◼ G. Peeters, G. Richard, « Deep learning for audio» , Multi-faceted Deep Learning: Models

and Data, Edited by Jenny Benois-Pineau, Akka Zemmari, Springer-Verlag, 2021
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Some examples in Audio 

scene and event recognition
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Audio scene and event recognition

◼ Acoustic scene recognition  vs  Acoustic event recognition

◼ DCASE: an active community (wokshop, challenges, …)

• https://dcase.community/
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DCASE challenge tasks in 2025 

◼ DCASE challenges (from https://dcase.community/)  
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DCASE: Task 1.B: low complexity

Baseline 2020 system

◼ Parameters (model size = 450 kB)

◼ Audio features:
• Log mel-band energies (40 bands), analysis frame 40 

ms (50% hop size)

◼ Neural network:
• Input shape: 40 * 500 (10 seconds)

• Architecture:
─ CNN layer #1

• 2D Convolutional layer (filters: 32, kernel size: 7) + 
Batch normalization + ReLu activation

• 2D max pooling (pool size: (5, 5)) + Dropout (rate: 30%)

─ CNN layer #2
• 2D Convolutional layer (filters: 64, kernel size: 7) + 

Batch normalization + ReLu activation

• 2D max pooling (pool size: (4, 100)) + Dropout (rate: 
30%)

─ Flatten

─ Dense layer #1
• Dense layer (units: 100, activation: ReLu )

• Dropout (rate: 30%)

─ Output layer (activation: softmax)

• Learning: 200 epochs (batch size 16), data shuffling 
between epochs

• Optimizer: Adam (learning rate 0.001)

A. Mesaros, T.  Heittola, and T. Virtanen. A multi-device dataset for urban acoustic scene classification.

In Proc. of DCASE 2018. 

T. Heittola & al. Acoustic scene classification in dcase 2020 challenge: generalization across devices and low complexity solutions.

In Proc. of the DCASE 2020 Workshop
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Comparasion with other baselines
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DCASE: Audio Scene classification

DCASE2020 Task 1 Baseline, Subtask A OpenL3 + MLP (2 layers, 512 and 128 units)

R. Arandjelovi ́c and A. Zisserman, “Look, listen and learn,” in IEEE ICCV, 

2017, pp. 609–617.

S. Kumari, D. Roy, M. Cartwright, J. P. Bello, and A. Arora. Edgel^3: 

compressing l^3-net for mote scale urban noise monitoring. In 2019 IEEE 

International Parallel and Distributed Processing Symposium Workshops 

(IPDPSW),
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DCASE: Audio Scene classification

Modified DCASE2020 Task 1 Baseline, Subtask A

EdgeL3 + MLP (2 layers, 64 units each)

- Sparsity

- Teacher-student

- Different level of sparsity

for each layer

S. Kumari, D. Roy, M. Cartwright, J. P. Bello, and A. Arora. Edgel^3: compressing l^3-net for mote scale 

urban noise monitoring. In 2019 IEEE International Parallel and Distributed Processing Symposium 

Workshops (IPDPSW),

Pruned model
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Acoustic scene recognition:
How to improve ?

◼ Some trends and tricks

• Use ensemble techniques

• Use Data augmentation (mix up, random cropping, channel confusion, 

Spectrum augmentation, spectrum correction, reverberation, pitch 

shift, speed change, random noise, mix audios, ...) 

• Use large networks (> 17 layers), Resnets

• Use signal or audio models  (NMF, ..)
P. Lopez & al. “Ensemble of Convolutional Neural Networks”, in DCASE 2020 Acoustic Scene 

Classification Challenge  



Institut Mines-Télécom

Acoustic scene recognition:
Why using signal or perceptual models

◼ Using perceptual models

• Example: Mel spectrogram, MFCC, CQT,..

• The classifier does not learn what is not audible

◼ Using signal models

• Example: Harmonic + noise, Source filter, NMF, …

• e.g The classifier does not learn what is not typical of an audio signal

◼ With such models
• The training may be simpler (faster convergence)

• The need for data may be far less (frugality in data)

• The need for complex architecture may be lower (frugality in computing
power)
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Audio scene and event recognition
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Audio scene and event recognition usingNMF

features(Bisot & al. 2017)
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 Use of non-supervised decomposition methods (for example Non-

Negative Factorization methods or NMF)

 Principle of NMF : 

Why NMF ? 

Image from R. Hennequin
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Example for scene classification
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Unsupervised NMF for acoustic scene

recognition
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Unsupervised NMF for acoustic scene

recognition
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Example with DNN: acoustic scene recognition

V. Bisot & al., "Feature Learning with Matrix Factorization Applied to Acoustic Scene Classification", IEEE/ACM 

Transactions on Audio, Speech, and Language Processing, (2017),  

V. Bisot & al., Leveraging deep neural networks with nonnegative representations for improved environmental sound

classification IEEE International Workshop on Machine Learning for Signal Processing MLSP, Sep 2017, Tokyo,  
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Typical performances of Acoustic scene

recognition (challenge DCASE 2016)

◼ A Mesaros & al. Detection and Classification of Acoustic Scenes and Events: Outcome of the DCASE 2016 
challenge IEEE/ACM Transactions on Audio, Speech, and Language Processing 26 (2), 379-393
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Summary : Machine listening
Audio scene and event recognition

◼ Machine listening: a domain of growing interest

◼ … with many applications

◼ Some difficulties:

• Obtaining real-case annotated databases

• Towards few-shot learning, unsupervised learning, …

• … and distributed or sensor-based learning

Transport & Communications
Industry

Audio surveillance, Audio scene analysis

Predictive maintenance
Autonomous cars, audio enhancement

Security, Health monitoring, bioacoustics
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A few additional references…

◼ Acoustic Scene and event recognition  

• V. Bisot & al., "Feature Learning with Matrix Factorization Applied to Acoustic Scene Classification", IEEE/ACM Transactions on 

Audio, Speech, and Language Processing, (2017),  

• V. Bisot & al., Leveraging deep neural networks with nonnegative representations for improved environmental sound classification 

IEEE International Workshop on Machine Learning for Signal Processing MLSP, Sep 2017, Tokyo,  

• A Mesaros & al. Detection and Classification of Acoustic Scenes and Events: Outcome of the DCASE 2016 challenge IEEE/ACM 

Transactions on Audio, Speech, and Language Processing 26 (2), 379-393

• D. Barchiesi, D. Giannoulis, D. Stowel, and M. D. Plumbley, “Acoustic scene classification: Classifying environments from the sounds 

theyproduce,”IEEE Signal Processing Magazine, vol. 32, no. 3, pp. 16–34, 2015

• P. Lopez & al. “Ensemble of Convolutional Neural Networks”, in DCASE 2020 Acoustic Scene Classification Challenge  

• T. Virtanen, M. Plumbley, D. Ellis, Computational Analysis of Sound Scenes and Events, Springer, 2018
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