

Master MVA

Effets sonores Réverbération

Gaël RICHARD Janvier 2016

Effets sonores

> Effets

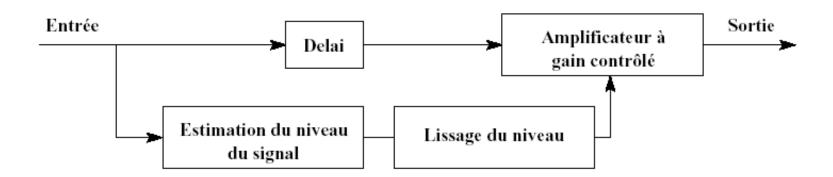
- Compression/Expansion Limiteur
- Flanging Phasing
- Modifications de l'échelle temporelle et fréquentielle,
 - Définition
 - La technique de la mémoire circulaire
 - **PSOLA**
- > Harmoniseur
- > Le chorusing
- > La distorsion

> Réverbération artificielle

- Introduction
- Algorithmes de réverbération artificielle

Compression/Expansion – Limiteur

- Utilisés depuis longtemps en analogique pour contrôler la dynamique des signaux
 - **Dynamique des signaux:** rapport entre la puissance du signal le plus fort et celle du signal le plus faible
- Ordres de grandeur:
 - Dynamique d'une salle: > 100 dB
 - Dynamique d'une émission de radio FM : < 70 dB
- Principe:
 - Compression avant transmission
 - Expansion après transmission pour restaurer la dynamique initiale



Compression/Expansion – Limiteur

Principe:

- Calcul du niveau du signal en entrée.
- Actualisation des paramètres de contrôle dynamique.
- Contrôle dynamique du niveau du signal en échelle logarithmique.

Estimation du niveau du signal en entrée

■ Valeur efficace: Amplitude du signal continu de même puissance

$$P_{eff} = \sqrt{\frac{1}{T} \int_{t-T}^{t} x^2(u) du}$$
 $P_{eff} = \sqrt{\frac{1}{N} \sum_{i=n-N+1}^{n} x_i^2}$

■ Niveau crête à crête: Amplitude maximale du signal

$$P_{crete} = \max_{n - M < i < n} |x_i|$$

■ Pour une sinusoïde:

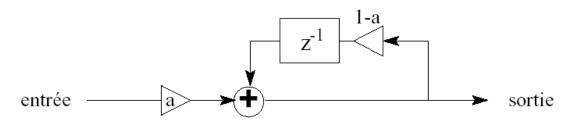
$$\mathbf{P}_{\mathbf{eff}} = A/\sqrt{2}$$
 $\mathbf{P}_{\mathbf{crete}} = \mathbf{A}$

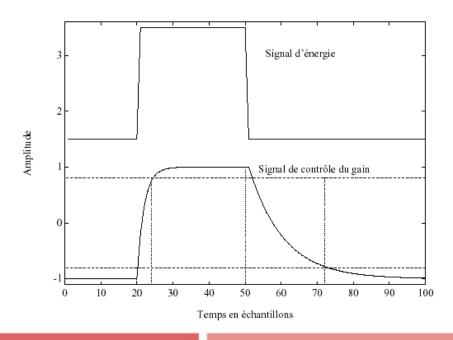
Estimation du niveau du signal en entrée

- Facteur de crête: rapport du niveau crête à crête à la valeur efficace
 - Toujours plus grand que 1
 - Mesure la présence de pics dans le signal
 - Pour une sinusoïde: Facteur de crete= P_{crete} / P_{eff} = $\sqrt{2}$
- Le niveau d'entrée est estimé
 - en valeur efficace pour la compression/expansion,
 - et en valeur crête à crête pour les limiteurs.

u

Actualisation des paramètres de contrôle dynamique

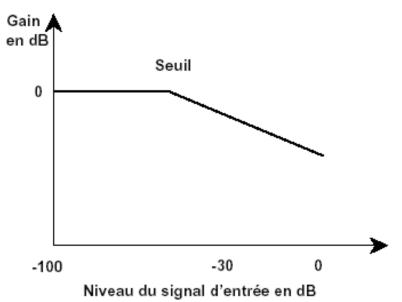

- Lissage du niveau d'entrée pour éviter les variations trop brusques de gain d'amplification.
- Comportement dynamique contrôlé par 2 paramètres:
 - Temps de montée: Le temps mis par le signal de gain pour atteindre le niveau réel à moins de 2dB
 - Temps de relaxation: Le temps mis par le signal de gain pour atteindre le niveau réel à moins de 2dB lorsque le niveau chute brutalement.

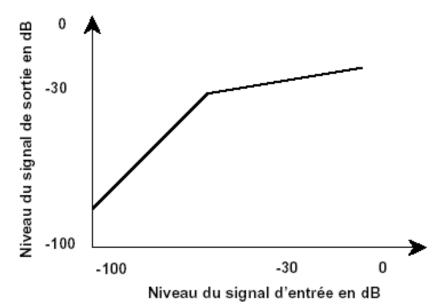

Actualisation des paramètres de contrôle dynamique

Implémentation passe-bas

$$H(z) = \frac{a}{1 - (1 - a)z^{-1}}$$

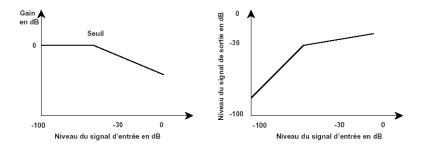
Exemples:





Compression de dynamique

- La courbe de compression est caractérisée par:
 - Un seuil
 - Un taux de compression



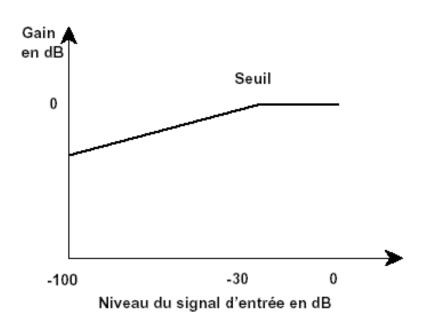
Compression de dynamique

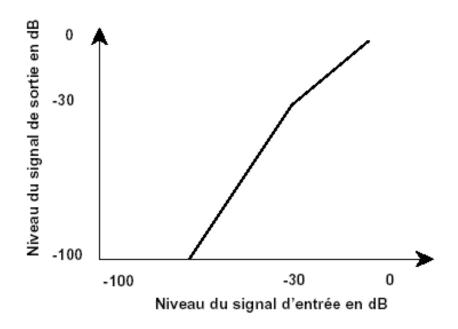
Le gain d'amplification est donné par:

$$Y_{eff} = X_{eff} + g(X_{eff})$$

Où
$$\frac{dY_{eff}}{dX_{eff}} = 1 + \frac{dg(X_{eff})}{dX_{eff}} = 1 + \alpha$$

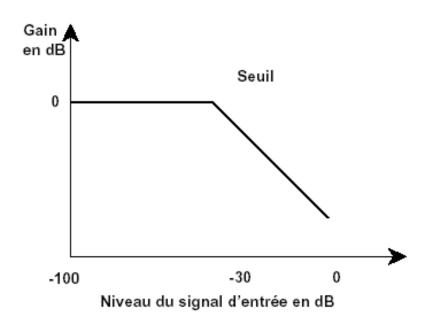
Si le gain est linéaire en X_{eff} de pente α la caractéristique entrée/sortie est aussi linéaire avec une pente égale à $1+\alpha$

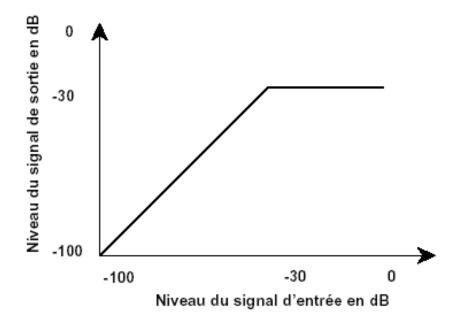

En pratique: rapports de 2:1 à 10:1



Expansion dynamique

Courbes d'expansion





Limiteur

Courbes de limitation

Utilisation

- Réduction du bruit de fond:
 - Dolby B, C...sont basées sur une compression/expansion réversible
- Enregistrement d'un signal à grande dynamique (CD) sur un support traditionnel (cassette)
- Compression à fort taux utilisée pour l'effet « sustain » fort apprécié des guitaristes…
- Compresseurs largement utilisés par certaines radios...qui émettent à niveau fort constant...
- Limiteurs utilisés en protection et pour éviter la saturation (plus néfaste au signal que l'effet du limiteur!!)

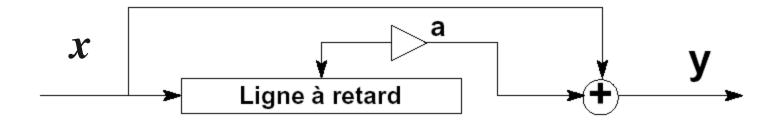
Flanging / Phasing

Origine:

- Provient de l'origine analogique
- Utilisation du pouce sur les plateaux de 2 platines jouant simultanément le même morceau.
- Effet du pouce : ralentissement d'un morceau par rapport à l'autre qui se retrouvaient tantôt synchronisés, tantôt légèrement déphasés.

■ Interprétation:

- les signaux arrivant des deux platines sont retardés d'un délai qui varie au cours du temps.
- Lorsque ces signaux sont ajoutés, certaines composantes sinusoïdales sont annulées car elles se retrouvent en opposition de phase.
- Le flanging introduit des trous équirépartis en fréquence dans le spectre et leur position varie en fonction du temps

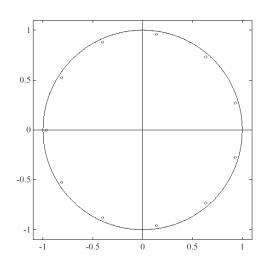


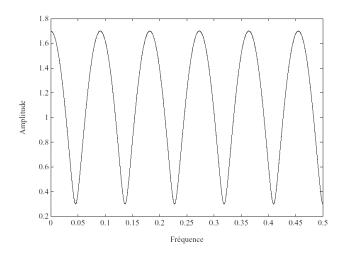
Flanging / Phasing

■ Implémentation

■ Fonction de transfert

$$H(z)=1+a\ z^{-p} \qquad |H(e^{j\omega})|=\sqrt{1+a^2+2a\cos(p\omega)}$$

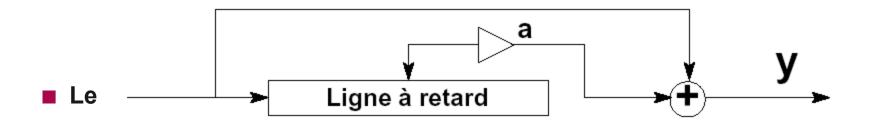

p minima aux multiples impairs de Fe/2p



Flanging / Phasing

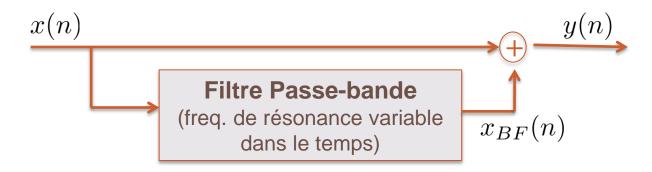
■ Fonction de transfert du système figé

- Cette fonction de transfert a un sens pourvu que la variation du retard p est lente dans le temps....
- · Réglage de la profondeur de l'effet: paramètre a


$$R_{dB} = 20 \left(\log_{10}(1+a) - \log_{10}(1-a) \right)$$

Phasing

■ Le phasing est basé sur l'utilisation d'un filtre en peigne variant au cours du temps, mais ici c 'est le gain *a* de la boucle qui est variable



Effet "Wha-wha"

■ Effet "Wha-wha": on remplace le délai (e.g. notch filter) par un filtre passe-bande variant dans le temps:

- Implémentation possible à l'aide de filtres à variables d'état
- **■** Démonstration:

Original

Wah-wah (modulation de la réquence de résonance par fonction en triangle entre 500 et 3000Hz)

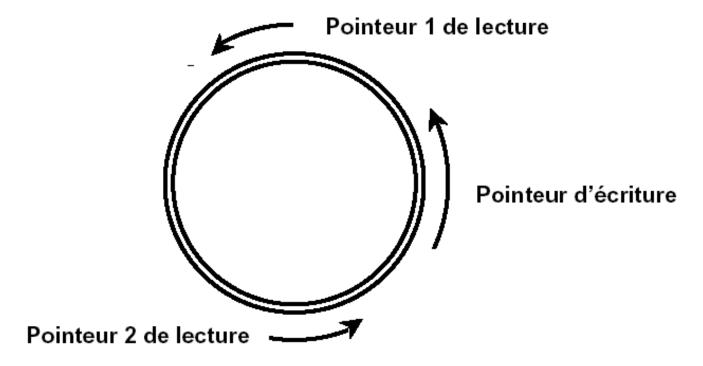
Modifications de l'échelle temporelle et fréquentielle

- Modification de l'échelle temporelle: modifier la durée sans en modifier le contenu fréquentiel
- Modification de l'échelle fréquentielle: modifier la hauteur tonale sans en modifier la durée
 - Changement de hauteur sans modification des principales résonances (ou formants pour la parole)
 - Changement de hauteur « simple »
- De nombreuses méthodes existent
 - TD-Psola, Vocodeur de phase
 - Méthodes spécifiques audio

Technique de la mémoire circulaire

■ L 'origine analogique

$$\alpha = \frac{V_r}{V_a} = \frac{V_a + R \ \Omega_{cylindre}}{V_a}$$

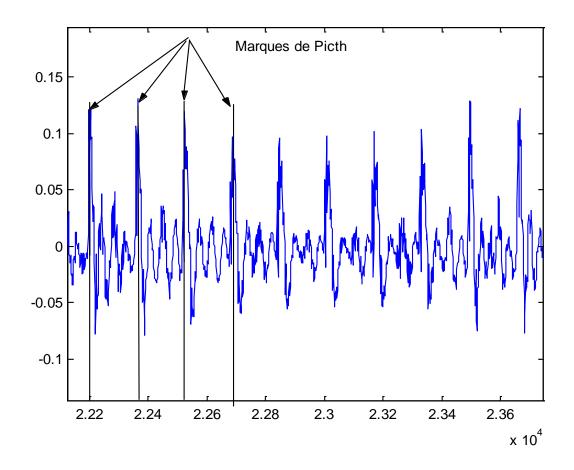


Technique de la mémoire circulaire

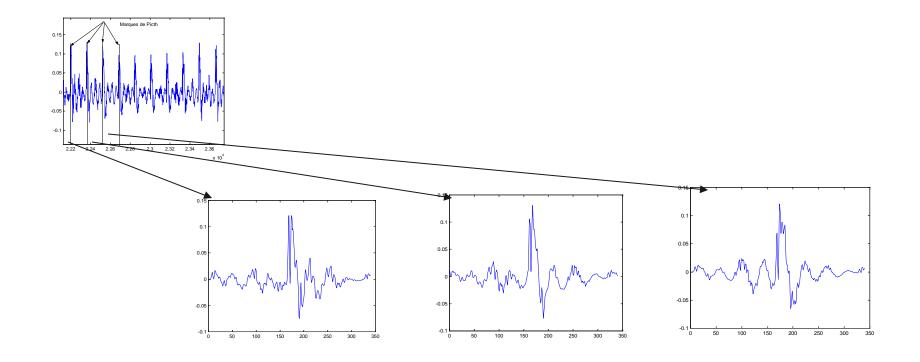
■ Implémentation numérique

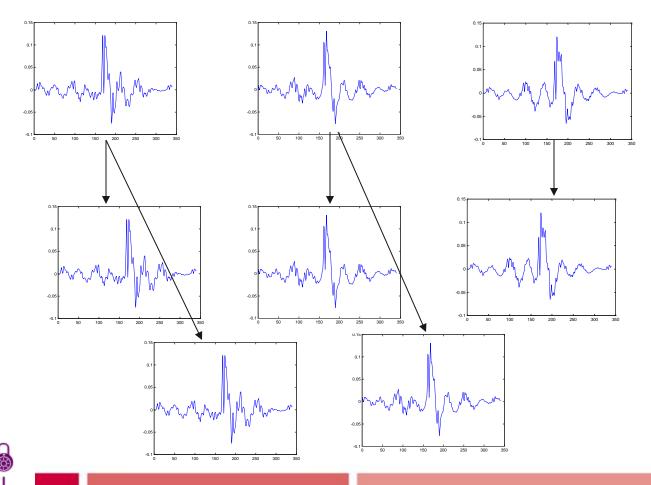
Technique de la mémoire circulaire

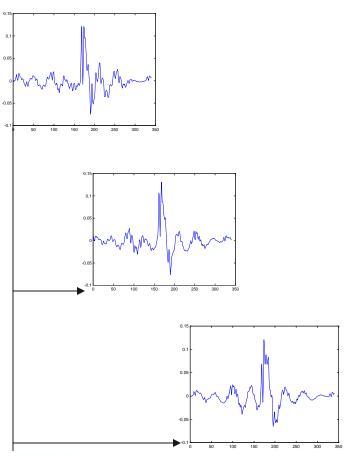
Modification de la durée

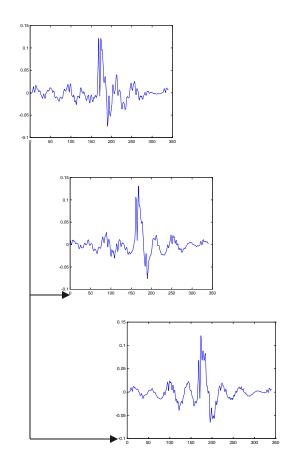

- Changer la fréquence d 'échantillonnage d 'un facteur α
- Changer la hauteur à l'aide de la technique de la mémoire circulaire
- Les deux opérations peuvent être faites en une seule fois et on se rapproche alors de la technique TD-PSOLA

TD-PSOLA: Lissage et modifications




Signaux à court-terme




Modification de durée

Modification de fréquence fondamentale

Extraction des formes d'onde synchrone de la fréquence fondamentale

- Fenêtre d'analyse calée sur 2 périodes du signal analysé pour les parties pseudo-périodiques
- Fenêtre d'analyse de longueur fixe (env. 10ms) pour les parties plus complexes (nombreuses notes ou bruit)

Synthèse par addition / recouvrement de formes d'onde

- Insertion / Suppression de signaux à court-terme pour modifier la durée
- Modification de l'espacement des signaux à court-terme pour modifier la hauteur tonale

Exemple sonore

La distorsion

- En général, la distorsion est un effet indésirable.....
- Mais peut être aussi un effet recherché (notamment par les guitaristes....)
- Elle est obtenue en faisant circuler le signal à travers une fonction nonlinéaire

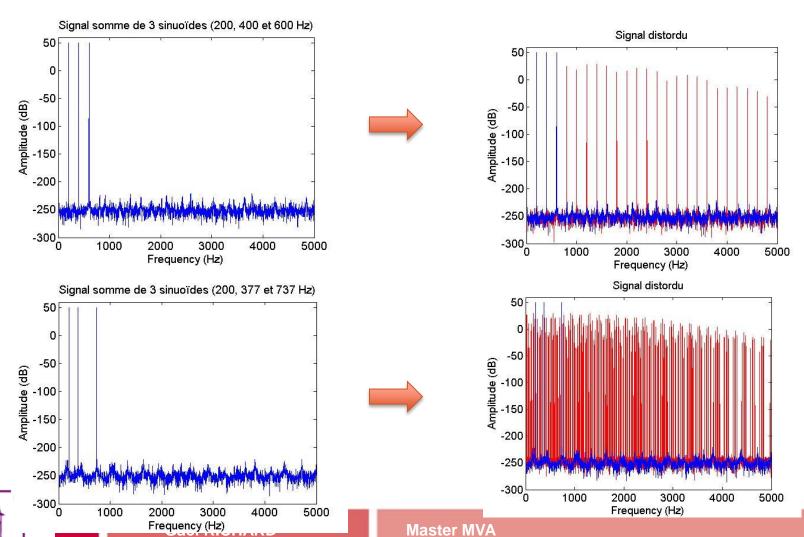
- On peut montrer que la distorsion fait apparaître dans le spectre des composantes qui n 'y figuraient pas originellement:
 - Soit le développement de la fonction non-linéaire:

$$f(u) = f(0) + uf'(0) + \frac{u^2f''(0)}{2!} + \frac{u^3f'''(0)}{3!} + \dots = \sum_{i=0}^{\infty} \frac{u^i}{i!} \frac{d^i f}{du^i}$$

• Le signal $x_n = \sum_{i=-p}^{r} e^{j\omega_i n}$ passé à travers la fonction f apparaît comme une somme pondérée de ses puissances entières:

$$y_n = \sum_{i=0}^{\infty} \alpha_i(x_n)^i$$

$$(x_n)^i = \sum_{-p \le j(k) \le p} e^{j(\omega_{j(0)} + \omega_{j(1)} + \dots + \omega_{j(i-1)})}$$



Exemples

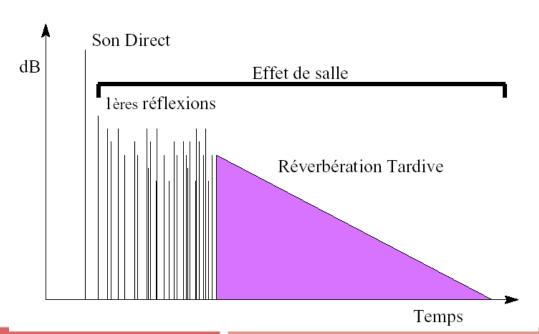
Droits d'usage autorisé

• Fonction non linéaire: $f(x) = x^9$ avec $x = \sum_{i=1}^3 A_i \sin(2\pi f_i t)$

La réverbération artificielle

Introduction : Le canal acoustique

$$y(t) = \int_0^\infty x(t-u)h(u)du$$


$$y_n = \sum_{i=0}^{\infty} x_{n-i} h_i$$

■ L 'effet de salle peut être décomposé en :

- une contribution due aux premiers échos ou réflexions précoces (qui dépendent de la géométrie de la salle et de la position de la source et du récepteur)
- une contribution due à la réverbération tardive (principalement fonction du volume et de l'absorption globale de la salle)

Approches pour la réverbération:

Approche physique

- vise à simuler exactement la propagation du son d'une source vers l'auditeur dans une pièce donnée
- Avantage: relation directe entre la spécification physique de la salle et l'effet de réverbération résultant
- Inconvénient: Approche relativement complexe (longueur des réponses impulsionnelles)

Approche « perceptive »

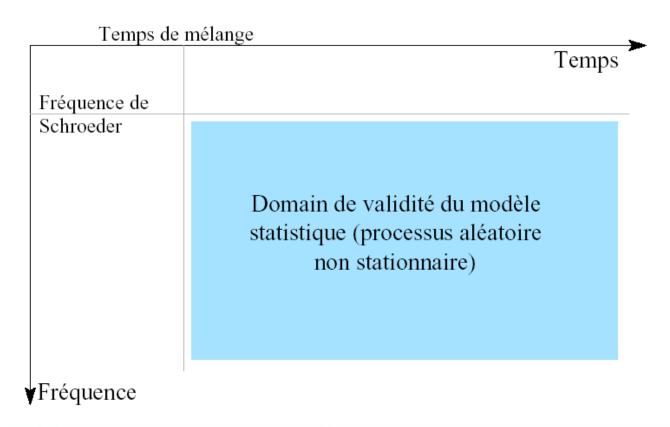
 vise à reproduire uniquement les caractéristiques perceptuelles importantes de la réverbération

Avantages de l'approche perceptive:

- Algorithme de réverbération peu coûteux (implémentation à l'aide de filtres RII
- Possibilités de définir des paramètres perceptifs pertinents qui pourront être contrôlés en temps-réel.
- Idéalement, un unique algorithme pourrait simuler tout espace
- Des espaces peuvent être très bien simulés à l'aide des approches perceptives
- Inconvénients: il n'est pas facile de changer les propriétés physiques d'une pièce simulée....

La réverbération tardive

- Caractérisée par une grande densité d'échos par unités de temps (> 1000 par secondes dans une grande salle)
- Peut être modélisée sous la forme d'un processus aléatoire gaussien décroissant exponentiellement
- De même, la réponse en fréquence est caractérisée par une grande densité de modes (du moins au dela d'une certaine fréquence appelée fréquence de Schroeder)
 - Fs = $2\sqrt{\frac{Tr}{V}}$ (Tr in seconds, V in m3, Fs in kHz)



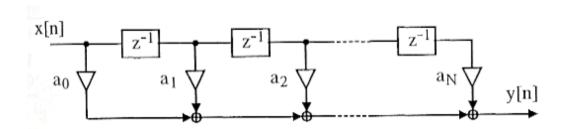
La réverbération tardive

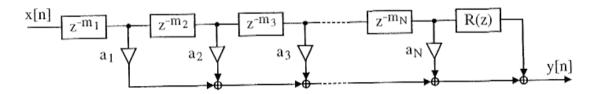
■ Validité du modèle statistique en fonction du temps de mélange (\sqrt{V}) et de la fréquence de Schroeder

Algorithmes de réverbération artificielle

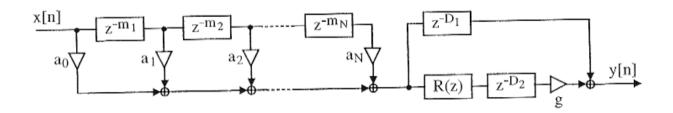
Utilisés soit:

- pour ajouter un effet de salle aux enregistrements effectués en studio
- pour modifier les propriétés acoustiques d'une salle d'écoute
- Les premiers systèmes utilisaient des procédés analogiques:
 - Réseaux de ressorts, plaques métalliques, ...
- Premiers systèmes numériques dès les années 60!!



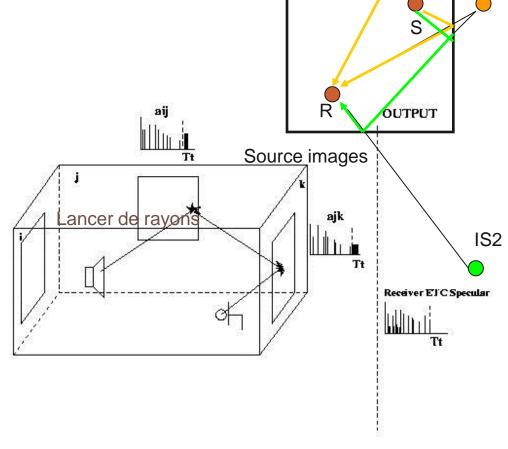


Modélisation des premiers échos


Modèle simple

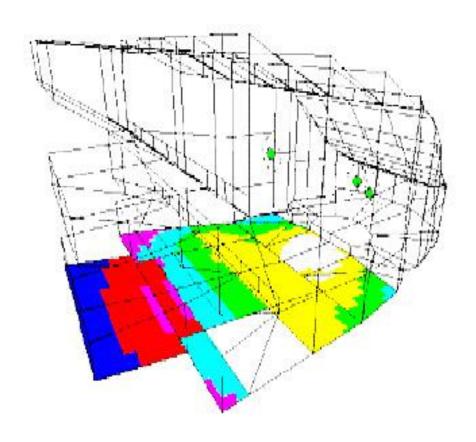
■ Schroeder (1970)

■ Moorer (1979)



Les premiers échos

- •Simulations des réflexions spéculaires :
 - Lancer de rayons
 - Lancer de cônes
 - Source image

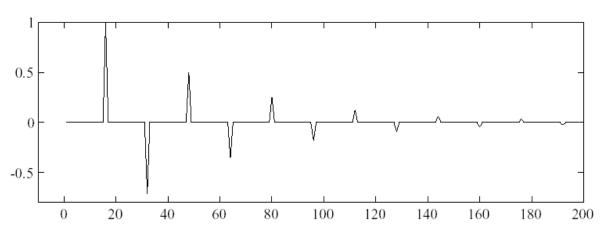


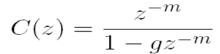
IS1

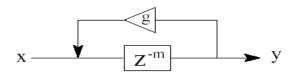
IS1

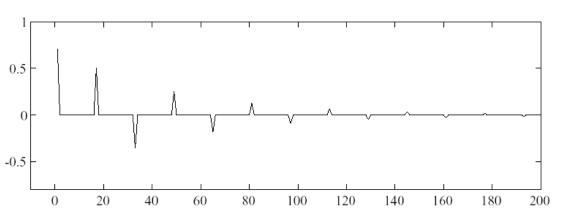
Application à des salles de géométrie quelconque

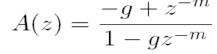
Réverbération tardive

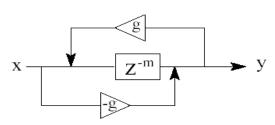

- Les difficultés pour la réalisation de filtres réverbérants sont de 3 natures:
 - Obtenir simultanément une densité modale et une densités d'échos suffisantes
 - Eviter l'apparition d'une sonorité peu naturelle dans le signal de sortie (notamment éviter le coté métallique)
 - Contrôler indépendamment le temps de réverbération et l'énergie réverbérée en fonction de la fréquence

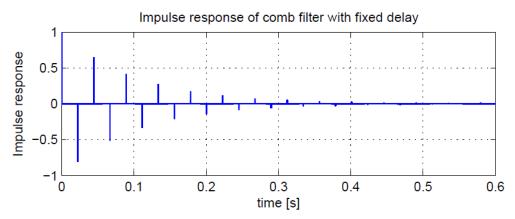


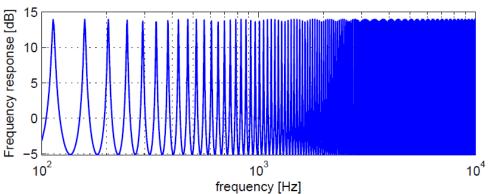



Réverbération


Filtres en peigne (m=16, g=0.707)





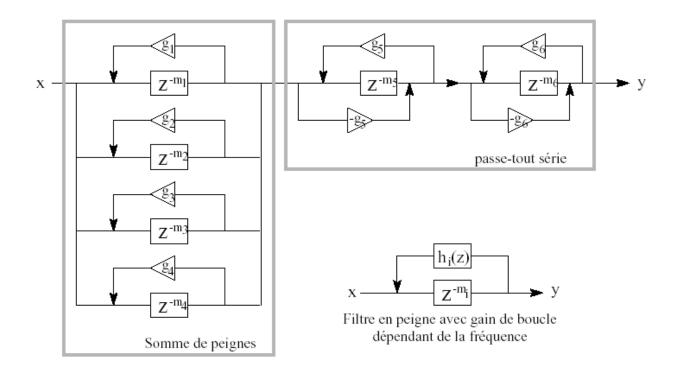

Réverbération

- Filtre en peigne imprime au signal traité une coloration harmonique
 - résonances aux fréquences :

$$\omega_k = \frac{2\pi k}{m}$$

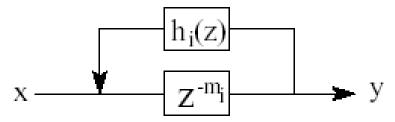
Filtre passe-tout apporte aussi une coloration lorsque le signal n'est pas stationnaire (ce qui est le cas des signaux audio!!)

Mais l'inconvénient majeur est la faible densité d'échos générés



Réverbérateur de Schroeder

■ Pour éliminer la coloration, Schroeder a proposé de combiner les filtres passe-tout et les filtres en peigne:



Réverbérateur de Schroeder

Améliorations:

 Simulation d'un temps de réverbération dépendant de la fréquence (absorption dans l'air)

Filtre en peigne avec gain de boucle dépendant de la fréquence

Réverbérateur de Schroeder

Exemple

Guitare.wav

• Tr=0.1 s (petite salle)

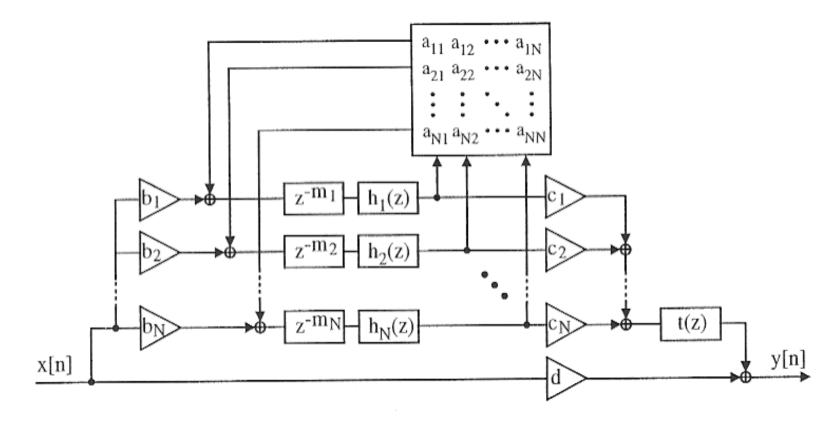
Schroeder_Tr.1.wav

• Tr=0.5 s (grande salle)

Schroeder_Tr.5.wav

Tr=2 s (cathédrale)

Schroeder_Tr2.wav



Filtres réverbérants à bouclage unitaire

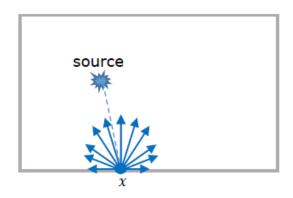
■ Généralisation (*Jot et Chaigne*)

Une approche alternative (physique):

Radiance Transfer Method (RTM) (From H. Bai PhD thesis)

Analytical acoustic radiance transfer model

$$I(x,t) = I_0(x,t) + \int_S R(x,x',t)I(x',t - \frac{|x-x'|}{c})dx'$$



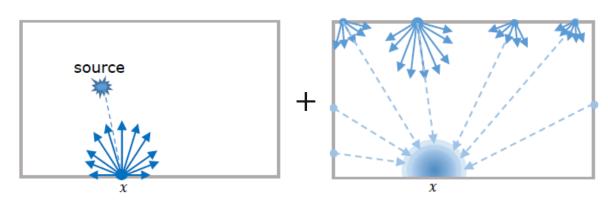
Une approche alternative (physique): Radiance Transfer Method (RTM)

Analytical acoustic radiance transfer model

$$I(x,t) = I_0(x,t) + \int_S R(x,x',t)I(x',t-\frac{|x-x'|}{c})dx'$$

(a) Direct contribution

Gaël RICHARD



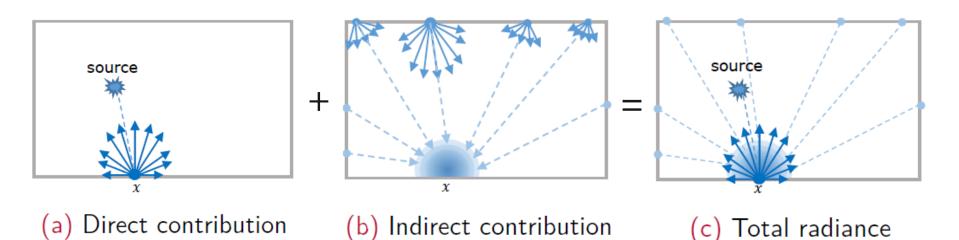
Une approche alternative (physique): Radiance Transfer Method (RTM)

Analytical acoustic radiance transfer model

$$I(x,t) = I_0(x,t) + \int_S R(x,x',t)I(x',t - \frac{|x - x'|}{c})dx'$$

(a) Direct contribution

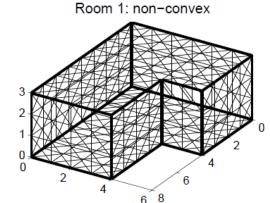
(b) Indirect contribution

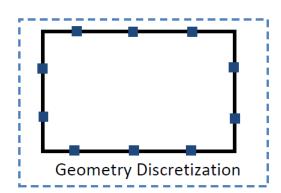


Une approche alternative (physique): Radiance Transfer Method (RTM)

Analytical acoustic radiance transfer model

$$I(x,t) = I_0(x,t) + \int_S R(x,x',t)I(x',t - \frac{|x-x'|}{c})dx'$$

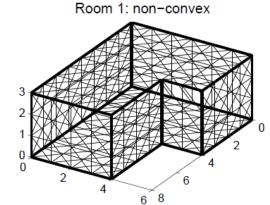

Radiance Transfer Method:


Simulation numérique

Discrétisation de la salle

- La pièce est divisé en patches
- Expression itérative

$$I_i^{(n)}(t) = I_i^{(n-1)}(t) + \sum_{j=1, j \neq i}^{M} F_{i,j}^{(1)} I_j^{(n-1)}(t - \frac{r_{i,j}}{c}))$$

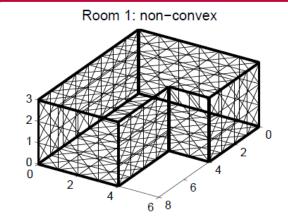

Radiance Transfer Method:

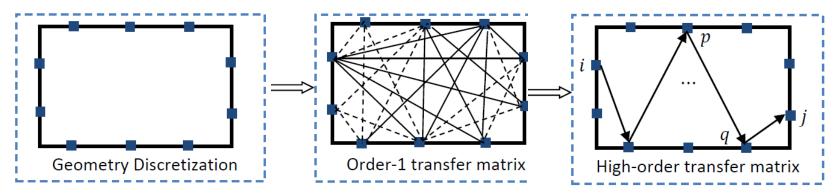

Simulation numérique

Discrétisation de la salle

- La pièce est divisé en patches
- Expression itérative

$$I_i^{(n)}(t) = I_i^{(n-1)}(t) + \sum_{i=1,\dots,j}^{M} F_{i,j}^{(1)} I_j^{(n-1)}(t - \frac{r_{i,j}}{c}))$$


Radiance Transfer Method:

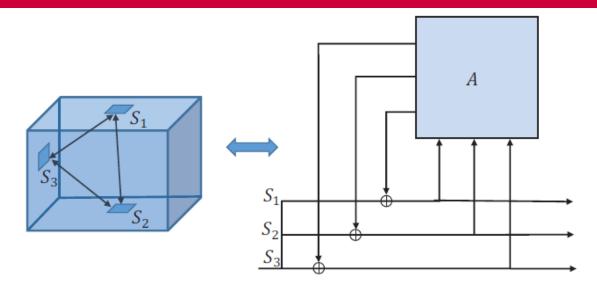

Simulation numérique

Discrétisation de la salle

- La pièce est divisé en patches
- Expression itérative

$$I_i^{(n)}(t) = I_i^{(0)}(t) + \sum_{j=1, j \neq i}^{M} F_{i,j}^{(n)} I_j^{(0)}(t - \frac{r_{i,j}}{c}))$$

Une approche alternative:Radiance Transfer Method (RTM)


■ En résumé

Relation entre RTM et systèmes à filtres réverbérant

- L'échange d'énergie entre patches de RTM peut etre reliée à la structure récursive des structures réverbérantes (réseaux de filtres)
- L'échange d'énergie d'ordre élevé équivalente aux boucles de retour infinie des réseaux de filtres

■ Un certain nombre de problèmes existent encore:

- Modéliser exactement un espace réverbérant demande toujours une complexité assez grande même avec les méthodes à rebouclage unitaire
- La plupart des systèmes du commerce utilisent probablement des variations temporelles pour réduire la coloration tonale alors que les algorithmes variant dans le temps sont très peu décrits dans la littérature
- Une théorie générale sur la perception de la coloration tonale de la réverbération est nécessaire pour mieux comprendre pourquoi certains algorithmes sonnent bien et d'autre pas

Quelques éléments de bibliographie

Effets sonores

- V. Verfaille, U. Zölzer and D. Arfib, Adaptive Digital Audio Effects (A-DAFx): A New Class of Sound Transformations, IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 14, NO. 5, SEPTEMBER 2006 1817
- J. Laroche, J.M Jot, G. Richard, Effets et Réverbération artificielle, polycopié de cours Télécom ParisTech, 2005.

Réverbération

- H. Kuttruff. Room acoustics. SPON Press, London, UK, 4th edition, 2009.
- E.-M. Nosal, M. Hodgson, and I. Ashdown. Improved algorithms and methods for room sound-field prediction by acoustical radiosity in arbitrary polyhedral rooms. The Journal of the Acoustical Society of America, 116(2):970–980, 2004.
- S. Siltanen, T. Lokki, S. Kiminki, and L. Savioja. The room acoustic rendering equation. The Journal of the Acoustical Society of America, 122(3):1624–1635, 2007.
- V. Valimaki, J. D. Parker, L. Savioja, J. O. Smith, and J. S. Abel. Fifty years of artificial reverberation. IEEE Transactions on Audio, Speech, and Language Processing, 20(5):1421–1448, 2012.
- J.-M. Jot. Etude et réalisation d'un spatialisateur de sons par modèles physiques et perceptifs. PhD thesis, Telecom ParisTech, 1992b.
- M. R. Schroeder. Natural sounding artificial reverberation. Journal of the Audio Engineering Society, 10(3): 219–223, 1962.
- H. Bai, « Modèles hybrides pour la réverbération tardive », PhD thesis, Telecom ParisTech, 2016.
- H. Bai, G. Richard, and L. Daudet. Late reverberation synthesis: From radiance transfer to feedback delay networks. Audio, Speech, and Language Processing, IEEE/ACM Transactions on, 23(12):2260–2271, 2015b.

