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Master MVA

Analyse des signaux Audiofréequences
Audio Signal Analysis, Indexing and Transformation

Registration to the course:
https://partage.imt.fr/index.php/s/ XDFJ94EYenBPdTZ

(important for communication/organisation)

Note: Labs will be done on your own computer

except if your have have an account at Telecom Paris

(due to administration difficulties to rapidly open computer accounts using
ecampus)
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_ Audio Signal Analysis, Indexing and Transformation

B Aim of the course:
- To span several domains of audio signal processing including:

« Audio indexing/recognition or Machine listening l—m|

« Audio models (High-resolution spectral analysis) |

« Sound rendering and transformation |

(3D audio, audio effects, source separation) == ) -
(rwsmsrs] (0] [}

Sound Event Detection System |

® Philosophy of the course:
» Lectures (15h) followed by Labs (TP, 7,5h) in Python (or Matlab if preferred)

« Course validation: papers reading/presentation + reports on Labs

B Professors: Gaél Richard and Roland Badeau
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Audio Signal Analysis, Indexing and Transformation

B Audio Indexing or Machine listening (3H lecture, 1,5H TP):

 audio signal analysis for content-based information retrieval (automatic
music genre recognition, automatic musical instrument identification, tempo
or downbeat estimation,...), Deep learning for audio.

® High resolution methods (3H lecture, 3H TP)
« Beyond Fourier resolution, ESPRIT, MUSIC, sinusoidal models

B Audio source separation (3H lecture; 1,5H TP):

« Audio source models, Mixing models (instantaneous, convolutive). Blind
source separation methods, time vs Frequency domains methods, under-
determined case, sparse models, DUET

® 3D audio rendering (3H lecture; 3H TP):

» Perceptual vs physical based approaches (binaural/transaural, holophony).
Sound effects synthesis (artificial reverberation, distorsion, flanger,...)

B Sound transformation (1,5H lecture, 1,5 TP)
 Pitch scaling, time scaling, phase vocoder..

&
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Audio Signal Analysis, Indexing and Transformation

B All lectures/TP @ Telecom Paris, 19 place M. Perey, Palaiseau, Wednesday afternoon from
January 7th to March 18th (oral exam)

Wed 07/01/2026 13:30-15:00 Lecture Audio , signal analysis and machine listening 0C03 Gaél RICHARD
15:15-16h45  Lecture Audio | signal analysis and machine listening 0C03 Gaél RICHARD
Wed 14/01/2026 13:30-15:00 Lecture Deep learning for audio 1A260 (Gaél RICHARD
15:156-16h46 TP Music signal analysis 1A260 Gaél RICHARD
Wed 21/01/2026 13:30-15:00  |Lecture Timbral, Scale, Pitch modifications |1A260 Roland BADEAU
15:15-16h45 |TF Timbral, Scale, Pitch modifications 1A260 Roland BADEAU
Wed 28/01/2026 13:30-15:.00  |Lecture Source Separation 1A242 Roland BADEAU
16:15-16h45  |Lecture Source Separation 1A242 Roland BADEAU
Wed 04/02/2025 13:30-15:00 |Lecture High resolution methods 11D23 Roland BADEAU
15:15-16h45  |TP Source Separation 1D23 Roland BADEAU
Wed 11/02/2026 13:30-15:00  |Lecture Sound effects and Reverberation |1A207 Gaél RICHARD
15:15-16h45 |TFP Sound effects and Reverberation 1A207 Gaél RICHARD
Wed 04/03/2026 13:30-15:00 |Lecture High resolution methods |1A207 Roland BADEAU
15:15-16hd45 |TP High resolution methods 1A207 Raoland BADEAU
Wed 11/03/2026 13:30-15:00  |Lecture 3D Sound Rendering |1A207 Gaél RICHARD
15:15-16h45 (TP 3D Sound Rendering 1A207 Gaél RICHARD
Wed 18/03/2026  13:30-16:45  Oral Exam Egﬁ Gaél RICHARD, Roland BADEAU

«  More info on the dedicated web site:
— https://perso.telecom-paristech.fr/grichard/Enseignements/MVA/
— Documents: « polycopié » + slides + research papers
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Objective of this lecture

_ Audio Indexing and machine listening

B Understanding what is an audio signal

B Understanding how to represent essential dimensions of
the audio signal

® lllustrating specific machine learning tasks in audio with
some examples

B A view of Deep learning for audio

B ALab (TP)on « multiple frequency estimation »

e
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_ Audio Indexing and machine listening : Content

B Introduction
* Interest and some applications
« A few dimensions of musical signals
« Some basics in signal processing

B Analysing the music signal
« Pitch and Harmony,...
— Pitch estimation, Chord recognition, Audio recognition
*  Tempo and rhythm,...
* Timbre and musical instruments,..

B A view of Deep learning for audio
B Some other machine listening applications

* Audio scene recognition
 Audio-based video search for music videos

e
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_ Foreword....

B |ecturelargely based on:

* M. Mueller, D. Ellis, A. Klapuri, G. Richard « Signal Processing for
Music Analysis, IEEE Trans. on Selected topics of Signhal Processing,
Oct. 2011

B With the help for some slides from :

*  0O. Gilllet,

« A Klapuri

M. Mueller
« S. Fenet

* V. Bisot

0. Citka

 S. Durand

 S. Leglaive

E% w1
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Machine listening

Al applied to Audio analysis, understanding and synthesis by a
_ machine

A fast growing interdisciplinary field with many applications

Audio surveillance, Audio scene analysis
Security, Health monitoring, bioacoustics
E =

Industry

. Predictive maintenance
Transport & Communications

Autonomous cars, audio enhancement

= NA HPWW

Entertainment, Creativity
Music recommendation, sound design

Music recognltlon & syntheS|s
\ J]
alte rn atlve

«aspse gXperimental -

Paris
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N B Search by content.....
Google

Audio BETA

Enter a keyword, record a query or drag an example clip.

2 » m"l |‘ | (Search Audio) ZiJ2 R renees

J

ot

3
Steve Jobs interview Metric - Raw Sugar Grenade explosion
7 min 14 sec 3 min 47 sec 23 sec
Speech Music - Indie Pop Sound effect

similarly random recordings »

Google Labs - Discuss - Terms of use - About Google Audio - Submit your recording

e

@2005 Google
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Why analysing the music signal ?
Y eneveine :

New applications

B Search by content

From a music piece ...

From a hummed query...

New music that | will like/love

A cover version of my favorite title

A video that matches a music piece..

Music streaming services

2 YouTube Music @ Spotify

® Music

Search by voice
m Poum ¢ ‘

Polyphonic music

v

Institut Mines-Télécom
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Semantic playlist (play music pieces
that are gradually faster ...)

« Smart » Karaoké (the music follows
the singer...)

Predict the potential success of a
single

Automatic mixing, Djing, music
synthesis

Active listening, style stransfer,...

Musical Jogging

Music source separation

v

Music generation

L

o 0

—_—
S

Research

Jukebox

W 1P PaRIS



_ Acoustic scene and sound event recognition

B Acoustic scene recognition:

* « associating a semantic label to an audio stream that
identifies the environment in which it has been produced »

_ 4 )
->
| q y
- Related to CASA (Computational Auditory Scene
Recognition) and SoundScape cognition (psychoacoustics)

/
|IHHEE N

D. Barchiesi, D. Giannoulis, D. Stowell and M. Plumbley, « Acoustic Scene Classification », IEEE Signhal Processing Magazine

% [16], May 2015 B
|Q ET |
, Institut Mines-Télécom =
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_ Acoustic scene and sound event recognition

B Sound event recognition

- “aims at transcribing an audio signal into a symbolic
description of the corresponding sound events present in an
auditory scene”.

' C A / Bird \
-> ->
: Car horn
\§ J

Coughing

\ W
A i |

# | . Institut Mines-Télécom

Drroits d'usage autorisé




_ Applications of scene and events recognition

B Smart hearing aids (Context recognition for adaptive
hearing-aids, Robot audition,..)

Security \.E

indexing,

sound retrieval, g 3
predictive maintenance, ‘,«g

bioacoustics,
) oy v H ‘ il
environment robust speech recognition, | HHH H'””““ & b

ederly assistance, smart homes 'u
Lfstenmg for Nature

The Rowe Wildlife Acoustic lab

From ST Microelectronics

I ‘ Paris
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n B Classification systems

B Several problems, a similar approach

« Speaker identification/recognition

« Automatic musical genre recognition

- Automatic music instruments recognition.

« Acoustic scene recognition

« Sound samples classification.

- Sound track labeling (speech, music, special effects etc...).
« Automatically generated Play list

« Hit predictor...

e
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n B Traditional Classification system

Learning phase (supervised case)
Training _
Database Reference templates or
Training Class Models
Feature Processing e
’ w
| Sl
Extraction => Selection => Integration K
Feature vectors ;
!
£

!

’M"""ﬂ" M., >
i Object

Feature Processin .
Unlabelled —» 8 - I I —> Recognition —p
audio object (e.g. same feature vectors) Class

_Recognition ppase _=~=~======Z0 00 00O

! % From G. Richard, S. Sundaram, S. Narayanan, “Perceptually-motivated audio indexing and classification”, Proc. of the IEEE, 2013
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_ Current trends in audio classification

B Deep learning now widely adopted
* For example under the form of encoder/decoder for representation

learning
lnpn::_t _rjdoce
l.\ / Hidden Node
Al l g Object
Unlabelled o Class

audio object

Encoder }

Decoder

e
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A little bit of signal processing

e
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B A little bit of signal processing

B Let x(t) be acontinuous signal (e.g. captured by a
microphone):

e
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B Time-Frequency representation

B Fourier Transform

X, Xd
E | v | w | m
E;DJNW W’W y W\W M JM MUUW g E;ZZ |\ } ﬂ
4l 150+ ’) |
—8 . 1:sz,fL ) ,J L
N
m % 100 200 300 ?ri?n N 500 600 700 800 % K 500 N 1000 T
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Spectral analysis of an audio signal (1)

_ (drawing from J. Laroche)

-
|
|

————— -

Frequency

F
Time

) i |
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n B Spectral analysis of an audio signal (2)

Spectrogram

Xa | Xl -

. . . ) 2000
Somme de 10 sinusoides Spectre , 10 sinusoides
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n B Audio signal representations

B Example on a music signal: note C (262 Hz) produced by a
piano and a violin.

L]
E=]
S
2
£
©
N 4000 . : T T
S = 20
g 3000F o A e e o il
2000 = — d o
1000 p—— |
-20
0 = L 1 ] 1 1 N
1 2 3 4 6 level / dB

e
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n B A bit more details on the Fourier analysis

M Fourier transform and inverse Fourier transform

X(f) = |72 a(t)e 2 dt

o(t) = [25 X(f)edmtdf

B Some properties

Properties x(t) X(f)
EConvolution x(t) = y(t) X(HY(f) -
‘.S.iﬁ].ﬂ.it.u.d.e.......g.r,'z(;t.)..........m.)(.'(lf.ﬁ(:‘.)....

Translation x(t —tp) X (f)exp(—2jrtof)

Modulation | x(t) exp(2j7 fot) X(f—fo)

5. n .;e.aI T L .).(.(}). ':'}('*'('_}')'E

e
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I cffect of sampling:

Poisson formula

B Interpretation: Sampling ®» Spectrum periodisation

Xd Z Xa, f"’

m=—0od

X, (F)/

m/T)= Y a(n)e 2™t

nN=——0oo

\

\

Y

-B

o0

Z alf+m/T) |

A/\A/

B

1 1 1
T T T
» - > - -
/\AAF

fal
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I Towards reconstruction

B 2 situations:

\ »
1 B +B
— < 2 B )(d(f ) A f
T N NCACANANA N
1 1T 2/T f
— > 2B Xa(f) 4
T / \

. Institut Mines-Télécom

Drroits d'usage autorisé



I Sampling of an analog signal

B Important to filter the analog signal before sampling

x(1) xi() N xi(nl)

nl,

e
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N B A bit more details on the Fourier analysis

B Importance of the analysis window

:::""ﬁ'r'"qh‘ll"l'h'w'”‘"’.'llfg it JIII']I vy JII." W
o L i sl
x(n)—" ) ot

() = h(t) x (t) =
y AT AT
] [FFT| FFT

y(n)
B We recall that : ¥

r
v
Convolution a(t) xy(t) X(HY(f) |: |:| |:|

;l

Frequency

Properties x(t) X(f)
Similitude x(at) |a| L X(f/lal)
Translation x(t —tp) X(f)exp(—2jnmtof)
Modulation | x(t) exp(2j7 fot) X(f = fo)
real X(f)=X"(-f)

B Then we have

Y (f)=H(f)*X(f)

Paris
SR i
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I A bit more details on the Fourier analysis

B Some examples of analysis windows N R N
Rectangular window: h(t) — rectr, (t) ] |

H(f) = SniT) _

0.5

e
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— Width of the main lobe: T

boxcar

T
1

20l0g10(A)

(o] 0.02 0.04 0.06
Time [sec]

hanning

0.08 0.1

I T

4

4

4

: g
L
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Time [sec]

hamming

20log10(A)
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Time [sec]

blackman
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4

4

4
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I

. Institut Mines-Télécom
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Time [sec]

20l0g10(A)

20l0g10(A)

-50
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®
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-50

-50

-

T sine(fTw) olmimon /N ki

Cw=1.210000 -> Bw=Cw/Lsec =12.100000

3
j

-40 -30 -20 -10 0

10 20 30 40
Frequency [Hz]
Cw=2.000000 -> Bw=Cw/Lsec =20.000000

"

-60 -40 -20 (o]

2 40 60 80
Frequency [Hz]
Cw=1.810000 -> Bw=Cw/Lsec =18.100000

:
i

-60 -40 -20

(=}

Frequency [Hz
Cw=2.350000 -> Bw=Cw/Lsec =23.500000

‘

i

20 40 60
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2
Frequency [Hz]
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n B A bit more details on the Fourier analysis

An example:

y(t) = hlt) xx(t)
= h(t) X (Siﬂ(?ﬂ'flt) + Siﬂ(?’ﬂ'fgt))

| X(H) =0(f = f1) +0(f — f2)

‘ ‘ Y(f)| = [H(f) « X(f)

A

\

Faris
“hd i
Institut Mines-Télécom
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n B A bit more details on the Fourier analysis

The notion of precision and resolution in discrete time:

y(t) = h(t) xz(t)
= h(t) x (sin(27 f1t))

y(n) = h(n)xx(n) |
= h(n) X (sin(Qﬂ'fl_nT)) - Y(k) — ij 01 y(n) —2jmnk/N

N/2 points

N points ‘Y(k”

h(n)

AANNANNANANANNANANNN,
VAVAVAVAVRVAAVAVAA'AVAVAVAVAY

v

Zero padding

Nfft points Nfft/2 points

h(n) Y (k)|

ANANNANANNN
vvvvvvvv

Dmhsd sage autorisé

I/Nfft
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I ~ bit more details on the Fourier analysis

B Some examples of analysis windows (size N)
«  Width of the main lobe:

mmmmmm

Rectangular: 2/N |

Hamming: 4/N |

e
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_ Z transform/ Discrete Fourier Trnasform

B Z-transform of a signal x(n) is given by:

+o0
X(z) = Z r(n)z""  Lip 2€C={2€C: Ry <|z|] < Ry}
S Im(z)

B Links Z-transform /DFT
27 | N
X (k) = X(Z)|Z:€2jﬂk/N lze(z)

« This corresponds to a sampling of the Z-transform with N
points regularly spaced on the unit circle.

Paris
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I Digital filtering

M Linear shift invariant system

x(nT) y(nT)
/ > R[] \
Input sequence =Excitation \ output sequence

Filter characterised by its impulse response, or transfer function

Y(nT) = R[X(nT)] where T is the sampling period.

By choosing T=1, we have: Y(n) = R[x(n)]

Paris
SR i

' m I
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I Digital filtering

B Linear constant-coefficient Difference Equations (a sub
class of shift invariant systems)

-y(n.) = Z {Ii;IT(n — E) — Z bj 'y(??.- o })

7 7
B Causal recursive filters
N—1 M—1
y(n) = Z a;r(n—1) — Z biy(n — j)
t=0 1=1
B Causal non-recursive filters
N—1
y(n) = Z a;r(n —1i)
Je=0

e

) ) . Gaél RICHARD — Master of Science - Filtering iﬂﬁ“
Institut Mines-Télécom 5
35 @;w PARIS

Drroits d'usage autorisé



n B Digital filtering: convolution

B Convolution allows to represent the intput-output
transformation realised by a linear shift-invariant filter

y(n) Z x(k)h(n — k) Z x(n — k)h(k)

y(n) = ’I‘(TI) x h(n)

d The impulse response is also the response to 0(72) the
unit sample at n=k:
Zh kYo(n — k)

Paris

) ) . Gaél RICHARD — Master of Science - Filtering iﬂﬁ“
Institut Mines-Télécom 5
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_ A widely used model: the source filter model

Source signal Speech

(Vocal folds) | Resonator |
(Vocal tract)

Filter

v

Ay
\
7 .
U . N
\. /7 "
N .
\
. 2
\ N
. 7 .
“.‘ |
\
N N ’ N
»
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I Some dimensions of the musical signal ...

Pitch, Harmony.. Tempo, rhythme,...

r === ===
EF g E £ g ;t -3 E
Timbre, instruments, ... Polyphony, melody, ....

e
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D.oz |- i i 1
7 ' X f /|
oorf | |I |'1-| | | Iﬁ'l .*LII [l | 'l-l II i r';l | f
E |r|| II .'I N |I P (1 I,.I I| | .l'.ll | -, II'.- II I| |
£ ! v I,Jh | II-"'I ol ln-'ﬂI I I-L{HI U
. I| | Vi I| 1 | |/ II
.I | | |I II 1 [ | . .
I ! How can we estimate the height
oLois o.noz2 D.025 [+ ] 0.035 O.04 J.02E (pitch) Of a note

A piano sound (C3)
“ or

< € F=1/T,

20 f ’4_’ | l .

|| || | | L | , How to estimate the fundamental
£-o ||'| | ﬁ ‘.flﬁ L periode (T,)

E_mll i N [‘” | ” II | I| | | || lI ' || f || ?

N le_ﬂh_ L L | or frequency (F,) -
=AY B B R S

Spectrum of a piano sound
SR i
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I Signal Model

o
x(n) = Z 2Ay cos(2mk fon + ¢ ) + w(n)

k=1
1

Jo=7- normalised fundamental frequency
0

* His the number of harmonics

« Amplitudes {A,} are real numbers >0

- Phases {4} are independant r.v. uniform on [0, 2r [

« w is a centered white noise of variance ¢?, independent of phases {¢k}

« X(n) is a centered second order process with autocovariance
H
re(m) = Z[QA% cos(2nk fom)] + o23[m]
k=1

SR i
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I Time domain methods

B Autocovariance estimation (biased)
N—1—m
1

N Z x[n]zn +m] sim >0

7o [m]| < 72[0]

1 1 1 1
-0.04 -0.02 =0.02 -0.01
Drroits d'usage autorisé
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1
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I Time domain methods

B Autocorrelation
Zil"ol‘mw[ | 2[ntm]
\/ZN 1—m \/ZN 1— mm[n_l_m]g

Felm] = sim >0

‘77 x [mH <7, [O] =1 [7.[m]| = 1 ssi les vecteurs sont colinaires

Amplitude

Paris
— 1 1 1 1 1 1 1 1 1
-0.04 -0.02 -0.02 -0.01 o 0.01 .02 0.03 0.04 @ 1P PARIS
Temps (secondes)
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I \'aximum likelihood approach

- Signal model: z(n) = a(n) +w(n)
— a is a deterministic signal of period T,
— w is white Gaussian noise of variance ¢?

* Observation likelihood

1 1 N-1 2
2\y -5z —o (z(n)—a(n))
plx|ly,a,0 = e 202 ~n=0
(@/To,0,0%) = o
* Log-likelihood

N | Nl
L(Ty,a,0%) = ) In(27m0?%) — 952 (z(n) — a(n))*

=0

« Method: maximise successively L with respect to a, then o2
and then T,

e

SR i
BT B .
@;w PARIS

Drroits d'usage autorisé



I \'aximum likelihood approach

It can be shown that maximisation of L with respect to F; = m
is equivalent to maximise the spectral sum S(k)

- The spectral sumis S(k) = S5, | X (h.k)|

' | |
il
|
g—zo—l }J‘

=
< |
-40 L

H- r\ \
f,\' Mm ‘ | ’ | ||\

e
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I The spectral sum: a bit more explanation
S(k) = Ypey |X(hE))

- For agivenk; (e.g. frequency), S(k;) corresponds to the
addition of the H spectral values :| X (k;)| + | X (2.k;)|... + | X (H.k;)|

* |t can be seen as the scalar product of the original spectrum
with a perfect comb of H teeth with a first tooth localised at £;

 If k; corresponds to a fundamental frequency, S(k;)will be the
sum of the first H harmonics and leads to a maximum

) i |
@ IP PARIS
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_ A practical mean to compute the spectral sum (H=3)

X (k)] ‘
|II|||_,,,,:
ry T
X (2.%), ‘ ,,,,,,,,,,,,,,,,
| 11| I,_|i>
A /"
X (3.8) H
Ll
_____________________________________
3
S(k) | H‘ S(k) = 3, |X(hk)|

SR i
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I Spectral product

« By analogy to spectral sum (often more robust)

P(k) =[5y | X (h.E)

200

1001

Amplitude (dB)

i

- ‘;
U ]
-300} I‘J ul||mlj |"If|lulm\|l \” |I|A | i ‘ [ I|| ‘
| m“\“ “” “'uu I.m" |I| (N f"' | il |
1, v L il | |Iu.

-400 e Ao AW Hps.'hﬂ.x

-500

1 1 1 1 1
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I Pitch Features

37 39 42 44 46 49 51 54 56 58 61 63 66 68 70
Ct2 DH2 Fi2 GF2 Af2 Cf3 D3 F¥3 Gf3 Al3 Chq D¥4 Féga G4 Af4

C2 D2 E2 F2 G2 A2 B2 C3 D3 E3 F3 G3 A3 B3 C4 D4 E4 F4 G4 A4 B4
36 38 40 41 43 45 47 48 50 52 53 55 57 59 60 62 64 65 67 69 Tl
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I Pitch Features

37 39 42 44 46 49 51 54 56 58 61 63 66 68 70
Ct2 DH2 Fi2 GF2 Af2 Cf3 D3 F¥3 Gf3 Al3 Chq D¥4 Féga G4 Af4

C2 D2 E2 F2 G2 A2 B2 C3 D3 E3 F3 G3 A3 B3 C4 D4 E4 F4 G4 A4 B4
36 38 40 41 43 45 47 48 50 52 53 55 57 59 60 62 64 65 67 69 Tl

Model assumption: Equal-tempered scale

= MIDI pitches: p € [1:128]
= Piano notes: p =21 (A0) p=128 (C8)
= Concert pitch: p =69 (A4) =440 Hz

p—69

= Center frequency: [fuipr(p) =21 x440 Hz

SR i
BT B .
@;w PARIS

e

Drroits d'usage autorisé



I Pitch Features

37 39 42 44 46 49 51 54 56 58 61 63 66 68 70
Ct2 DH2 Fi2 GF2 Af2 Cf3 D3 F¥3 Gf3 Al3 Chq D¥4 Fég4 G4 AF4

C2 D2 E2 F2 G2 A2 B2 C3 D3 E3 F3 G3 A3 B3 C4 D4 E4 F4 G4 A4 B4
36 38 40 41 43 45 47 48 50 52 53 55 57 59 60 62 64 65 67 69 Tl

A2 A3 Ad
110 Hz 220 Hz 440 Hz

Logarithmic frequency distribution
Octave: doubling of frequency
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I Towards a more specific representation

37 39 42 44 46 49 51 54 56 58 61 63 66 68 70
Ct2 DH2 Fi2 GF2 Af2 Cf3 D3 F¥3 Gf3 Al3 Chq D¥4 Féga G4 Af4

C2 D2 E2 F2 G2 A2 B2 C3 D3 E3 F3 G3 A3 B3 C4 D4 E4 F4 G4 A4 B4
36 38 40 41 43 45 47 48 50 52 53 55 57 59 60 62 64 65 67 69 Tl

ldea: Binning of Fourier coefficients

» Divide up the frequency axis into logarithmically spaced
“pitch regions”
- ...and combine spectral coefficients (e.g.|X;|) of each
region to form a single pitch coefficient.
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I T0wwards a more specific representation

Towards a Constant-Q time-frequency transform: r — e cste

A fr
>
J  Windowing
> in the
_ frequency
. domain

\ J \ J\ J \ J \ J
) 4 ) 4 Y ) 4 ) 4

Windowing in the time domain
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n B Towards a more specific representation

o 1 2 3 freq/kHz
N 3520 3 E = = 0
o 1760 ] = — =
g i = e = = ~20
= 1880 X = 5 = — 2
440 — - — —40
220 e —a3—%&=— E.a
‘ — = ——— I
110 0 * — '
F— :
-
_—
0 1 2 3 4 5 time /s
From M. Mueller & al. « Signal Processing for Music Analysis, IEEE Trans. On Selected topics of Signal Processing, oct.
2011 Paris
% i i
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. Institut Mines-Télécom
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n B Towards a more specific representation

® In practice:
« Solution is only partially satisfying

B More appropriate solution: Use temporal windows of
different size for each frequency bin k’

J. Brown and M. Puckette, An efficient algorithm for the calculation of a constant Q transform, JASA, 92(5):2698-2701, 1992.
J. Prado, Une inversion simple de la transformée a Q constant, technical report, 2011, (in French)

_% http://www.tsi.telecom-paristech.fr/aao/en/2011/06/06/inversible-cqt/ _— .
SR i

| Institut Mines-Télécom 2
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I Towards a more specific representation

Example: Chromatic scale
(Credit M. Mueller) W

Spectrogram
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I T0wwards a more specific representation

Example: Chromatic scale

Log-frequency spectrogram

108
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I Some dimensions of the musical signal ...

Pitch, Harmony.. Tempo, rhythme,...

r === ===
EF g E £ g ;t -3 E
Timbre, instruments, ... Polyphony, melody, ....

e
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Detecting multiple notes

_ (e.g. multipitch estimation)

® Why it is challenging ?

® How would you do it ?

e
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Detecting multiple notes

_ (e.g. multipitch estimation)

® Why it is challenging ?
® How would you do it ?

B Different families of methods

« Time domain approaches
* Freguency domain approaches
- Statistical modelling, Decomposition models

« Machine learning based (Bayesian models, classification
models, deep neurla networks).

e
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Exploiting basic iterative source separation

_ principles

M [terative multi-pitch extraction ...

First, detect the most prominent note ...
Subtract this note from the polyphony
Then, detect the next most prominent note
Soustract this note from the polyphony
Etc... until all notes are found

B Spectral smoothness | magninude (¢B)

40;

30-
204 it |

DA AMALL:

0 1000 2000 3000 4000 5000 6000
Sfrequency (Hz) .

10

A. Klapuri, Multiple Fundamental Frequency Estimation Based on Harmonicity and Spectral Smoothness,

IEEE Trans. On Speech and Sig. Proc., 11(6), 2003
A. Klapuri “Multipitch Analysis of Polyphonic Music and Speech Signals Using an Auditory Model”, IEEE

% Trans. On ASLP, Feb. 2008
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_ Iterative multipitch estimation

Chord of two synthetic notes C — F#

Spectre d'amplitude de I'accord Do-Fa#
- T T T T T —

Spectre dAmpitude (dB)

! [ i (Il | | 1|
I I ! I i P |
LT P T T P A AN
_s0 (IR A A T ) RLI Y 1l
o 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Fréquences (Hz=)

Subtract the detected note

Spectre d'amplitude du signal résiduel

-30

-a0
e mw
“*% 500

Spectre d’Ampitude (dB)
[

There is no more

o

Spectre dAmpliude (dB)

Spectre dAmpitude (dB)

O
o =)

Detect the most prominent note (in red)

Détection de la note prépondérante
. : — ; = —

N
o

-30

l |

AL N
%% 500 2500 3000 3500 4000 4500

Frequences (L2

Detect the next most prominent note

Détection de la note prépondérante
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notes....chord C — F# is recognized

Spectre d'amplitude du signal résiduel
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I Harmony: the chroma features

= Pitches are perceived as related (or harmonically similar) if
they differ by an octave (the notes have the same name)

m) idea: build parameters which gather this ,similar
iInformation

= We consider the 12 traditionnal notes of the tempered scale

= Chromas are obtained, for a given note, by adding up
contributions of all his octaves

) Obtention of a vector of dimension 12 (the ,chromas“
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I Chroma Features

37 39 42 44 46 49 51 54 56 58 61 63 66 68 70
Ct2 DH2 Fi2 GF2 Af2 Cf3 D3 F¥3 Gf3 Al3 Chq D¥4 Féga G4 Af4

C2 D2 E2 F2 G2 A2 B2 C3 D3 E3 F3 G3 A3 B3 C4 D4 E4 F4 G4 A4 B4
36 38 40 41 43 45 47 48 50 52 53 55 57 59 60 62 64 65 67 69 Tl

e

|
SR i
BT B .
@;w PARIS

Drroits d'usage autorisé



I Chroma Features

37 39 42 44 46 49 51 54 56 58 61 63 66 68 70
Ct2 DH2 Fi2 GF2 Af2 Cf3 D3 F¥3 Gf3 Al3 Chq D¥4 Féga G4 Af4

C2 D2 E2 F2 G2 A2 B2 C3 D3 E3 F3 G3 A3 B3 C4 D4 E4 F4 G4 A4 B4
36 38 40 41 43 45 47 48 50 52 53 55 57 59 60 62 64 65 67 69 Tl

C2 C3 C4

Chroma C
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I Chroma Features

37 39 42 44 46 49 51 54 56 58 61 63 66 68 70
Ct2 DH2 Fi2 GF2 Af2 Cf3 D3 F¥3 Gf3 Al3 Chq D¥4 Féga G4 Af4

C2 D2 E2 F2 G2 A2 B2 C3 D3 E3 F3 G3 A3 B3 C4 D4 E4 F4 G4 A4 B4
36 38 40 41 43 45 47 48 50 52 53 55 57 59 60 62 64 65 67 69 Tl

C#2 C#3 C#4

Chroma C#
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I Chroma Features

37 39 42 44 46 49 51 54 56 58 61 63 66 68 70
Ct2 DH2 Fi2 GF2 Af2 Cf3 D3 F¥3 Gf3 Al3 Chq D¥4 Féga G4 Af4

C2 D2 E2 F2 G2 A2 B2 C3 D3 E3 F3 G3 A3 B3 C4 D4 E4 F4 G4 A4 B4
36 38 40 41 43 45 47 48 50 52 53 55 57 59 60 62 64 65 67 69 Tl

D2 D3 D4

Chroma D

e

|
SR i
BT B .
@;w PARIS

Drroits d'usage autorisé



I Chroma Features

Chromatic circle Shepard's helix of pitch perception

O Tone HeQ R

F

F#
> G
D/%3 G#gn;

A# B

% http://en.wikipedia.org/wiki/Pitch_class_space
f . -
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http://upload.wikimedia.org/wikipedia/commons/d/d0/Pitch_class_space.svg

I Chroma Features

Log-frequency spectrogram
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I Chroma Features
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n B Application to Chord recognition ...

B Using theoretical chroma templates

- Examples of 2 chromas templates with or without integrating
higher harmonics

C Major (6 harmonics)

C Major (1 harmonic)

0.4 — SR 0.4
N I I I ) I_IJ I_
0 0 - .l
CC#DD#E F F#GG#AA#B CC#DD#E FF#GG#AA#B

Paris
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n B Application to Chord recognition ...

B Chords or/and tonality recognition ,...

blah2_mono.mpg

e

Drroits d'usage autorisé

[+
EL
Ef REN RER DAN NEN DEN NOE RON

i
Gt
nillllllllllllll
n
Eff B B R BN R DN RN RN N

a0 5] ] 2] 1 nan a = - =
B e

waveﬁ:-rm chord transcription
] ]

Y 0
Input features i Chord

calculation L " | recognition
8 v ol it v

AL T T T

chromagram

* Other applications:
— Audio/Audio or Audio/Score alignment
— Audiofingerprint, ....
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N B Automatic chord recognition

B A (historical) list of references
as usual, the first systems define the task, the performance measures, and provide a first test-set;

later systems deals with scalability issues and create large test-set; current systems use this large dataset to train systems
using deep-learning

— Frame-based/ template-based approach

* 1999 T. Fujishima. "Realtime chord recognition of musical sound: a system using common lisp music". In Proc. of
ICMC,1999.

— Hidden-Markov-Model (HMM) based approaches

* 2003 A. Sheh and D. P. W. Ellis. "Chord segmentation and recognition using em-trained hidden Markov models". In Proc.
of ISMIR, 2003

» 2007 H. Papadopoulos and G. Peeters. "Large-scale study of chord estimation algorithms based on chroma
representation”. In Proc. of IEEE CBMI, 2007

— Splitting into bass/middle/chroma

* 2012 Yizhao Ni, Matt McVicar, Raul Santos-Rodriguez, and Tijl De Bie. "An end-to-end machine learning system for
harmonic analysis of music". IEEE TASLP, 2012.

Deep learning approaches

* 2013 Nicolas Boulanger-Lewandowski, Yoshua Bengio, and Pascal Vincent. "Audio chord recognition with recurrent
neural networks". In ISMIR, 2013

+ 2016 Filip Korzeniowski and Gerhard Widmer. "Feature learning for chord recognition: the deep chroma extractor". In
ISMIR, 2016.

* 2017 B. McFee and J. P. Bello. "Structured training for large-vocabulary chord recognition”. In Proc. of ISMIR, 2017

* 2021 C. Weil and G. Peeters. "Training deep pitch-class representations with a multi-label CTC loss". In Proc. of ISMIR,
2021

e

|
SR i
BT B .
@;w PARIS

Drroits d'usage autorisé



How to perform Music recognition or
Audiofingerprint ?

e
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I Audio Identification ou AudiolD

B Audio ID =find high-level metadata from a music
recording

Audio I Information of the

W » identification recording (e.g. fro

music: title, artist,
etc.., ...)
B Challenges:
- Efficiency in adverse conditions (distorsion, noises,..)
« Scale to “Big data” (bases > millions of titles)
* Rapidity / Real time

B Product example : Shazam
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I ~udio fingerprinting

B Audio Fingerprinting: One possible approach
B Principle:
* For each reference, a unique “fingerprint” is computed

« Music recordings recognition: compute its “fingerprint” and
comparison with a database of reference fingerprints .

Database Creation
Reference

audio Eierrprint Fingerprints of the
references — Se
tracks j

DB query

DB answer

Identify
' Fingerprint Processing Informatlo(n abC;:Ut the
ID excerpt (e.g. for a
ﬁ resu e . .
W = ) music: title, album,
artist, ...)

Figure from Sébastien Fenét
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Signal model : from spectrogram to
“schematic binary spectrogram”

B 1st step: split the spectrogram in time-requency
zones

Spectrogramme Spectrogramme (avec quadrillage)
6000 T T T T =3 —— T T 6000 " o -
e 5400
== S
5000 | e =
ST = T e = 4800
T = e e
- = == — 2 —= =
=l — 4200
___4000 - ——— ¢ = 13

3600 =

Fréquence (Hz
8
3
ll
\
{
whis
Iy
¥
!
\.| ! i
Tu- -
| )
Vi g
(Ao
|
‘ 1 Il
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N w
s 8
o o

2000°C - | 1800

e e 1200

1000 B

= = —— S amme—— | s 600
0 4L‘v 1 1 * 1 1| 1 L 1 0
0 0.5 1 15 2 25 3 35 4

From A. Wang, “An industrial strength audio search algorithm,” in ISMIR, 2003. (The original Shazam algorithm)
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Signal model : from spectrogram to
“schematic binary spectrogram”

B 2nd step: peak one maximum per zone

—_— Spectrogramme (avec quadrillage)

5400
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I cfficient research strategy

Test fingerprint
B Towards idetifying an Unknown '
recording using a large database of
known references

Potential strategies

Direct comparison with each reference of the
database (with all possible time-shifts) L

Use “black dots” as index (see figure)

Alternative: ?
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I Efficient research strategy

Test fingerprint
B Towards idetifying an Unknown '
recording using a large database of

known references

Potential strategies

Direct comparison with each reference of the WO
database (with all possible time-shifts) 7 /

Use “white dots” as index (see figure)

.*
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
RN
.

Alternative: Use pairs of “white dots”

) i |
@ IP PARIS

e

Drroits d'usage autorisé



I ~ind the best reference

B To be efficient: necessity to rely on an « index »

B For each pair, a query is made in the database for obtaining
all references who has this pair, and at what time it appears

B If the pair appears at T1 in the unknown recording and at T2
in the reference, we have a time shift of:

* AT(pair)=T2-T1

B In summary, the algorithm is :

For each pair:
Get the references having the pair;
For each reference found:

Store the time-shift;

Look for the reference with the most frequent time-shifd
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I ~ind the best reference

B The three main steps for the recognition:

1. Extraction of pair maxima (with their position in time)
from the unknown recording. Each pair is a « key » and is
encoded as a vector [ f,, f,,t, —t,] where (f;t;) (resp. (f,,t,) is
the time-spectral position of the first (resp. second) maximum

2. Search in the database for all candidate references (e.g.
those who have common pairs with the unknown recording).
For each key, the time shift At =t,_t . where t,and t; are
respectively the time instant of the first maximum of the key in
the unknown and in the reference recording.

3. Recognition: The reference which has the most keys in
common at a constant At is the recognized recording
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Find the best reference : lllustration of the
_ histogram of At with 3 references

Histogram of common keys

25

20

Clés communes avec
la référence n°1

Reference 1

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76
Décalages temporels (en s)
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£y 15 -
Jc
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b
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. Recognized recording
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0
1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76
Décalages temporels (en s)
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Detection of an “out-of-base” recording :

I [ocal decision fusion

B The unknown recording is divised in sub-segments
B For each sub-segment, the algorithm gives back a best candidate

B If areference appears predominantly (or more than a predefined
number of time), it is a valid recording to be recognized

B Otherwise, the query is rejected
B High rate can be achieved (over 90%)

Drroits d'usage autorisé

) i |
@ IP PARIS




I Linmitations and other solutions

B Not robust to time-scale or frequency scale transformations
* e.g. change of speed or transposition

« Solutions ?
— Change of the time-frequency representation (CQT, ...) [1]

— Design of a compact representation more invariant to time-frequency
(geometric hash representations of quadruples
of points) [2]

— Exploit invariant image features (e.g. SIFT) [3]

— Exploit evolution of energy in spectral bands [4]

B Can only recognize the same recording

« Solutions ?
— Approach the problem as cover song recognition
— Approximate matching

[1] S. Fenet, G. Richard, Y. Grenier. A Scalable Audio Fingerprint Method with Robustness to Pitch-Shifting. In Proc. of ISMIR, 2011

[2] R. Sonnleitner, G. Widmer, "Robust Quad-Based Audio Fingerprinting," in IEEE/ACM Transactions on Audio, Speech, and Language
Processing, vol. 24, no. 3, pp. 409-421, March 2016

[3] X. Zhang & al. SIFT-based local spectrogram image descriptor: a novel feature for robust music identification, “Eurasip Journal on
Audio Speech and Music Processing, 2015

[4] M. Ramona and G. Peeters, “Audioprint: An efficient audio fingerprint system based on a novel cost-less synchronization scheme,” in
Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., 2013
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Extension : « Approximate » Real-time Audio

identification
(Fenet & al.)

N

J

ML o epsm

B Audio recordings recognition
* ldentical
«  Approximate (live vs studio)

*  For music recommendation, second screen applications, ...

G. Richard & al. “De Fourier a reconnaissance musicale”, Revue Interstices, Fev. 2019, online at:
https://interstices.info/de-fourier-a-la-reconnaissance-musicale/ (in French)
S. Fenet & al. An Extended Audio Fingerprint Method with Capabilities for Similar Music Detection. ISMIR 2013
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I Some dimensions of the musical signal ...

Pitch, Harmony.. Tempo, rhythme,...

r === ===
EF g E £ g ;t -3 E
Timbre, instruments, ... Polyphony, melody, ....
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N B Interest of rhythmic information

B Rhythm: is an essential component of the musical signal

B Numerous applications:
* Automatic mixing, DJing : synchronisation of tempo, rhythm,..

<

« Smart Karaokeé
« Automatic playlists (podcast,...)...
« Genre reconnaissance

* Music/video synchronisation
* Smart jogging shoes ? »

A i |
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n B Rhythm or Tempo estimation

B Rythme: An intuitive concept easy to understand but
difficult to define !

J\ | . P~ . | f,LJ

Fay
5/‘. | [ — 1 1 -
P L o
e ) J
e/ 1
. 3 + 3 3
rhythmic Maher
I;vels A d ’ ’

4 3 3
LR A 2 e

-
-
-
-
-
- -
-
-
-
-
-
-

ower
|

B Handel (1989): « The experience of rnythm involves
movement regularity, grouping and yet accentuation and
differentiation »

B Thereis not not aunique perception of rythm !
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N B Rhythm or “Tempo” Extraction

B Principle

- ll Musical

signal —\  events

audio

e
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Metrical

Periodici Periodicit
— N et_odt(_= ty —> tracki y —> level
detection estimation racking selection
Temporal methods
_ Seppanen01, Foote01 S Probabilistic
Filterbanks Hainsworth03, Sethares05

Scheirer98, Alonso07

Low level features
Sethares04, Gouyon05

Frequency methods
Gouyon05, Peeters05

Network of Oscillators
Scheirer98, Klapurio4

Probabilistic methods

Laroche01, Sethares05

Deterministic
Laroche03, Collins05, Alonso07

> Agents/Histograms
Dixon01, Eck05
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I Discovering the rhythmic information...

B Use of filterbanks (e.a. separatina the freauencyv information...)
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N B Rhythm or “Tempo” Extraction

.l | Musical

signal —\  events

audio detection

Signal + Onsets

« Detection function »

e
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o o Metrical
— N Periodicity 4> Periodicity — level
/| estimation tracking v .
selection

Periodicity tracking (« tempogramme»)

Autocorrelation
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N B Tempo and beat extraction

B A filterbank approach (Scheirer, 1998)

Frequency |

_—-—‘

Sound Input

Filterbank ]

I
- i R

P | R S ~
‘ Envelope \ .« o o ' “IpeJ

Extractor i
A S
— —T—- e — - — e — ’
l Ditferentator [ - - - l Chfferentator |
o I 2
Half-Wave Half-Wawve
I HRectiber 1 Hectiher
. —e S [—
Y ' _/
Resonant - - - Hesonant
Filterbank i Filterbank
. A I__’r T I___l
! Energy | - - . [ Energy l - Energy | === .
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_ Rhythm and tempo estimation : a feature a great interest

B Exploit semantic correlations sémantiques between audio and vidéo
B Application: search for audio that « fits » the video stream

“V|deo stream f\ﬁ:‘:.c‘ﬂ' %{

/¥

| Shot boundary ——

Cetecion \
/ \ Motlon Intensly
{ Extraction
4 Correlatlon H H E H‘

‘ Muslc Video ‘ Measures
T Mota onset
| /. Dateclon
|' Sectlon change
\\ Dlataction -
A
- Audlo stream %WMW

O. Gillet, S. Essid and G. Richard, On the Correlation of Audio and Visual Segmentations of Music Videos. IEEE Transactions on
—% Circuits and Systems for Video Technology, 17 (2), March 2007, pp 347-355.
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I Current trends ...

B Estimate rhytms (tatums,tempo) but also
downbeat (but higher level semantic)

B To exploit machine learning (and deep learning in
particular)

B Use and combine multiple representations
* Rhythm is intrinsically multi-dimensionnal
- Downbeat depends on melody, chords, bass, etc ...

e

SR i
BT B .
@;w PARIS

Drroits d'usage autorisé



I Some dimensions of the musical signal ...

Pitch, Harmony.. Tempo, rhythme,...

r === ===
£ g E % g ;t % g
Timbre, instruments,... Polyphony, melody, ....

e
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n B Traditional Classification system

Learning phase (supervised case)
Training _
Database Reference templates or
Training Class Models
Feature Processing e
’ w
| Sl
Extraction => Selection => Integration K
Feature vectors ;
!
£

!

’M"""ﬂ" M., >
i Object

Feature Processin .
Unlabelled —» 8 - I I —> Recognition —p
audio object (e.g. same feature vectors) Class

_Recognition ppase _=~=~======Z0 00 00O

From G. Richard, S. Sundaram, S. Narayanan, “Perceptually-motivated audio indexing and classification”, Proc. of the IEEE, 2013
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I Timbre: What is this ?

" A possible definition: « The attribute of auditory perception that
allows to differentiate 2 sounds of equal pitch and equal intensity.»

= Closely related to sound source identification and auditory
organization

= Examples of sounds with the same pitch and root-mean-square
(RMS) levels, but different timbre:

9 9 ¢ ¢
= Early work (PhD theses) addressing musical instrument recognition:
[Essid06], [Kitahara-07], [Eronen-09]

&
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N B Features for describing the timbre ?

B Numerous feature were proposed:

« Spectral centroid N . !
S kX T I Son «lrillant»,
CGS = kﬁl | k’ Soghig’[;d T\:mm?.~6 «penglrants
X :
ij:l | k ! . T

o

« Spectral flux (e.g derivative of spectrogram)
* Log attack time

« Spectral irregularity

« Spectral envelope

« Perceptual model

* Onset Spectral « Asynchrony »

* Wavelet coefficient

« Harmonic / noise separation

*  Entropy,

* Entropy variation,

* Mel-Frequency Cepstral Coefficients (MFCC)

SR i
BT B .
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n B Features for describing the timbre

B Why it is interesting to rely on a filterbank analysis

« Allows to separate the information localised in specific
frequency regions

« Mimics (in a rudimentary way) the human auditory
perception

« Possibility to use perceptual scales

— Mel scale: corresponds to an approximation of perception of sound
pitch (e.g. Tonie)

- - f
mel = 1000 log, (1 + ——
mel(f) ogs(1 + 1000)

SR i
Institut Mines-Télécom a
. _ _ @,‘-wmms
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_ Filter banks distributed on a Mel Scale

B Mel scale filtering (from Rabiner93)

FREQUENCY RESFONSE
MAGNITUDE
e
.
e

i |

Cr 1000 =000 30010 4000 4600
FRECHWIJENCY (Hz)

[ .......................... s SN
Energy in each band

Paris
SR i
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N B Cepstral representation

B Interest
Source/filter model of speech production

v" Source-filter model in the cepstral domain
S(w) =G(w)H(w)
v’ Cepstre (real): a sum of two almost non-overlapping terms

o(r) = FFT 'og |S(w)| = FFT 'og |G(w)| + FFT ' log |H(w)]

(” — — E 1{:} :l.i"?f\
.M}4

e
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N B Cepstral Representation (from Furuiz001)

B Examples: :
« of Spectrum (left) -
« of Cepstrum c(t) (right) ~
o,
B tis homogeneous with a time {l' o
and is called quefrency }
!
e
i 2
M & T
& | 5 |

Paris
, ir
N ° -
Fréquences (kHz} Quéfrence {ms) o

Ed
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n B Cepstral Representation

B Separation of the vocal tract contribution and of the source
contribution by liftering

Cepstre reel

e
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MFCC

_ « Mel-Frequency Cepstral Coefficients »

B The most common features (from Furui, 2001)

Aprn/ iy Speech
FFT
I\wﬂ‘mﬂ e F¥T-based
.  Spectrun
I/Xy‘hmy\ Mel scale
yAWVAR Y N triangular Tilters
Log DCT 39 element

e
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I Ccepsiral smoothing

B Envelope estimation by cepstrum:
- Compute real cesptrum C, , then low quefrency liftering
* (log) Spectral envelope reconstruction E =FFT(C,)

0 N\‘ T T T

-10F .
}\ Cepstre avec 45 coefticients

-20

-40 L / .

S50 .

Amplitude en dB

-60 ]

-70F .

-80

90! L ' L L g =Fat fi |
0 0.1 0.2 0.3 0.4 0.5 .
Fréquence W, 1P PARIS
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Classification

_ With the example of “automatic musical instrument recognition”

B Aim of classification:

* Find the class (i.e the instrument) from the features computed on
the music signal

Learning phase (supervised case)

Trainin
Datab 9 Reference templates or
aa 889 Training Class Models
Feature Processing * = ,
!
, Sl
Extraction => Selection => Integration /

ra
Feature vectors ;
¥

7
/
/

y,“’,y,ﬂ'., .Ml., | 2
Object

Feature Processin e
Unlabelled —» & > I I —»  Recognition —p
e (e.g. same feature vectors) Class

_Recognition phase

e
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Some of the most common classifications
_ schemes used in audio classifications

K-nearest neighbors (for simple problems)
Gaussian Mixture Models (GMM)

Support Vector machines

Linear Regression

Decision tree, Random forest

And more recently Deep neural networks
* Recurrent Neural networks (RNN) , Gated Recurrent Units (GRU)
« Convolutional Neural Networks (CNN applied on spectrograms)
* Long-Short Term Memory (LSTM)
* Generative Adversarial Networks (GANS)

e
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A view of Deep learning for
audio

e

SR i
m I
@ IP PARIS

Drroits d'usage autorisé



n B Deep learning for audio

B Differences between an image and audio representation

|

=

| =

§

l

—-
==

4

* xandy axes: same concept (spatial position). - x and y axes: different concepts (time and frequency).

* Image elements (cat’s ear) : same meaning independently of

their positions over x and y. » Spectrogram elements (e.g. a time-frequency area

representing a sound source): same meaning

) _ _ independently in time but not over frequency.
* Neighbouring pixels : often correlated, often belong to the

same object . . _
* No invariance over y (even with log-frequency

- CNN are appropriate : representatlo_ns): nelghborlr)g pixels of a spgctrogram are
not necessarily correlated since an harmonic sound can

— Hidden neurons locally connected to the input image, be distributed overt he whole frequency in a sparse way
— Shared parameters between various hidden neurons of a

same feature map

— Max pooling allows spatial invariance * CNN not as appropriate than it is for natural images

Zemmari, Springer-Verlag, 2021

m SR i
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Drroits d'usage autorisé

l% G. Peeters, G. Richard, « Deep learning for audio» , Multi-faceted Deep Learning: Models and Data, Edited by Jenny Benois-Pineau, Akka




I ~ typical CNN

Feature maps

e
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Convolutions Subsampling Convolutions Subsampling Fully connected

From https://en.wikipedia.org/wiki/Convolutional _neural network
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N Music automatic tagging with CNN

input output _
Tags are include:
- emotion (sad, anger,
happy),
; 4 - genre (jazz, classical)
" : - instrumentation (guitar,
:::f 984 768 2048 strings, vocal, instrumental).
// 128 ot
1
| FCN-4 |
Mebspesisvgran s Y0011 B Good results,.... despite the pure
MP (2, 4) (output: 48x 341 % 128) « image based » architecture
C 33384
NP (0.5 (output: 24 555357) (due to mel-spectrogram ?)

Conv 3 =3 = TG8
MP (33, 8) (owiput: 12212 768)
Conv 3% 3% 2018 :
MBP (4, 8) (output: 11 x2048) B But can be improved.....

| Output 50 | (sigmoid) |

From: K. Choi & al. Automatic tagging usingdeep convolutional neural networks. InProc. of
ISMIR (International Society for Music Information Retrieval), New York, USA, 2016.

Paris
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An interesting idea: designing musically
_ motivated convolutional neural networks

B Using specific filters

 Temporal features
. . . | —
- Filters can learn musical concepts at different M n
time-scales
- Onsets, attack-sustain-release: n << N -
- BPM and rhythm patterns: n, < N
i n=1 ||
* Frequency filters
— Timbre + note: m =M M m=M
— Timbre: m <M
kel
* Rectangular filters = pu—
— Filters can learn different aspects depending on m=M
m and n M mD
J.Pons & al.Experimenting with musically motivated convolutional neural S I

networks. InProc. of IEEE CBMI, 2016

é Paris
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N B Using different input representations

B Time domain waveform (end-to-end approaches)

Frame-level mel-spectrogram model

Sample-level raw waveform model

it i i . ."'
Mel-spectrogram extraction

Frame-level raw waveform model l

Sample-level strided convolution layer

WMWM J. Lee & al. Sample-level deep convolutional neural networks for music
auto-tagging using raw waveforms.arXiv preprint arXiv:1703.01789, 2017. Wty

e e— % Frame-level strided convolution layer
V%, 1P PARIS
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n B Popular architectures for Audio

B Temporal Neural Networks
* Main concept for tractable complexity: Dilated convolutions

Input to network Strided convolutions

- -1 . .
R ; _ o .
S S _ (z ®qw)(n) = zizo w(i)z(n — (d-1))
L5 y
[ strided conv, j: :( feature pooling ): i th i B afir—aiir
: : | ! Outpnt
i strided conv. ) =
| i -
X t : _~
: : I i - ’IIldﬂLn
i ! - ey
! i S T
P [ - A
# : ! _.-"'-.- ’ e A
: : _f - # 'lelrlrhn
' h i /) A f’:"'
i _.'- Vi _.'- Vi I_.' Vi I_.' ___.- 1
LA A f Ao & f A -' _.-'
ff A _.-"' A _.-"I & _.-"I A Fi H
: ; ; ; i ; .mput
Lg Tn T2 T 2T aET
aani

Paris
“hd i
Institut Mines-Télécom s

e
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N B Popular architectures for Audio

B Recurrent Neural Networks (RNN)

* CNN allows representing the spatial correlations of the data, but
they do not allow to represent the sequential aspect of the data

Unfold ‘ ‘
CjIJ :> v ““ v "t |v O] -

fu u

@ ® ®  cws

» Theoretically can represent long-term dependencies but suffer from
the vanishing gradient problem

% https://en.wikipedia.org/wiki/Recurrent neural network
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https://en.wikipedia.org/wiki/Recurrent_neural_network
https://creativecommons.org/licenses/by-sa/4.0

N B Popular architectures for Audio

B Recurrent Neural Networks (RNN)
* Long-Short-term (LSTM)

) e

LSTM unit e

‘ E I \{tanh}—
: : | [ T 0>
. Ce1,hea —’| o (S ; || Cer1Peer | — -
‘b 0 e ’

w0 =

« Gated recurrent unit (fewer parameters)

GRU unit
| 7 R Zt"z'
T — e < — | he -
© ® ()
% https://en.wikipedia.org/wiki/Recurrent_neural_network CCBY-SA 4.0 —
ﬁ G
Institut Mines-Télécom a
7 T .
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https://creativecommons.org/licenses/by-sa/4.0

Some examples of pitch
estimation with Deep learning

e
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CREPE: A deep learning model for monopitch
estimation (1/2)

B Exploiting deep learning for pitch estimation

BT
o
et
[=%
S
g siza;‘ldE conw d o] d o] o con] d comd d
(=] 3 size 64 size 64 size G size 64 size 64 g =1
S ?u:lﬂ 4 , 128 maxpool 2 4 o 2 \mamedt? 60 mexeodl? ° e rashape FC g
= po . 128 fitters 128 fiters 128 filters 256 filters 512 filters
o 1024 filters 512
- 256
=
128

a8
- 128

128 A

1024

B Output:
f

« 360 nodes (20 cents apart (1/5th of a semitone) from C1 ou B7) ¢(f) = 1200 - log, »

rik

*  Pitch estimate is the weighted mean of the output: ~_ §7350 5 ..
0 W
i=1 Wi

«  Trained with binary cross entropy loss

110

Lly.3) =Y _(~wyilogg: — (1 - y:) log(1 - 3i)) Y3 € Ro_y)

i=1

Kim, Jong Wook et al. “Crepe: A Convolutional Representation for Pitch Estimation.” 2018 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP) (2018): 161-165.
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CREPE: A deep learning model for
I onopitch estimation (2/2)

B A few results

Dataset Threshold  CREPE PYIN SWIPE
| 50cents || 0.999::0.002 | 0.9900.006 | 0.963+0.023
Tngj 25 cents || 0.999+0.003 | 0.972+0.012 | 0.949+0.026
10 cents || 0.99540.004 | 0.908+0.032 | 0.833+0.055
MDB. | 50 cents || 0.967£0,091 [ 0.919£0.129 | 0.925£0.116
stem- | 25 cents || 0.953+0.103 [ 0.890+0.134 | 0.897+0.127
synth 740 cents || 0.909+0.126 | 0.826+0.150 | 0.8162-0.165

B Better performances for low frequencies*

1000

8O0

G600

400

200

Average Frequency of Track (Hz)
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0. *: some errors due to small
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_ Multipitch estimation using neural networks

B An early example by M. Marolt (2004) for piano sounds

.
. [ NETWORK OF INTEGRATE-
RECORDING OF A 1 BANK OF AUDITORY
1 — AND-FIRE NEURONS +
I PIANO PIECE . IIR FILTERS J
L ! MULTILAYER PERCEPTRON
FILTERING ONSET DETECTION
\
NETWORKS OF w >( TIME-DELAY NEURAL
ADAPTIVE OSC[LLATORQ L NETWORKS
PARTIAL TRACKING NOTE RECOGNITION
:' R R SIMPLE AD-HOC ( MULTILAYER
1 TRANSCRIPTION OF :4 ALGORITHMS | PERCEPTRON
I A PIANO PIECE "
I . LENGTH AND DETECTION OF
LOUDNESS ESTIM. REPEATED NOTES

Marolt, Matija. (2004). A Connectionist Approach to Automatic Transcription of Polyphonic Piano Music. Multimedia, IEEE
Transactions on. 6. 439 - 449. 10.1109/TMM.2004.827507.
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_ Multipitch estimation using neural networks

e

Drroits d'usage autorisé

B Use of a specific input representation: the harmonic-CQT  fx = % - fuin - 27

B CNN architecture with Relu ; Last layer with sigmoid

B The predicted saliency map can be interpreted as a likelihood score of

each time-frequency bin belonging to an fO contour.

Input H(1) output groundtruth

~ Tt g

T 1046 =% e =2

~—’ - " "‘_ 2 2 _—_ ——_

> = RO

%) - ~ o T
c e -z

Q = - . e o

= - =X B
o IS = = S T T
(] =5 %

L —

C b i

10 14 18 22 10 14 18 22 10 14 18 22
Time (sec) Time (sec) Time (sec)

Bittner, Rachel & McFee, Brian & Salamon, Justin & Li, Peter & Bello, Juan. (2017). Deep Salience Representations for fO Estimation in
Polyphonic Music. In proc ISMIR 2017
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I /A n extension with focus on singing voices

HCQTMag HCQTPhaseDiff

Output salience

(b) Conv2D || Conv2D Conv2D
nxm nxm [ """ | nxm

CNN

Multi-FO output

._“‘-'&n %
f | - ~“;,_._.':"_': G 4 peak picking &
(e) E= ", :ﬁ—% o \';é.. h [ thresholding J (d)
t >

H. Cuesta, B. McFee, and E. Gomez, “Multiple fO estimation in vocal ensembles using convolutional neural
networks,” in Proc. ISMIR, 2020, |
i i
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I /A extension focus on singing voices

2048

B Extended input features with HCQT Phase

(phase is directly linked to Instantaneous
frequency)

4 J
Wins = qggﬁt) — fins — % q;gt)

3031 323334353637 383940 3031 323334353637 383940
Time Time

B New architectures (with fusion of input)

Convzl
Irupast 260 ——| 16 fitars ‘[ Dbt
HOOT Magnitude L H ; aclivation map
L] H H

50 Gonvan | | Comean | | conven com2D | | coman | comwzo | | comeo |: Gonvah
—» | 3z mers | | 32fitors | | 32 mmers 1 | azftom | | 3zanoes [—e0 | sannees | | Gemiton | | Brmes | — 360
xS Buf oy T3 EE] H ™) w3 |: 360t
A2 | 16 fibers
! g . 360 ]
phase differentials {a)
]
&0
Convzn conven | | comap | | comen coman | | comen
Imput1 360 ——+| 1B Hars |—+ | 32 fters | | 326 | | 22 (eees | | 32 6he | | 22 6hes Qutpant
HCOT Magnitude 5x5 Sak Sa5 Sx5 Toxa ToRa | activation map
]
50
CoredD Convel Conw2D 360
— | B4 Ao | | Barmaes | —+ | shnes | —
Fxd A3 B ]

a2 m'_. e — e Bl (Bl . [ [ | =
phase differentials x5 x5 Ex8 S8 Tl i
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I An extension with focus on singing voices

B An idea of the performances (test sets > 3000
audio files)

F-Score Precision Recall
0.9 = = == L == 0.5 = = 0.9
i i i e % o7t 1 T
0.E 0.6 4 - 0.6
0.5 0.5 0.5
4 4 r

L5 g Ly,

0 . a
0 o. a
& & Ly & & ls lo O & O,
W, ""Ef oy, ey o, %, P P P %, W, ‘e, ‘e, i
/S f"'ﬂ{. QG*‘}G ﬂ‘?e 2 o, ‘Fe% "’1:'-\.‘,.@_'1';&:| f*'-'-"@ b@ ctﬂ% Ty /'E‘,Ia " /ﬂ&aa ae,@a er":'-‘an ‘3&,-;.%
Ta £ Te
hog, D g,
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Multipith estimation using Unets (with
I spcecirogram reconstruction)

B Intuition: we mimic the human behaviour when evaluating a
transcription:

*  We « listen » to the transcription
*  We optimise the algorithm to reduce the errors

Spectrogram Reconstruction

Nrong ——  heemg

Posteriorgram 1 Ground Truth Posteriorgram 2

Cheuk, Kin Wai et al. “The Effect of Spectrogram Reconstruction on Automatic Music Transcription: An Alternative Approach to
Improve Transcription Accuracy.” 2020 25th International Conference on Pattern Recognition (ICPR) (2020): 9091-9098. —
{
Pari
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I U-net architectures for multipitch estimation

ﬁ[%

Diroits d'usage autorisé

Transformation Transcription
e e
~— T —
C ® C @ @
~
B —> -> - —>
N T % 75 % 75 % 75 % 75
w
c -
5 Z
& -—
=
2 @ A =
@ > 5 » §
(3] 1 -(?L
1 =
‘5}% | 1 | 4’ 75 e 'k 1 13
(]
75 context 1 ] Ta
frames :
D 1 =) @
1 o &
Lo (A « < o o« 0 0 B B BB B B B B BA B B BN B A > =
% 75
= = Conv, LReLU, (MaxPoal), Dropout
@ = Conv, Sigmoid or Sofimax
-@} = Residual connection
L L3 = MaxPool2d, 2x (Conv+BN+RelU)
- _Q‘ = Upsamgle2d, 2« (Come+BM=Rel U}
b%. )ﬁ}, - Degree-of-polyphony | ..... = Slip connechion {concat channels)
Tan E * \ estimation
: il © = o i : e = Transformer Encoder (Muli-head
1=, lEl 1 5 salf-attention, MLP, layer norm,
[ : Ly % a % ] : I = res connections)
T G @ i 3 2 Em = Bidirectional LSTM
=S s =2 > |2
I o 4 1 H 2
I 4 o I 4 g
S S E Y

C. Weil} and G. Peeters, "Comparing Deep Models and Evaluation Strategies for Multi-Pitch Estimation in Music Recordings,"

in IEEE/ACM Trans. On AASP, vol. 30, pp. 2814-2827, 2022, doi: 10.1109/TASLP.2022.3200547
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Multipitch estimation using neural networks: other neural

_ approaches

47

* Deep spiking networks [5]
« Multi-resolution spectrogram as input with LSTM networks [4]

« Use of a kind of “language model” in Neural Autoregressive Distribution Estimator, also known as
NADE (similar to wavenet architecture) [3]

* Asuccession of 2 bi-LSTM networks (for note onset detection and note duration estimation), in [2]
* Unet networks (with self-attention [6], spectrogram reconstruction [7], varied architectures [8])

« Unsupervised approaches (but here only for monopitch estimation) [9]

* An interesting reading: [1]

« Yet, despite these [...] limitations, NMF-based methods remain competitive or even exceed the
results achieved using NNs.”

[1] E. Benetos, S. Dixon, Z. Duan and S. Ewert, "Automatic Music Transcription: An Overview," in IEEE Signal Processing Magazine, vol. 36, no. 1, pp.
20-30, Jan. 2019, doi: 10.1109/MSP.2018.2869928.

[2] C. Hawthorne, E. Elsen, J. Song, A. Roberts, I. S. C. Raffel, J. Engel, S. Oore, and D. Eck, “Onsets and frames: Dual-objective piano transcription,”
in Proc. Int. Society Music Information Retrieval Conf., 2018, pp. 50-57.

[3]S. Sigtia, E. Benetos, and S. Dixon, “An end-to-end neural network for polyphonic piano music transcription,” IEEE/ACM Trans. Audio, Speech,
Language Process., vol. 24, no. 5, pp. 927-939, 2016.

[4] S. Bock and M. Schedl, “Polyphonic piano note transcription with recurrent neural networks,” in Proc. IEEE Int. Conf. Acoustics, Speech, and
Signal Processing, 2012, pp. 121-124.

[5] Qian, Hanxiao et al. “Robust Multipitch Estimation of Piano Sounds Using Deep Spiking Neural Networks.” 2019 IEEE Symposium Series on
Computational Intelligence (SSCI) (2019): 2335-2341.

[6]Y. -T. Wu, B. Chen and L. Su, "Multi-Instrument Automatic Music Transcription With Self-Attention-Based Instance Segmentation," in IEEE/ACM
Transactions on Audio, Speech, and Language Processing, vol. 28, pp. 2796-2809, 2020, doi:

[8] C. Weilk and G. Peeters, "Comparing Deep Models and Evaluation Strategies for Multi-Pitch Estimation in Music Recordings," in IEEE/ACM Trans
On AASP, vol. 30, pp. 2814-2827, 2022, doi: 10.1109/TASLP.2022.3200547.

[9] A. Riou, B. Torres, B. Hayes, S. Lattner, G. Hadjeres, et al.. PESTO: Real-Time Pitch Estimation with Self-Supervised Transposition-Equivariant
Objective. Transactions of the International Society for Music Information Retrieval (TISMIR), 2025, 8 (1),

|
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An example in Downbeat
estimation

e
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Downbeat estimation

I (ouand & al. 2017)

Cue Examples Input
Harmony Chord change, Cadence |_|—|.
Melody Melodic pattern, pivot notes _ _
Timbre Section change, new instrument ..:.:.
.M s "-’JIILFJ" M
Rhythm Bar-length rhythm patterns WL AT
ad
Bass, Double bass and kick drum _I||‘|III i i| iﬁ

Bass content l"'
highlight downbeats _

Paris
SR i

' — B
@ IP PARIS
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Downbeat estimation

I (ouand & al. 2017)

Signal Low-level representation Tatum
extraction segmentation
Low-frequency spec.
ODF |
melodic CQT |
Chromagram
— . - N
- - -
;: - - -
hl] tima (5] -]
Downbeat Temporal decoding High-level representation
position learning

I Bass nebhanork |
Rhythmic network |

L ' =T = Melodic network |
Harmonic netaork
- / g i [T lI-"ﬁ'lI III|I

*:}- Lalurra : h"mwllll Illf "'““—m.'ll III 'IL

S Durand & al., "Robust Downbeat Tracking Using an Ensemble of Convolutional Networks", IEEE/AC@
Transactions on Audio, Speech, and Language Processing, Vol 25, N°1, 2017

ﬁ G
Rl - [ W
@ IP PARIS
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I Downbeat estimation: démo

B Examples at the output of each network
« https://simondurand.qgithub.io/dnn audio.html

B Video example
« directory: Démos

B Other audio example

e

SR i
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https://simondurand.github.io/dnn_audio.html

Some examples in Chords
recognition

e
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_ Automatic Chords recognition with deep learning (1)

- Goal:
¢ standard Chroma extractors = too noisy features

¢ replace the Chroma front-end by learned features —>| —>
— encode harmonic information important for
chord recognition, while being robust to
irrelevant interferences - - -
— train a 3-layers MLP to output a ground- .
truth chroma representation Spectrogram Hidden Layers Chroma
— ground-truth ? Chroma corresponding to the
notes of the chord)
— feeding the network with an audio spectrum
with context instead of a single frame as Bils Iso RWC RW Total
input C T71.0tor  69.5 x00  674x02 TlLlzoa  69.2+01
. D Ch (L'}‘l‘,q 76.0+00  74.2 +0o0  703+03  Tdd+02  73.0+01
eep roma S;,U;, 78.0+02 76.5 +02 T44+04 778104 7T6.1402
Cp  80.2+00  793+00 773400 80.1+00  78.8+0.
—_ Evaluatio'-l C: ~ standard chroma from CQT
) o . Cfiﬁw: chromagram with frequency weighting and logarithmic compression
. plug the output to a Slmple |Og|8t|C regression to S8} o¢: Quarter-tone spectrogram
estimate the chord (no post-processing, Cp:  deep-chroma
smoothing)
% Korzeniowski and Gerhard Widmer. "Feature learning for chord recognition: the deep chroma
extractor". In ISMIR, 2016.

Drroits d'usage autorisé
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_ Automatic Chords recognition with deep learning (2)

- Goal:

e replace the Chroma/PCP front-end by learned
features

e Ground-truth ?
— Aligned pitches (costly)
- Non-aligned pitches (CTC)

Strongy-aligned training Weakly-aligned training

= '\\f'\x _MCTC loss ./.'/r/'“//

o . - —
do e ™ S
h P :

[C. Weil3 and G. Peeters. "Training deep pitch-class representations with a multi-label CTC loss". In

Proc. of ISMIR, 2021 =T
@;w PARIS

e
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_ Automatic Chords recognition with deep learning (2)

— Connectionist Temporal Classification (CTC) Loss

Automatic Speech Recognition Monophonic pitch-class estimation

PSP VY W= Sosimaiiin S mmas s

I
Neural Network A Neural Network
o [ m— Probabilities &
5 S — over alphabet ¢ -
- I e - E = . .
¢ . . .
h e e e. € - | oo ! Path -EEED# - EEG - - E -E- -
h e i [P / // / /////
Label
= s B : ED#EGEE
: sequence

Graves, Fernandez, Gomez, Schmidhuber: Zalkow, Miiller: Using Weakly Aligned

Connectionist temporal classification: Score-Audio Pairs to Train Deep Chroma

labelling unsegmented sequence data with Models for Cross-Modal Music Retrieval.

recurrent neural networks. Proc. ICML 2006 Proc. ISMIR 2020

[C. Weil3 and G. Peeters. "Training deep pitch-class representations with a multi-label CTC loss". In

e

Proc. of ISMIR, 2021 =TT
@wp PARIS
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_ Automatic Chords recognition with deep learning (2)

— CNN Architecture
* Input: Harmonic-CQT

Simple 5-layerCNN
Roughly 48k parameters
Pre-filtering, Binning to midi-pitches (216 —72), Temporal reduction (75 —1), Chroma reduction (72 —12)

Input: Harmonic CQT

1 Layer Kernel size  Output shape # Parameters
X = Ly ! =
& M E ——1 - Layer norm. (T+74.216,6) 2592
X -'[:j e — = ——— g @ P Conv2D, MaxPool 15 x 15 (T+74,216,20) 27020
§ ~-~+-?_-_—q . = § g Conv2D. MaxPool 3 x 3 (T+74.72,20) 3620
a — p— | —1| G © T Conv2D 75 % 1 (T, 7.). 10) 15010
2 = GE&B ; ﬁIé Conv2D 1 x 1 (T,72,1) 11
- ———— ——— = S CConv2D 1 x 61 (T, 1)—1’ Q) Q(62+73-P)
' e et = -
3 ‘ p— e = Total 18253
A ] — -- o -
@,,))‘\ L — — —— +Q(62+73-P)
O"’és 75 context frames
. e . . , . " TELECOM
[C. Weil3 and G. Peeters. "Training deep pitch-class representations with a multi-label CTC loss". In Paris

e
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_ Automatic Chords recognition with deep learning (2)

— Evaluation Application: Visualization
. , o . - ) ; s
Cosine similarity (CS), Average precision (AP) & i espry g ke,
.'\,Tntlcln‘nhq P .R .F CS ',\P Drai \llll‘-_‘\ll_.-'ll *.l:.l-ll. ||.:Ir;_|;|.| schi, bty I‘”%t:“" - lll-ﬂ:-.“:;hl..
g B E 8 g w8 FEE B S eo 8 20 o
All-Zero 0 0 0 0486 0211 (2% e e e e i
CQT-Chroma 0.512 0.681 0.579 0701 0.594 DF = S My My
CNN - SCTC 0.850 0.048 0.090 0520 0416 o i m—t _— '
CNN - MCTC:NE 0.747 0.775 0758 0.802 0.798
CNN - MCTC:WE 0.762 0.853 0.802 0.830 0.85] Annotations §f
S E
CNN = Strong alienment  0.850 0.790 0.818 0.860 0.886 Tp
— Application: Chord and Kev estimation o
PP 0.80 CNN - Strong 3¢
T o.75 alignment §¢
o . .p
I'.'Iu: 0.70 c
5°% Il . . ¥
o —_— 8
0.60 CNN-MCTC E'E
=0.70 c
E 0.65 v A ||i a'u-ﬁlqlf ‘1'”
> cQT-Chroma &[T UEHBl (PR T e 1™
el Hen g ra ~sar —m
0.55 : lu A T T T —

ma nd e 5 5
ot o NN A"‘C{ N.N"S“O < ’ Tirl:: {sel:on;sl *
[C. Weil3 and G. Peeters. "Training deep pitch-class representations with a multi-label CTC loss". In TELEQ?T

E';L

Proc. of ISMIR, 2021 =TT
@wp PARIS
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Automatic Chords recognition with deep learning

_ Another approach

- Goal 1:
+ End-to-end system

— Encoder:

e Input: T x F time-series of log-power
constant-Q transform (CQT) spectra

¢ First layer : can be interpreted as a
harmonic saliency enhancer, as it tends
to learn to suppress transients and
vibrato while emphasizing sustained
tones.

e Second layer summarizes the pitch
content of each frame, and can be
interpreted as a local feature extractor

— Decoder:
* 4 architectures

&

Drroits d'usage autorisé

ISMIR, 2017

P

i

tches

Encoder details

Decoder configurations

’
T

wul
Suppress ¢

Batch
norm
§ = -
B Conv2D =g
sxs 1) B
= BN —
—
Ture
ransients

.
p-

/]
Input | e o Chords
-_I CR2
Root
Input E‘l‘:::l“ Pitches Chords
e CR14S
r.- Root
inpur I encoder B ocey | T G
-J Bass R2ss

McFee and J. P. Bello. "Structured training for large-vocabulary chord recognition". In Proc. of
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An example in Music style
transfer
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B Symnbolic music style transfer

B ... Or playing a given music file in the style of another music excerpt.

-

ra
£

S\n\rmg c’
ot

)

W

[i

e oS

= \!;

F: £

— _ — gy

T s e s =

. L ¥ S L A P

, S =t e e e

Lad ﬂ-

ud ; er E£ o0 . -

| . I el e
! =S

I
) — -

content input x

style input 2"

Samba E
%i I ; ——
T d e se 2 ="
o318 £ EF ¢ e T
ISE=2= |
- [~ = [~ =
[ [
— — L L
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Y
content
encoder

attention

decoder

Y

output ")

=)

. Institut Mines-Télécom

Y

style
encoder

o) style

embedding
Input Node Outpg( Node

‘\ / Hidden Node Hidden Node \ag/
- Hidden Node o
‘ 7 ~
\ 4 2 4
N/ = A 4
A 4 &/ A 4
\o’ | o’/

I 1
Encoder | |

' Decoder !

TELECOM
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A i |

@ IP PARIS

Analysis, Transformation and Recognition of audio signals




Recognize, Transform, Synthetize ...

_ Symbolic music style transfer

B A short demo
(more sound examples at : https.//groove2groove.telecom-patris.fr)

Groove2Groove
One-shot style transfer for music accompaniments

B Paper | | @ Demo || wcode || +Data

Content input: Lithium (Nirvana)

. Institut Mines-Télécom Analysis, Transformation and Recognition of audio signals & o oans
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https://groove2groove.telecom-paris.fr/

_ Numerous « meta-structures »

B Auto- encoders
* Variational Auto-encoders

Generative Adversarial Networks (GAN)
Attention models
Transformers

B For more examples with applications to audio, see

B G. Peeters, G. Richard, « Deep learning for audio» , Multi-faceted Deep Learning: Models
and Data, Edited by Jenny Benois-Pineau, Akka Zemmari, Springer-Verlag, 2021

e
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Some examples in Audio
scene and event recognition

e

SR i
m I
@ IP PARIS

Drroits d'usage autorisé



n B Audio scene and event recognition

B Acoustic scene recognition vs Acoustic event recognition

Input audio recording

Scene recording - " ‘ ‘

U :

: [ Event detection system ]
Scene classification system . J{
i E m o o
(" Semembd ) : —
" ] (__ Birdssinging ] | )
L. - . Output event label sequence Time'
/ .

B DCASE: an active community (wokshop, challenges, ...)
* https://dcase.community/

e
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N B DCASE challenge tasks in 2025

B DCASE challenges (from https://dcase.community/)

e

Drroits d'usage autorisé

Challenge status

Task

Task 1, Low-Complexity Acoustic Scene
Classification with Device Information

Task 2, First-Shot Unsupervised Anomalous
Sound Detection for Machine Condition
Monitoring

Task 3, Stereo Sound Event Localization and
Detection in Regular Video Content

Task 4, Spatial Semantic Segmentation of Sound
Scenes

Task 5, Audio Question Answering

Task 6, Language-Based Audio Retrieval

Task
description

Development
dataset

Baseline

system

Evaluation
dataset Results
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m I
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DCASE: Task 1.B: low complexity

I Bascline 2020 system

B Parameters (model size = 450 kB)

B Audio features:
*  Log mel-band energies (40 bands), analysis frame 40
ms (50% hop size)
B Neural network:
*  Input shape: 40 * 500 (10 seconds)

. Architecture:

— CNN layer #1

» 2D Convolutional layer (filters: 32, kernel size: 7) +
Batch normalization + ReLu activation

+ 2D max pooling (pool size: (5, 5)) + Dropout (rate: 30%)
— CNN layer #2

» 2D Convolutional layer (filters: 64, kernel size: 7) +
Batch normalization + ReLu activation

+ 2D max pooling (pool size: (4, 100)) + Dropout (rate:
30%)

— Flatten

— Dense layer #1
» Dense layer (units: 100, activation: ReLu )
» Dropout (rate: 30%)

— Output layer (activation: softmax)

«  Learning: 200 epochs (batch size 16), data shuffling
between epochs

«  Optimizer: Adam (learning rate 0.001)

A. Mesaros, T. Heittola, and T. Virtanen. A multi-device dataset for urban acoustic scene classification.

In Proc. of DCASE 2018.

T. Heittola & al. Acoustic scene classification in dcase 2020 challenge: generalization across devices and low complexity solutions.

In Proc. of the DCASE 2020 Workshop

Drroits d'usage autorisé

Network structure

Input

@ "\
/

@ - Softmax activation
/

Output

Log mel-band energies
- Size: 40 = 500

- 2D Convolutional layer (filters: 32, kernel size: 7N
- Batch normalization

- Relu activation

- 2D max pooling (5,5)

- Dropout (30%) y,

- 2D Convolutional layer (filters: 64, kernel size: 7))
- Batch normalization

- Relu activation

- 2D max pooling (4,100}

- Dropout (30%) Y,

v

v

~
- Dense layer (units: 100)
- Relu activation
- Dropout (30%)
S

v

>y

v
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I Comparasion with other baselines

System

DCASEZ2020 Task 1 Baseline, Subtask A
Openl3 + MLP (2 layers, 512 and 128
Lirnits)

Modified DCASE2020 Task 1 Baseline,
Subtask A
Edgel3 + MLP (2 layers, 64 units each)

DCASE2020 Task 1 Baseline, Subtask
B

Log mel-band energies + CNN (2 CNN
layers and 1 fully-connected)

e

Drroits d'usage autorisé

Log loss

Audio embedding

17.87 MB

840.6 KB

Acoustic model

145.2 KB

145.2 KB

450.1 KB

Total size

19.12 MB
585.8 KB

450 KB

TELECOM
Paris
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I DCASE: Audio Scene classification

DCASE2020 Task 1 Baseline, Subtask A OpenlL3 + MLP (2 layers, 512 and 128 units)

Correspond? (Yes / No)

R. Arandjelovi’c and A. Zisserman, “Look, listen and learn,”

Audio-visual correspondence detector network

Vision subnetwork

Audio subnetwork

Fusion layers

- Correspond?
'ﬁres;: / No

2017, pp. 609-617.
S. Kumari, D. Roy, M. Cartwright, J. P. Bello, and A. Arora. Edgel*3:

compressing I"3-net for mote scale urban noise monitoring. In 2019 IEEE
International Parallel and Distributed Processing Symposium Workshops
(IPDPSW),

Diroits d' usage autorisé

in IEEE ICCV,

0o

usion layers

Dense: 2 + SoftMax

Concatenate

Ny Sen e 9 )

1
1
Dense: 128 + ReLU :
1
1
1

Video subnetwork
P == I‘ --------- 1

Max pool: (28,28)

Max pool: (32,24)

Conv: 512 (3,3) + BN + ReLU

Conv: 512 (3,3) + BN + ReLU

Conv: 512 (3,3) + BN + ReLU

Conv: 512 (3,3) + BN + ReLU

Max pool: (2,2)

Max pool: (2,2)

Conv: 256 (3,3) + BN + ReLU

Conv: 256 (3,3) + BN + ReLU

Conv: 256 (3,3) + BN + ReLU

Conv: 256 (3,3) + BN + ReLU

Max pool: (2,2)

Max pool: (2,2)

Conv: 128 (3,3) + BN + ReLU

Conv: 128 (3,3) + BN + ReLU

Conv: 128 (3,3) + BN + RelLU

Conv: 128 (3,3) + BN + ReLU

Max pool: (2,2)

Max pool: (2,2)

Conv: 64 (3,3) + BN + ReLU

Conv: 64 (3,3) + BN + ReLU

Conv: 64 (3,3) + BN + ReLU

Conv: 64 (3,3) + BN + ReLU

Batch Normalization

Batch Normalization

1 s Mel-spectrogram Input
Size: (256, 199, 1)

______________________

Single image video frame
Size: (224, 224, 3)




I DCASE: Audio Scene classification

Modified DCASE2020 Task 1 Baseline, Subtask A
EdgelL3 + MLP (2 layers, 64 units each)

DENSE L*-NET AUDIO SUBNETWORK (TEACHER)

- Sparsity
& Teacher Audio
- Teacher-student | Embedding
- Different level of sparsity 128 128 —
for each layer 256 256 I
Audlo =
Input

SPARSE L3*-NET AUDIO SUBNETWORK (STUDENT)

c nv1 con v / convs convG conv7 convd
64 64
Pruned model

Student Audio
Embedding

128 128
\—/

S. Kumari, D. Roy, M. Cartwright, J. P. Bello, and A. Arora. Edgel*3: compressing 1"3-net for mote scale
urban noise monitoring. In 2019 IEEE International Parallel and Distributed Processing Symposium

% Workshops (IPDPSW), n
ﬁ WHI
A
@ IP PARIS
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Acoustic scene recognition:

_ How to improve ?

B Some trends and tricks

47

Drroits d'usage autorisé

Use ensemble techniques

- AUdic.) — mm -
Aud.io @ 16 kHz
Development > AclResNet50 Classifier Ensemple E4 Submission
: Averaging Test Data

Mel-filterbanks
64 Freq bins

= Classifier

Use Data augmentation (mix up, random cropping, channel confusion,
Spectrum augmentation, spectrum correction, reverberation, pitch
shift, speed change, random noise, mix audios, ...) X

F(x) .
Use large networks (> 17 layers), Resnets dentity
F(x)+x
Use signal or audio models (NMF, ..)
P. Lopez & al. “Ensemble of Convolutional Neural Networks”, in DCASE 2020 Acoustic Scene

Classification Challenge
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Acoustic scene recognition:

_ Why using signal or perceptual models

B Using perceptual models

« Example: Mel spectrogram, MFCC, CQT,..
 The classifier does not learn what is not audible

B Using signal models

Wi =V

« Example: Harmonic + noise, Source filter, NMF, ... e

« e.g The classifier does not learn what is not typical of an audio signal

B With such models
» The training may be simpler (faster convergence)
* The need for data may be far less (frugality in data)

* The need for complex architecture may be lower (frugality in computing
power)

SR i
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N B Audio scene and event recognition

Raw signal

Audio representations

Hand-crafted features Spectrogram extraction

Low-level audio features
Cepstral features

MFCC

Classification

Standard classifiers Neural networks Convolutional networks
SVM GMM Multi-layer perceptron CNN CRNN
Logistic regression Recurrent networks

SR i
BT B .
@;wnms

e

Drroits d'usage autorisé



Audio scene and event recognition usingNMF

_ features(Bisot & al. 2017)

Raw signal

. 5 dOe O ATT a4 ¥
Audio representations . Fec'mttu_e le“,m,m.% .
.......................... e e s s e with matrix factorisation

Hand-crafted features Spectrogram extractioﬂ

Low-level audio features
Cepstral features

MFCC

Standard classifiers Neural networks | [Convolutional networks DNN CRNN
SVM GMM Multi-layer perceptron| | CNN  CRNN A00u§tic scene Acoustic event
Logistic regression Recurrent networks - classification detection

..................................................................................................................................................................................

Faris
“hd i
Institut Mines-Télécom s

e
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Y NVF?

m Use of non-supervised decomposition methods (for example Non-
Negative Factorization methods or NMF)

m Principle of NMF :

8 . = e S — T . 8
7 - 7 %ﬁ 1 . 7
= —— =
6 ‘'m & __— : 6
b= - =
) I~ — 3
g5 mis = — m £s
84 (g, = . 84
] = 5 = = =
=] > = 8 (]
g3 |- =3 o = >3
= == — e, £
2 {H 2 = ] 2
1 ' 1 —— o 1 1
| e -
G—200 -100 o] 0—200 -100 o] o
amplitude (dB) amplitude (dB) trame

£
N
o
w

amplitude
O7N

IN
&
o

w

amplitude
& x

Image from R Hennequln 20 40 tramgo 80 100

W
| e
@ IP PARIS
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n B Example for scene classification

From time-frequency representations to dictionary learning

e
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CQT of example [

(1) FxT
SY e Ry

F~~

&y

M CQT slices

ot 4
A

—~

Decompose V with NMF
IllillW‘HZO D(V|WH)

M vectors

l l L) (!
Bl P
~ |
eee ) esee |
N} H
T T \ /
M M
F gx1 U Ex L
ML

Data matrix V € RFxML
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Unsupervised NMF for acoustic scene

_ recognition

Nonnegative matrix factorization

minw n>0 D(V|WH) with W € R.*X and H € RF*N

Dictionary learning with NMF

min D ( V|WH

W, H=0

>

Drroits d'usage autorisé
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Unsupervised NMF for acoustic scene

_ recognition

Nonnegative matrix factorization

minw >0 D(V|WH) with W € R ¥ and H € RF*N

Feature extraction — project on learned dictionary

min D( V|

H=0

4

Paris
SR i

! m I
@/’-IP PARIS
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_ Example with DNN: acoustic scene recognition

DNN trained on CQT DNN trained on NMF activations

l NMF projection on W

Activation matrix H

| |
Fully connected

[ hidden layers with |
ReLU activation

OlONO,

V. Bisot & al., "Feature Learning with Matrix Factorization Applied to Acoustic Scene Classification", IEEE/ACM
Transactions on Audio, Speech, and Language Processing, (2017),

V. Bisot & al., Leveraging deep neural networks with nonnegative representations for improved environmental
classification IEEE International Workshop on Machine Learning for Signal Processing MLSP, Sep 2017, Toky

. 4 |
I T I .
@-lp PARIS
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Typical performances of Acoustic scene
_ recognition (challenge DCASE 2016)
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B A Mesaros & al. Detection and Classification of Acoustic Scenes and Events: Outcome of the DCASE 2016
% challenge IEEE/ACM Transactions on Audio, Speech, and Language Processing 26 (2), 379-393 TELECOM
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Summary : Machine listening
_ Audio scene and event recognition

B Machine listening: a domain of growing interest
B ... with many applications

/ Audio surveillance, Audio scene analysis \

Secuirity, Health monltorlng bioacoustics

Transport & Communications
Autonomous cars, audio enhancement

Industry
Predictive maintenance

B Some difficulties:
* Obtaining real-case annotated databases
« Towards few-shot learning, unsupervised learning, ...
* ... and distributed or sensor-based learning
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_ A few additional references...

B Acoustic Scene and event recognition

. V. Bisot & al., "Feature Learning with Matrix Factorization Applied to Acoustic Scene Classification", IEEE/ACM Transactions on
Audio, Speech, and Language Processing, (2017),
. V. Bisot & al., Leveraging deep neural networks with nonnegative representations for improved environmental sound classification

IEEE International Workshop on Machine Learning for Signal Processing MLSP, Sep 2017, Tokyo,

. A Mesaros & al. Detection and Classification of Acoustic Scenes and Events: Outcome of the DCASE 2016 challenge IEEE/ACM
Transactions on Audio, Speech, and Language Processing 26 (2), 379-393

. D. Barchiesi, D. Giannoulis, D. Stowel, and M. D. Plumbley, “Acoustic scene classification: Classifying environments from the sounds
theyproduce,”|EEE Signal Processing Magazine, vol. 32, no. 3, pp. 16-34, 2015

. P. Lopez & al. “Ensemble of Convolutional Neural Networks”, in DCASE 2020 Acoustic Scene Classification Challenge

. T. Virtanen, M. Plumbley, D. Ellis, Computational Analysis of Sound Scenes and Events, Springer, 2018

. R. Serizel, V. Bisot, S. Essid, G.Richard, Acoustic Features for Environmental sound Analysis, in Computational Analysis of Sound
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