Master 2 ATIAM (2018-2019) Estimation de fréquences fondamentales multiples

Geoffroy Peeters Note: ce cours est très largement inspiré de celui de Gael Richard

LTCI - Télécom ParisTech

2018-2019

<ロト 4 団 ト 4 豆 ト 4 豆 ト 一豆 の へ (で)</p>

Geoffroy Peeters - LTCI / Télécom ParisTech - 1

Geoffroy Peeters - LTCI / Télécom ParisTech - 2

Introduction

Différents problèmes :

- Estimation de quoi?
 - des fréquences fondamentales multiples existants à chaque instant : $f_0(t) = 440$ Hz,
 - des hauteurs, début et fin de notes : note= A_4 ,
 - de l'instrument ayant joué la note
- Estimation sur quel horizon
 - par trame,
 - globalement sur toute la durée du signal
- Estimation reposant sur
 - les modèles de signaux, la morphologie du spectre, la répétition (en temps/ en fréquence),
 - la modélisation de la perception,
 - la décomposition du signal en sources

Différentes applications :

- Codage/ synthèse/ transformation du son : P-SOLA, synthèse sinusoidale harmonique, melodyne, Audio2Note
- Séparation de sources
- Transcription

Introduction

Plusieurs catégories de sons

- Sons harmoniques
 - $f_h = hf_0$
- Sons légèrement inharmoniques
 - $f_h = h f_0 \sqrt{1 + (h^2 1)\beta}$
 - Facteur d'inharmonicité $\beta = 10^{-4}, 10^{-3}$
 - Exemple : piano (inharmonicité due à la raideur des cordes)
- Sons pour lesquels nous percevons un pitch mais qui ne sont pas harmoniques (glockenspiel, vibraphone)
- Sons non-harmoniques

Introduction

Problématiques source

• Les notes peuvent ne pas être parfaitement harmonique

Problématique f0-multiples

• Les notes peuvent être en rapport harmonique (souvent le cas en musique !)

What is pitch?

Pitch

- That attribute of auditory sensation in terms of which sounds may be ordered on a scale extending from low to high (ANSI)
- (Operational) A sound has a certain pitch if it can be reliably matched to a sine tone of a given frequency at 40 dB SPL
- People hear pitch in a logarithmic scale

source : Duan, Benetos, 2015

-

What is pitch?

Harmonics

• Harmonics make tones more pleasant, but may confuse pitch perception, especially in polyphonic settings (octave/harmonic errors)

source : Duan, Benetos, 2015

What is pitch?

Multidimensional aspects of pitch

Pitch is not a one-dimensional entity! (low/high)

- Octave similarity helix representation [Revesz, 1954]
- Pitch distance circle of fifths representation [Shepard, 1982]

Geoffroy Peeters - LTCI / Télécom ParisTech - 8

2- Utilisation de modèles de signal

Période fondamentale T_0 ou fréquence fondamentale f_0

- f_0 : fréquence fondamentale en Hz
 - exemple La3/A4= 440Hz
- $T_0 = \frac{1}{f_0}$: période fondamentale en secondes
 - exemple La3/A4 = 0.0023s.

Modèle de signal (son quasi-périodique)

$x(n) = \sum_{h=1}^{H} 2A_h \cos(2\pi h f_0 n + \phi_h) + w(n)$

- $f_0 = \frac{1}{T_0}$: fréquence/ période fondamentale
- *H* est le nombre total d'harmoniques
- A_h sont les amplitudes des harmoniques, $A_h \ge 0$
- ϕ_h sont les phases des harmoniques, $\phi_h \in [-\pi, \pi]$
- w(n) est un bruit blanc centré de variance σ^2

Auto-covariance

- x(n) est un processeur SSL* centré d'auto-covariance
 - (*) SSL : stationnaire au sens large

•
$$\mu_x(t) = \mu_x$$
 et $P(t, \tau) = P(t - \tau)$

• Auto-covariance : $r_x(m) = \sum_{h=1}^{H} [2A_h^2 \cos(2\pi h f_0 m)] + \sigma^2 \delta(m)$

Auto-corrélation biaisée

$$\hat{r}_x(m) = rac{1}{N} \sum_{n=0}^{N-1-m} x(n) x(n+m) ext{ si } m \ge 0$$

• Propriétés :

$$E[\hat{r}_x(m)] = \frac{N - |m]}{N} r_x(m)$$
$$|\hat{r}_x(m)| \le \hat{r}_x(0)$$

Auto-corrélation non-biaisée

$$\tilde{r}_x(m) = rac{1}{N-m}\sum_{n=0}^{N-1-m} x(n)x(n+m) ext{ si } m \ge 0$$

• Propriétés :

$$E[\tilde{r}_{x}(m)] = r_{x}(m)$$
$$Var[\tilde{r}_{x}(m)] = \left(\frac{N}{N-m}\right)^{2} Var[\hat{r}_{x}(m)]$$
$$|\tilde{r}_{x}(m)| \leqslant \tilde{r}_{x}(0)$$

-- IN-Geoffroy Peeters - LTCI / Télécom ParisTech - 13

- E

< 向

590

Auto-corrélation normalisée

$$\bar{r}_{x}(m) = \frac{\sum_{n=0}^{N-1-m} x(n)x(n+m)}{\sqrt{\sum_{n=0}^{N-1-m} x(n)^{2}} \sqrt{\sum_{n=0}^{N-1-m} x(n+m)^{2}}}$$

• Propriétés :

$$|ar{r}_x(m)|\leqslantar{r}_x(0)=1$$

 $|ar{r}_x(m)|=1$ ssi les vecteurs sont colinéaires

< ∃ >

< A

590

Average Square Difference Function (ASDF)

$$ASDF(m) = \frac{1}{N-m} \sum_{n=0}^{N-1-m} (x(n) - x(n+m))^2$$

- La période T₀ peut être estimée en recherchant le minimum de l'écart quadratique entre les signaux x(n) et x(n + m)
- Propriétés :

 $ASDF(m) = 0 \text{ ssi } x \text{ est de période } T_0 = m$ $E[ASDF(m)] = 2(r_x(0) - r_x(m))$

Average Magnitude Difference Function (AMDF)

$$AMDF(m) = \frac{1}{N-m} \sum_{n=0}^{N-1-m} |x(n) - x(n+m)|$$

• Propriétés :

AMDF(m) = 0 ssi x est de période $T_0 = m$

Geoffroy Peeters - LTCI / Télécom ParisTech - 16

Algorithme Yin

[A. de Cheveigné, H. Kawahara, YIN, a fundamental frequency estimator for speech and music, JASA, 2002]

- Point de départ : méthode de l'auto-corrélation
- Améliorations
 - 1) Utilisation de l'ASDF
 - 2) Normalisation
 - 3) Seuillage
 - 4) Interpolation
 - 5) Minimisation locale en temps

Version	Gross error (%	
Step 1	10.0	
Step 2	1.95	
Step 3	1.69	
Step 4	0.78	
Step 5	0.77	
Step 6	0.50	

source : Richard, 2012

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ● ●

Algorithme Yin

- 1) Utilisation de l'ASDF
 - $d_t(\tau) = \sum_{j=t+1}^{t+W} (x_j x_{j+\tau})^2$
 - lien avec l'auto-corrélation $d_t(\tau) = r_t(0) + r_{t+\tau}(0) - 2r_t(\tau)$
 - Gain?
 - l'ASDF est beaucoup moins sensible aux variations des amplitudes relatives que l'ACF (qui est sensible, par exemple, à l'accentuation des partiels d'ordre pair)
- 2) Normalisation
 - Normalisation par la "moyenne cumulée"

$$\begin{aligned} d_t'(\tau) &= 1 & \text{si } \tau = 0 \\ &= \frac{d_t(\tau)}{\frac{1}{\tau} \sum_{j=1}^{\tau} d_t(j)} & \text{sinon} \end{aligned}$$

- Gain ?
 - permet d'éviter les erreurs pour les F0 élevées (suppression du lobe en 0)

Algorithme Yin

- 3) Seuillage absolu
 - La plus petite période inférieure au seuil est choisie
 - Si aucune période n'est inférieure au seuil, alors le minimum global est choisi
- 4) Interpolation parabolique autour du minimum
 - Réalisée sur $d_t(\tau)$ (i.e avant normalisation)
 - Gain : meilleure précision sur la valeur de F_0
- 5) Minimisation locale en temps
 - si on note T_t la période estimée au temps t
 - pour un temps t,
 - on cherche pour $\theta \in [t T_{\max}/2, t + T_{\max}/2]$ (T_{\max} est la période la plus grande considérée, 25 ms)
 - le minima de $d_{\theta}(T_{\theta})$
 - on réitère avec cette nouvelle estimation et intervalle de recherche de $\pm 20\%$
 - Gain : effet de lissage en cas de fluctuations de l'estimation
- Autres méthodes possibles pour le lissage : filtre médian, programmation dynamique

Geoffroy Peeters - LTCI / Télécom ParisTech - 19

Algorithme Yin

Evaluation sur quatre bases de données de parole

• annotées automatiquement (par YIN, à partir du laryngographe) puis vérifiées et triées à la main

	Gross error (%)					
Method	DB1	DB2	DB3	DB4	Average	(low/high)
pda	10.3	19.0	17.3	27.0	16.8	(14.2/2.6)
fxac	13.3	16.8	17.1	16.3	15.2	(14.2/1.0)
fxcep	4.6	15.8	5.4	6.8	6.0	(5.0/1.0)
ac	2.7	9.2	3.0	10.3	5.1	(4.1/1.0)
cc	3.4	6.8	2.9	7.5	4.5	(3.4/1.1)
shs	7.8	12.8	8.2	10.2	8.7	(8.6/0.18)
acf	0.45	1.9	7.1	11.7	5.0	(0.23/4.8)
nacf	0.43	1.7	6.7	11.4	4.8	(0.16/4.7)
additive	2.4	3.6	3.9	3.4	3.1	(2.5/0.55)
TEMPO	1.0	3.2	8.7	2.6	3.4	(0.53/2.9)
YIN	0.30	1.4	2.0	1.3	1.03	(0.37/0.66)

source : Richard, 2012

Cepstre réel

• Auto-correlation du signal temporel $\hat{r}(\tau)$:

$$\hat{r}(\tau) = \int_{t} x^{\star}(t) x(t+\tau) dt$$

• Sa Transformée de Fourier $\Gamma(\omega)$:

$$\begin{split} & \Gamma(\omega) = \int_{\tau} \left(\int_{t} x^{\star}(t) x(t+\tau) dt \right) e^{-j\omega\tau} d\tau \\ & \Gamma(\omega) = |X(j\omega)|^2 \end{split}$$

• Donc Auto-correlation du signal temporel :

$$\hat{r}(l) = \frac{1}{N-l} \sum_{k} |X(k)|^2 \cos\left(2\pi k \frac{l}{N}\right)$$

• Cepstre réel du signal temporel :

$$\hat{c}(l) = \frac{1}{N-l} \sum_{k} \log(|X(k)|) \cos\left(2\pi k \frac{l}{N}\right)$$

• Relation avec le modèle source/filtre :

$$\begin{aligned} \mathbf{x}(t) &= \mathbf{e}(t) \circledast \mathbf{g}(t) \\ \mathbf{X}(\omega) &= E(\omega) \div \mathcal{G}(\omega), \quad \text{for all } \mathbf{g}(\omega) \end{aligned}$$

Cepstre réel

- Le cepstre permet de séparer
- l'enveloppe spectrale
 - ce qui varie lentement
 - basse fréquence de la TF^{-1}

• la fréquence fondamentale

-5

-10

'n

100

200

- ce qui varie rapidement
- haute fréquence de la TF^{-1}

300

500

600

Geoffroy Peeters - LTCI / Télécom ParisTech - 22

Cepstre réel

source : voix d'homme, Laroche, 1995

source : voix de femme, Laroche, 1995

Geoffroy Peeters - LTCI / Télécom ParisTech - 23

∃ ∽ ९ ୯

《口》 《圖》 《注》 《注》

Approche par le maximum de vraisemblance

- Modèle de signal : x(n) = a(n) + w(n)
 - *a* est un signal périodique de période *T*₀
 - w est un bruit blanc gaussien de variance σ^2
- vraisemblance des observations

$$p(x|T_0, a, \sigma^2) = \frac{1}{(2\pi\sigma^2)^{N/2}} e^{-\frac{1}{2\sigma^2} \sum_{n=0}^{N-1} (x(n) - a(n))^2}$$
(1)

• log-vraisemblance

$$L(T_0, a, \sigma^2) = -\frac{N}{2} \ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{n=0}^{N-1} (x(n) - a(n))^2$$
⁽²⁾

- Méthode :
 - maximiser successivement L par rapport à a, puis σ^2 et enfin T_0

Méthodes fréquentielles

Somme spectrale

• On peut montrer que la maximisation de L par rapport à $F_0 = \frac{m}{N}$ revient à maximiser la somme spectrale

$$S(e^{j2\pi\frac{m}{N}}) = \sum_{h=1}^{H} \hat{R}_{x}(e^{j2\pi\frac{m}{N}\cdot h})$$
$$S(\omega) = \sum_{h=1}^{H} |X(e^{j\omega\cdot h})|^{2} \text{ pour } \omega < \frac{\pi}{H}$$

Méthodes fréquentielles

Produit spectral

 Par similitude avec la somme spectrale on peut définir le produit spectral (souvent plus robuste)

$$P(e^{j2\pi\frac{m}{N}}) = \prod_{h=1}^{H} \hat{R}_{x}(e^{j2\pi\frac{m}{N}\cdot h})$$
$$P(\omega) = \prod_{h=1}^{H} |X(e^{j\omega \cdot h})|^{2} \text{ pour } \omega < \frac{\pi}{H}$$

Méthodes fréquentielles

Auto-corrélation du spectre d'amplitude

- Mesure de la périodicité de l'espacement entre les harmoniques
 - ne fait pas l'hypothèse qu'il existe de l'énergie à la fréquence *f*₀

$$\hat{R}(k) = \frac{1}{N-k} \sum_{\kappa=0}^{N-k-1} |X(\kappa)||X(\kappa+k)|$$

Combinaison de la DFT et de l'ACF

[G. Peeters, Music pitch representation by periodicity measures based on combined representations, IEEE ICASSP, 2006]

- Méthodes temporelles $T(\tau_l)$
 - Auto-correlation du signal temporel
 - Cesptre réel du signal temporel
- Méthodes fréquentielles $S(f_k)$
 - Spectre d'amplitude (réassigné fréquentiellement)
 - Auto-correlation du spectra d'ampliture (réassigné fréquentiellement)
- Principe
 - Les erreurs pontielles d'octave sont dans des directions opposées
 - Combiner les deux représentations
- Méthode
 - Calculé les valeurs de la représentation temporelle aux fréquences f_k
 - interpolation) de $T(au_l)$ à f_k : $T(1/f_k)$
 - Calculé le produit :
 - $P(f_k) = S(f_k) T(1/f_k)$

Combinaison de la DFT et de l'ACF

• Résultats

	accuracy 1	accuracy 2
DFT / ACF	81,6	91,7
DFT / CEP	91,4	95,8
ACFofDFT / ACF	95	96,1
ACFofDFT / CEP	97	97,6
ACFofREAS / CEP	97	97,3
Yin	94,9	95,5

• Résultats

▲ロマネロマネート (四マネーマン)

2- Utilisation de modèles de signal

2.5- Transformée à Q-Constant (CQT)

Transformée à Q-Constant (CQT)

- La DFT
 - Définition : La précision fréquentielle : $\Delta f = \frac{sr}{N}$
 - c'est le pas d'échantillonnage du spectre
 - elle dépend de la taille de la DFT : ${\it N}$
 - on peut l'augmenter en augmentant \boldsymbol{N}
 - Définition : La résolution fréquentielle : $Bw = \frac{Cw}{L}$
 - c'est le pouvoir de séparation entre deux fréquences présentes simultanément dans le spectre, le pouvoir de résoudre spectralement
 - \bullet Attention :
 - même si on augmente N (zero-padding) en gardant L constant on n'améliore pas la résolution !
- Dans la DFT, la précision et la résolution fréquentielle sont constantes à travers les fréquences

Transformée à Q-Constant (CQT)

- En audio musical
 - les fréquences sont logarithimiquement espacées
 - pour passer des fréquences aux hauteurs de notes :

$$m_k = 12 \cdot \log_2 \frac{r_k}{440} + 69$$

- pour passer des hauteurs de notes aux fréquences : $f = 440 \cdot 2^{\frac{m-69}{12}}$
- les hauteurs de notes sont plus rapprochées en basses fréquences, plus espacées en hautes fréquences
- La résolution fréquentielle de la DFT
 - n'est pas suffisante pour résoudre les hauteurs de notes adjacentes en basses fréquences,
 - est trop importante en hautes fréquences

Espacement logarithmique des hauteurs de notes

Geoffroy Peeters - LTCI / Télécom P<u>arisTech - 32</u>

[J. Brown and M. Puckette. An efficient algorithm for the calculation of a constant q transform. JASA, 1992.]

- Solution ?
 - Changer la résolution fréquentielle en fonction des fréquences considérées
- Comment?
 - En changeant la longueur temporelle de la fenêtre pour chaque fréquence considérée
 - Le facteur $Q = \frac{f_k}{f_{k+1} f_k}$ doit rester constant en fréquence

$$Q = \frac{f_k}{Bw} = \frac{f_k}{Cw/L} = \frac{f_k \cdot L}{Cw}$$

• on choisit un *L* pour chaque fréquence f_k

•
$$L_k = \frac{Q \cdot Cw}{f_k}$$

Transformée à Q-Constant (CQT)

Exemples (en utilisant la DFT)

Exemples (en utilisant la CQT)

Transformée à Q-Constant (CQT)

- Sur une transformée à Q constant :
 - Une différence de pitch correspond à une translation sur l'axe des fréquences

SpecMurt

[S. Saito, H. Kameoka, K. Takahashi, T. Nishimoto, and S. Sagayama. Specmurt analysis of polyphonic music signals. IEEE TASLP, 2008]

- La transposition d'un son devient une translation sur l'axe de log-fréquence
- Analyse Specmurt :
 - On suppose le spectre formé de la convolution des notes u(x) et d'une structure harmonique h(x)
 - suppose une structure harmonique commune à toutes les notes à la même trame
 - mais ne suppose pas le partage à des trames différentes (en contraste avec d'autres méthodes comme la NMF)
 - Power-spectrum en log-fréquence :
 - $v(x) = u(x) \circledast h(x)$
 - IFFT
 - $V(y) = U(y) \cdot H(y)$
 - Méthode?
 - Estimation itérative de u(x) et h(x)

・ロト ・ 同ト ・ ヨト ・ ヨト
3- Utilisation de modèles de perception de hauteur

3- Utilisation de modèles de perception de hauteur 3.1- Système auditif humain, deux parties

- Système périphérique
 - oreille externe
 - écoute directionnel
 - · oreille moyenne
 - écoute directionnel
 - oreille interne
 - la cochlée : transforme les variations de pressions en impulsions neuronales dans le nerf auditif
 - membrane basilaire vibre : propagation des ondes : fréquences aiguës (début), fréquences grâves (fin)
 - organe de Corti : cellules ciliées (interne ou externe) receptives à différentes fréquences
- Cortex auditif dans le cerveau

Fig. 8.3. An illustration of the cochlea (*left*) and its cross-section (*middle*). The right panel shows a rough computational model of the cochlea.

Geoffroy Peeters - LTCI / Télécom ParisTech - 38

3- Utilisation de modèles de perception de hauteur 3.2- Modèle unitaire

- 1. Cochlée : filtrage passe-bande
 - filtre gamma-tone
 - expérience du chat
- 2. Cellules ciliées interne :
 - compression/ adaptation-de-niveau,
 - half-wave rectification
 - filtrage passe-bas
 - expérience du chat
- 3. Mesure de la périodicité dans chaque canal
 - ACF ou filtre-résonateur
- 4. Aggrégation des périodicités à travers les bandes
 - sommation ou somme pondérée

3- Utilisation de modèles de perception de hauteur 3.3- Méthodes temporelles

Approche par banc de filtres

[R. Meddis and M. J. Hewitt. Virtual pitch and phase sensitivity of a computer model of the auditory periphery. i : Pitch identification. JASA, 1991.]

source : Richard, 2012

-

3- Utilisation de modèles de perception de hauteur 3.3- Méthodes temporelles

Approche par banc de filtres plus simple

[T. Tolonen and M. Karjalainen. A computationally efficient multipitch analysis model. Speech and Audio Processing, IEEE, 2000.]

source : Richard, 2012

3- Utilisation de modèles de perception de hauteur 3.3- Méthodes temporelles

Enhanced Summary ACF

[T. Tolonen and M. Karjalainen. A computationally efficient multipitch analysis model. Speech and Audio Processing, IEEE, 2000.]

- Plusieurs étapes :
 - Redressement demi-onde
 - On ne conserve que les valeurs positives
 - Ralentie 2 (ou plus) fois puis déduite du SACF redressé
 - Permet de supprimer les pics doubles

source : Richard, 2012

Geoffroy Peeters - LTCI / Télécom ParisTech - 42

3- Utilisation de modèles de perception de hauteur 3.4- Méthodes fréquentielles Estimation fréquences multiples : approche par soustraction itérative

[A. Klapuri. Multiple fundamental frequency estimation based on harmonicity and spectral smoothness. IEEE TSAP, 2003.]

Principe de lissage spectral

- $a_h = \min(a_h, m_h)$
 - où *m_h* est la moyenne sur une fenêtre d'une octave autour du partiel

3- Utilisation de modèles de perception de hauteur 3.4- Méthodes fréquentielles Estimation fréquences multiples : approche par soustraction itérative

Comparaison des performances algorithmiques aux performances humaines

- (I) Registre bas : 33 à 130 Hz
- (m) Registre médium : 130 à 520 Hz
- (h) Registre haut : 520 à 2100 Hz
- 200 stimuli sonores (20 catégories)
- Sons polyphoniques générés par ordinateur à partir d'échantillons de Piano Steinway provenant du Master samples collection, Mc Gill University
- Personnes ayant participé aux tests :
 - tous sont musiciens
 - dont 2 ont l'oreille absolue (musiciens quasi-professionnels

source : Richard, 2012

3- Utilisation de modèles de perception de hauteur 3.4- Méthodes fréquentielles Estimation fréquences multiples : approche par soustraction itérative

Amélioration (modèle perceptif)

[A. Klapuri. Multipitch analysis of polyphonic music and speech signals using an auditory model. IEEE TASLP, 2008.]

Geoffroy Peeters - LTCI / Télécom ParisTech - 45

4- Utilisation de méthodes de décomposition du signal

4- Utilisation de méthodes de décomposition du signal

4.1- Factorisation (décomposition) en matrices non-négatives (NMF)

[D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix factorization. Nature, 1999.]

• NMF : Non-Negative Matrix Factorization

• $V_{(F,N)} \simeq W_{(F,K)} H_{(K,N)}$

- $V_{(F,N)}$: matrice de données , observée (spectrogramme d'énergie), définie positive : $V_{fn} \ge 0$
- $W_{(F,K)}$: matrice de bases , dictionnaires, définie positive : $W_{fk} \ge 0$
- $H_{(K,N)}$: matrice d'activation , définie positive : $H_{fn} \ge 0$
- K : le nombre de bases du dictionnaire

Chaque trame n est reconstituée comme l'activation H d'un certain nombre de bases W
 V_(1:F, n) ≃ ∑^K_{k=1} W_(1:F,k)H_(k, n)

source : Cédric Févotte

- Le signal d'une source k est reconstitué comme
 - $V_{(1:F,1:N)}^{k} = W_{(1:F,k=1)}H_{(k=1,1:N)}$

source : Cédric Févotte

- Le signal d'une source k est reconstitué comme
 - $V_{(1:F,1:N)}^{k} = W_{(1:F,k=2)}H_{(k=2,1:N)}$

source : Cédric Févotte

- $V_{(F,N)} \simeq W_{(F,K)} H_{(K,N)}$
- Minimisation de
 - $\min_{\underline{W},\underline{H} \ge 0} D(\underline{V}|\underline{W}\underline{H})$
 - $\min_{\theta} C(\theta) \stackrel{\text{def}}{=} D(\underline{V}|\underline{W}\underline{H})$ avec $\theta = \{W, H\}$
- *D*/*d* est une divergence séparable
 - $D(\underline{V}|\underline{\hat{V}}) = \sum_{f=1}^{F} \sum_{n=1}^{N} d(v_{fn}|\hat{v}_{fn})$
- Choix de D/d :
 - Distance Euclidenne :

 $d_{EUC}(x,y) = (x-y)^2$

• Divergence de Kullback-Leibler :

$$d_{KL}(x,y) = x \log \frac{x}{y} - x + y$$

• Divergense d'Itakura-Saito :

$$d_{IS}(x,y) = \frac{x}{y} - \log \frac{x}{y} - 1$$

Dérivation du critère pour la distance Euclidenne

• Non Negative Matrix Factorization

 $\bigvee_{(f,n)} \simeq \underset{(f,k)(k,n)}{W} H$

- Erreur de reconstruction : e = V WH
- Minimisation de la SSE (Sum of Squared Error) ou de la norme de Frobenius de $SSE = ||V WH||_F^2$

• Norme de Frobenius :
$$||A||_F = \sqrt{\sum_i \sum_j a_{ij}^2}$$

Dérivation du critère pour la distance Euclidenne

$$SSE = ||V - WH||_{F}^{2}$$

$$SSE = (V - WH)^{T}(V - WH)$$

$$= (V^{T} - H^{T}W^{T})(V - WH)$$

$$= V^{T}V - V^{T}WH - H^{T}W^{T}V + H^{T}W^{T}WH$$

$$= V^{T}V - 2V^{T}WH + H^{T}W^{T}WH$$

$$\frac{\partial sse}{\partial H} = -2W^{T}V + 2W^{T}WH$$

$$= 2W^{T}(WH - V)$$

$$\frac{\partial sse}{\partial W} = -2VH^{T} + 2WHH^{T}$$

$$= -2(V - WH)H^{T}$$

Propriétés utilisées (Matrix CookBook)

•
$$\frac{\partial a^T x}{\partial x} = a$$

•
$$\frac{\partial a^T X b}{\partial X} = a b^T$$

•
$$\frac{\partial x^T B x}{\partial x} = (B + B^T) x$$

•
$$\frac{\partial b^T X^T X c}{\partial X} = X(bc^T + cb^T)$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへぐ

Algorithme de descente de gradient

- Descente de gradient ?
 - déplacement dans la direction opposée au gradient, de manière à faire décroître la fonction
- Le gradient : $\frac{\partial sse}{\partial H} = \underbrace{2W^TWH}_{\nabla_+} \underbrace{2W^TV}_{\nabla_-}$
- Mise à jour de *H*

$$\begin{aligned} \boldsymbol{H} \leftarrow \boldsymbol{H} + \boldsymbol{\eta} \cdot \begin{bmatrix} -\text{gradient} \end{bmatrix} \\ \boldsymbol{H} \leftarrow \boldsymbol{H} + \boldsymbol{\eta} \cdot \begin{bmatrix} \boldsymbol{W}^{\mathsf{T}} \boldsymbol{V} \\ \nabla_{-} \end{bmatrix} - \underbrace{\boldsymbol{W}^{\mathsf{T}} \boldsymbol{W} \boldsymbol{H}}_{\nabla_{+}} \end{bmatrix} \end{aligned}$$

• si on choisit
$$\eta = \frac{H}{W^T W H}$$

$$H \leftarrow H + \frac{H}{W^{T}WH}(W^{T}V - W^{T}WH)$$
$$H \leftarrow H + \frac{HW^{T}V}{W^{T}WH} - H$$
$$H \leftarrow H \cdot \underbrace{\overbrace{W^{T}V}^{\nabla_{-}}}_{\nabla_{+}}$$

Mise à jour multiplicative

- permet de garantir que les valeurs restent positives !!!
- Séparation du gradient en contribution positive et négative

 $\nabla_h C(h) = \nabla_+ - \nabla_-$

Algorithme complet de NMF dans le cas Euclidéen : $V_{(f,n)} \simeq W_{(f,k)(k,n)}$

- Calcul de la TFCT : V(f, n) = |X(f, n)|
- Choix du nombre de bases K du dictionnaire W
- Initialisation de W et H : valeurs aléatoires positives
- Itérations
 - Mise à jour des bases W étant donné les activations H

$$W \leftarrow W \cdot \frac{VH^T}{WHH^T}$$

• Mise à jour des activations H étant donné les bases W

$$\boldsymbol{H} \leftarrow \boldsymbol{H} \cdot \frac{\boldsymbol{W}^T \boldsymbol{V}}{\boldsymbol{W}^T \boldsymbol{W} \boldsymbol{H}}$$

- Prise en compte de l'invariance d'échelle
 - normalisations des colonnes de ${\cal H}$
 - . 00
 - normalisation des lignes de \boldsymbol{W}
- Arrêt lorsque la SSE cesse de décroitre

source : Romain Hennequin

Initialisation

source : Tuomas Virtanen

 $\gamma q q^{2}$

1.00

Iteration 1 : Mise à jour de W

Iteration 1 : Mise à jour de H

Iteration 2 : Mise à jour de W

Iteration 2 : Mise à jour de H

Iteration 10 : Mise à jour de W

Iteration 100

Choix du nombre de bases K = 3 (trop faible)

Choix du nombre de bases K = 10 (correcte)

Choix du nombre de bases K = 20 (trop grand)

・ロト・(型ト・(川ト・(川下・(日・)))

• Notations :
$$V \simeq WH \rightarrow Y_{ft} \simeq \sum_{i=1}^{l} A_{it}S_{if}$$

Approche 1

[P. Smaragdis and J. C. Brown. Non-negative matrix factorization for polyphonic music transcription. IEEE WASPAA, 2003]

- Apprendre simultanément les activations A_{it} et les bases S_{if}
 - Analyser a posteriori le pitch correspondant à chaque base apprise
 - Y_{ft} est un spectrogramme (amplitude, énergie)

source : Romain Hennequin

• Notations :
$$V \simeq WH \rightarrow Y_{ft} \simeq \sum_{i=1}^{l} A_{it}S_{if}$$

Approche 2

[A. Dessein, A. Cont, and G. Lemaitre. Real-time polyphonic music transcription with non-negative matrix factorization and beta-divergence. ISMIR, 2010.]

- Pré-entrainer les bases *S_{if}* sur un ensemble d'entrainement
 - permet de contraindre cet apprentissage à l'apprentissage de bases correspondant à des hauteurs connues (fixer les activations)
 - Les bases du dictionnaire *S_{if}* sont pré-apprises (offline) et représentent les différentes notes d'un piano
 - chaque notes est apprise par une NMF de rang *I* = 1 sur un ensemble de spectre représentant la note
 - Utilisation de la NMF avec β -divergence

source : Dessein, 2010

• Notations :
$$V \simeq WH \rightarrow Y_{ft} \simeq \sum_{i=1}^{l} A_{it}S_{if}$$

Approche 3

[E. Vincent, N. Bertin, and R. Badeau. Adaptive harmonic spectral decomposition for multiple pitch estimation. Audio, Speech and Language Processing, IEEE Transactions on, 18(3) :528–537, 2010.]

• Contraindre le modèle pour que les bases apprises correspondent à des notes

• Modèle générale :
$$Y_{ft} = \sum_{i=1}^{l} A_{it} S_{if}$$

- Modèle contraint :
 - $i \rightarrow (p, j)$

•
$$Y_{ft} = \sum_{\rho=\rho_{low}}^{\rho_{high}} \sum_{j=1}^{J_{\rho}} A_{(\rho,j),t} S_{(\rho,j),t}$$

 S_{(p,j),f}: templates ayant le même pitch p mais différentes enveloppes spectrales j

•
$$S_{(p,j),f} = \sum_{k=1}^{K_p} E_{pj \ k} N_{p \ k}$$

- N_{pkf} représente la structure fine du spectre associé au pitch p
- *E*_{pjk} représente l'enveloppe spectrale

Fig. 2. Basis spectrum S_{pjf} estimated for the piano excerpt in Fig. 1 given fixed harmonic fine structure spectra N_{pkf} (p = 60, gammatone windows of \bigcirc

• Notations : $V \simeq WH \rightarrow Y_{ft} \simeq \sum_{i=1}^{l} A_{it}S_{if}$

Comparaison des trois approches

- 1. Apprendre simultanément les activations A_{it} et les bases S_{if}
- 2. Pré-entrainer les bases S_{if} sur une un ensemble d'entrainement
- 3. Contraindre le modèle pour que les bases apprises correspondent à des notes

source : Vincent, 2010

5900
4- Utilisation de méthodes de décomposition du signal4.2- Probabilistic Latent Component Analysis (PLCA)

Probabilistic Latent Component Analysis (PLCA)

[M. Shashanka, B. Raj, and P. Smaragdis. Probabilistic latent variable models as nonnegative factoriza- tions. Computational intelligence and neuroscience, 2008.]

- Cadre déterministe : Non-Negative Matrix Factorization (NMF) :
 - $\underline{\underline{V}}_{f,t} = \underline{\underline{W}}_{f,z}\underline{\underline{H}}_{z,t}$
 - $\underline{v}_{:,t} = \sum_{z} \underline{w}_{:,z} h_{zt}$
- Cadre probabiliste : Probabilistic Latent Component Analysis (PLCA) :
 - $P(x,y) = \sum_{z} P(x,y|z)P(z)$
 - si x, y indépendants étant donné z : $P(x, y) = \sum_{z} P(z)P(x|z)P(y|z) = \sum_{z} P(x|z)P(z, y)$
 - si x = f et y = t
 - $P(f,t) = \sum_{z} P(f|z)P(z,t)$
 - z : variable cachée (latent variable)
 - P(f|z) : probabilité conditionnelle sur la variable cachée
 - Estimation : utilisation d'un algorithme Expectation/ Maximization

[P. Smaragdis and B. Raj. Shift-invariant probabilistic latent component analysis. Journal of Machine Learning Research, 2007.]

- PLCA
 - $P(f,t) = \sum_{z} P(z)P(f|z)P(t|z) = \sum_{z} P(f|z)P(z,t)$
- Shift-Invariant (sur une dimension) PLCA
 - $P(f,t) = \sum_{z} P(z)P(f,t|z)$
 - On décompose $f = f' + \tau$
 - f' : fréquence de base
 - + τ : variable de transposition
 - $P(f,t) = \sum_{z} P(z) \sum_{f'} P_{K}(f'|z) P_{I}(f-f',t|z)$
 - P_K est la distribution noyau (Kernel)
 - Il s'agit des différents motifs spectraux qui sont translatés par
 - *P_I* la distribution d'impulsion Impulse)
 - Estimation : utilisation d'un algorithme Expectation/ Maximization

Utilisation de la SI-PLCA pour la détection multi-pitch

- $\bullet\,$ Dans une transformée à Q constant :
 - Une différence de pitch correspond à une translation sur l'axe des fréquences

590

Utilisation de la SI-PLCA pour la détection multi-pitch

- Shift invariant PLCA sur une transformée à Q constant
 - notation i = f
 - $P(f,t) = \sum_{z} \sum_{i} P_{I}(i,t,z) P_{K}(f'-i|z)$
 - peut être ré-écrit comme

•
$$P(f, t) = \sum_{z} P(z) \sum_{f} P_{I}(f, t|z) P_{K}(f' - f|z)$$

•
$$P(f, t) = \sum_{z} P(z) \sum_{f} P_{I}(f' - f, t|z) P_{K}(f'|z)$$

[B. Fuentes, R. Badeau, and G. Richard. Harmonic adaptive latent component analysis of audio and application to music transcription. IEEE TASLP, 2013.]

- Subdivision en partie harmonique et bruit
 - $P(f, t) = P(c = h)P_h(f, t) + P(c = b)P_b(f, t)$
 - P(c = h) : énergie relative de la composante polyphonique harmonique
 - P(c = b) : énergie relative de la composante de bruit

<ロト < 団 ト < 臣 ト < 臣 ト 三 の < ()</p>

HALCA Partie harmonique

- Partie harmonique
 - $P_h(f,t) = \sum_{s,i,z} P_h(i,t,s) P_h(f-i|z) P_h(z|t,s)$
 - $P_h(i, t, s)$: activation temps-fréquence de chaque source
 - $P_h(\mu|z) : z^{em}$ noyau harmonique à bande étroite
 - $P_h(z|t,s)$: coefficients de l'enveloppe de la source au temps t

HALCA Partie bruitée

- Partie bruitée
 - $P_b(f,t) = \sum_i P_b(i,t) P_b(f-i)$
 - $P_b(i, t)$: distribution temps-fréquence du bruit
 - $P_b(\mu)$: noyaux réguliers à bande étroite du bruit

source : Fuentes, 2013

-

5900

HALCA contraintes

• Utilisation de différents apriori pour les noyaux harmoniques et les activations temporelles

source : Fuentes, 2013

HALCA résultats

• Quelques résultats de simulation avec le modèle HALCA

HALCA résultats

• Résultats de l'évaluation MIREX06 + 6 fichiers Quaero

Algorithm	\mathcal{F} (%)	$\mathcal{R}(\%)$	$\mathcal{P}(\%)$	CT (\times real time)	
Н	29.9	27.9	37.0	3.4	
H-s	31.0	26.6	40.3	4.3	
H-st	31.3	27.6	38.6	7.5	
Vincent'10	15.8	48.0	10.6	0.9	
Dessein'12	16.1	20.1	14.9	0.8	
Symbol	Descript	Description			
Н	HALCA	HALCA model with no prior.			
H-t	HALCA	HALCA model with spectral envelope temporal			
	continuity prior.				
H-s	HALCA model with sparseness prior.				
H-st	HALCA model with spectral envelope temporal				
	continuity and sparseness priors.				
Vincent'10 13	Multiplicative NMF with the Itakura-Saito di-				
	vergence and harmonicity and spectral smooth-				
	ness constraints.				
Dessein'12 13	Spectrogram decomposition on a learned dic-				
	tionary using β -divergence.				

Questions?