#### Introduction aux méthodes a contrario

Yann GOUSSEAU

Télécom Paris - IP Paris

TADI - Master IMA 2023-2024

#### Plan

- Quelques expériences visuelles et principes gestaltistes
- Le principe de Helmholtz et deux exemples
- Détection d'alignements
- Autres applications : courbes contrastées, courbes régulières, etc.



Fig. 1.2. Oggetti visivi sconosciuti, senza significato, ma perfettamente visibili e stabili per forma, colore, grandezza, rapporti spaziali.

G. Kanizsa, grammatica del vedere

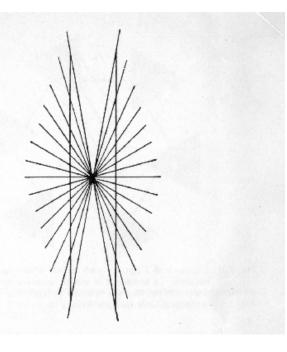




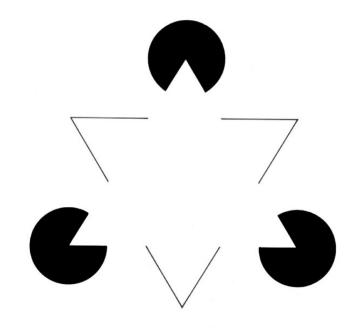
Fig. 1.45 : Action de la constante de largeur [Morinaga, 1941].

Expérience de discrimination fond-forme.



Fig. 5.21. Un'altra configurazione bistabile: il profilo nero e il profilo bianco si alternano nel ruolo di figura [da Rubin 1921].

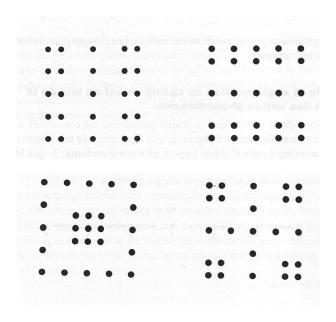




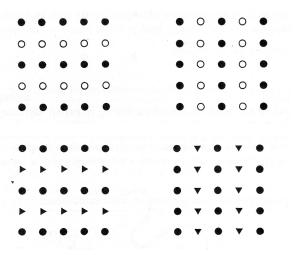


- Ecole gestaltiste (Wertheimer 1920, Metzger 1975 reed. 2006, Kanisza trad. 1997)
- Comment passe-t-on d'une "innombrable quantité d'éléments singuliers isolés les uns des autres" à la formation des objets?
- Lois de groupement, de constitution des objets visuels, dont :
  - proximité, similarité
    - bonne continuation fermeture, convexité, symétrie

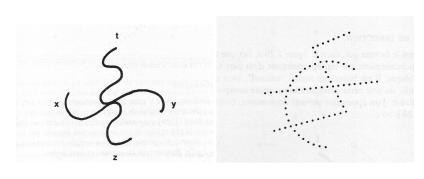
    - constance de largeur complétion amodale
    - prégnance, tendence à la régularité maximale, articulation sans reste



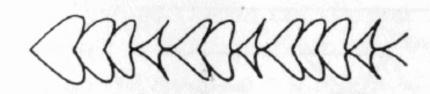
Regroupement selon la proximité.



Regroupement selon la similarité.



Principe de bonne continuation.

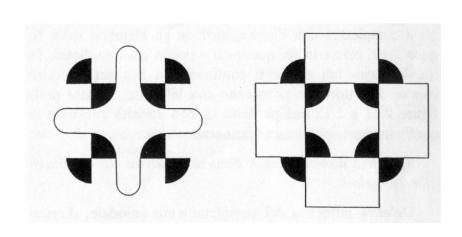


Tendance à la symétrie.



Fig. 1.45 : Action de la constante de largeur [Morinaga, 1941].

Constance de largeur - discrimination fond-forme.



Complétion amodale.

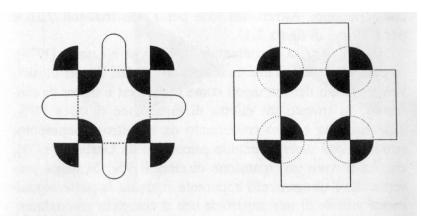
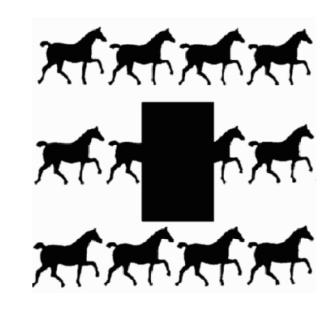


Fig. 2.13. Così si completa la figura 2.11.

Fig. 2.14. Così si completa la figura 2.12.

Complétion amodale.

Les courbes sont interpolées régulièrement entre les jonctions en T



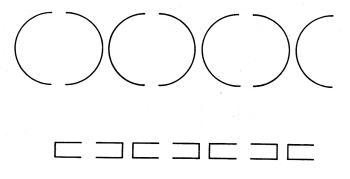
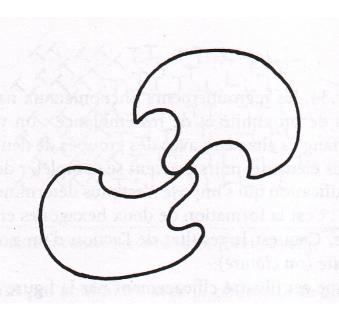


Fig. 1.38 : Fermeture contre proximité.





Principe de bonne continuation seul : l'interprétation est différente.

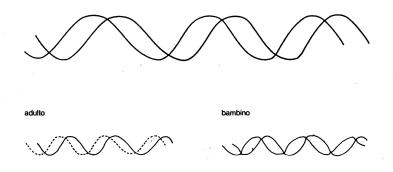
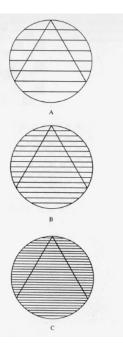


Fig. 1.65: Regroupements différents chez l'adulte et chez l'enfant.



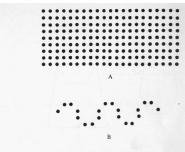


Fig. 5.2. La configurazione B è «invisibile» in A.

#### Principe de Helmholtz

- Aucune structure n'est perçue dans le bruit (Helmholtz 1867, Attneave 1954)
- Par extension est perçu ce qui dévie fortement du bruit, ce qui n'a pu se produire "par hasard".
- Principe appliqué à la vision artificielle pour calculer des seuils de détectabilité (alignements, Desolneux-Moisan-Morel 2000, puis contours contrastés, contours réguliers, points de fuite, parallélisme, mise en correspondance d'images)
- la détection repose sur
  - Un modèle de bruit
  - Le calcul de l'espérance du nombre de détections dans ce bruit (Nombre de Fausses Alarmes)

# Premier exemple: anniversaires dans un groupe

Est-il surprenant que dans un groupe de N personnes, deux aient leur anniversaire le même jour?

# Premier exemple: anniversaires dans un groupe

Est-il surprenant que dans un groupe de N personnes, deux aient leur anniversaire le même jour?

Soit  $A_n$  le nombre de n-uplets de personnes ayant même anniversaire. Soit  $P_n = Pr(A_n \ge 1)$  et  $P_n = Pr(A_$ 

Alors 
$$P_2 = 1 - p_1 = 1 - \frac{364 \times \cdots \times (365 - N + 1)}{365^{N-1}}$$
.

Si N = 30,  $P_2 \approx 0$ ,  $7 \rightarrow$  pas surprenant d'avoir deux anniversaires simultanés.

Pour  $n \in \mathbb{N}$ ,

$$P_n = 1 - \sum_{i=1}^{n-1} p_i.$$

Et on montre que

$$p_2 = \frac{1}{365^N} \sum_{i=1}^{N/2} \frac{\prod_{j=1}^i \binom{N+2-2j}{2}}{\prod_{j=0}^{N-1-j} (365-k)}.$$

Plus simple de calculer l'esperance du nombre de groupes :

$$E(A_n) = \binom{N}{n} \frac{1}{365^{n-1}}.$$

En effet,

soit  $T_{i_1,...,i_n} = 1$  ( $\{i_1,...,i_n$  ont même anniversaire $\}$ ), avec 1 (E) la fonction indicatrice d'un événement E, alors

$$E(A_n) = \sum_i E(T_{i_1,\ldots,i_n}) = \binom{N}{n} E(T_{i_1,\ldots,i_n}) = \binom{N}{n} Pr(\{i_1,\ldots,i_n \text{ ont même anniv.}\}).$$

Remarque (Inégalité de Markov) :  $P_n = Pr(A_n \ge 1) \le E(A_n)$ . Numériquement, pour N = 30,

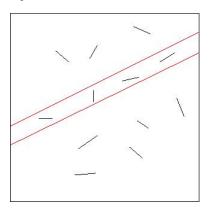
$$E(A_2) \approx 1,19$$
  
 $E(A_3) \approx 0,03$ 

$$E(A_3) \approx 0.03$$
  
 $E(A_4) \approx 5.10^{-4}$ 

# Deuxième exemple : alignements de segments

Soient M segments identiques de positions et orientations uniformément distribués dans un carré de côté L.

On considère que deux segments sont alignés si leurs centres appartiennent à une bande de largeur  $\eta$  et que leur orientations diffèrent de l'orientation de la bande de moins de  $\xi$ .



# Est-il surprenant que 4 segments soient alignés?

Pour 4 segments  $S_1, S_2, S_3, S_4, Pr(S_i \text{ alignés }) \approx \left(\frac{\eta}{M}\right)^2 \left(\frac{\xi}{\pi}\right)^4$ , donc

$$E(\text{ nombre de 4-uplets alignés })) \approx \binom{M}{4} \left(\frac{\eta}{M}\right)^2 \left(\frac{\xi}{\pi}\right)^4.$$

Application numérique :  $M=1000, \eta=6, \frac{\xi}{\pi}=10^{-1}$ 

$$M = 400, E \approx 5$$
  
 $M = 30, E \approx 10^{-4}$ 



# Alignements dans les images numériques

#### Desolneux-Moisan-Morel 2000

- Quel est le nombre minimal de points alignés dans une image pour constituer un segment perceptible visuellement?
- Eléments à grouper : orientation du gradient en chaque point de l'image.
- Pour une image  $\{u(i,j)\}_{1 \le i,j, \le N}$

$$\xi(i,j) = \frac{Du(i,j)^{\perp}}{|Du(i,j)|},$$

οù

$$Du(i,j) = \frac{1}{2} \left( \begin{array}{c} u(i+1,j) - u(i,j) + u(i+1,j+1) - u(i,j+1) \\ u(i,j+1) - u(i,j) + u(i+1,j+1) - u(i+1,j) \end{array} \right).$$

 Un point ξ(i,j) est dit aligné à la précision p avec une direction d si l'angle formé par ξ(i,j) avec d est inférieur à p.

### Alignements

Principe : pour  $l \in \mathbb{N}$ , on va chercher un nombre minimum k(l) tel que l'événement

Au moins k(l) points d'un segment de longueur l sont alignés avec la direction du segment

ait une probabilité faible de se produire sous l'hypothèse (modèle de fond)

$$H_0 = \{ \text{ les } \xi(i,j) \text{ sont i.i.d. selon } U(0,2\pi) \},$$

où  $U(0,2\pi)$  est la loi uniforme sur  $[0,2\pi]$ .

### L'hypothèse $H_0$ (I)

Est-il raisonnable de supposer les  $\xi(i,j)$  indépendants ? Outre les dépendances liées à la structure de l'image (que l'on veut mettre en évidence), les  $\xi(i,j)$  sont intrinséquement dépendants :

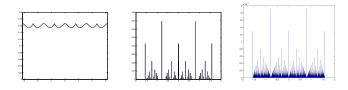
$$Du(i,j) = \frac{1}{2} \left( \begin{array}{c} u(i+1,j) - u(i,j) + u(i+1,j+1) - u(i,j+1) \\ u(i,j+1) - u(i,j) + u(i+1,j+1) - u(i+1,j) \end{array} \right).$$

 $\rightarrow$  on considère des points distants de deux pixels.

# L'hypothèse $H_0$ (II)

#### Est-il raisonnable de supposer $\xi(i,j) \sim U(0,2\pi)$ ?

- Si on fait l'hypothèse que u est un bruit blanc gaussien, alors  $\xi(i,j) \sim U(0,2\pi)$  (et réciproquement si  $\xi(i,j)$  uniformes et u(i,j) i.i.d., alors u(i,j) gaussien).
- Reste vrai approximativement si *u* est un bruit blanc non gaussien.
- Problèmes de quantification.



Directions dans un bruit blanc uniforme : continu, 5 niveaux, 256 niveaux

### **Alignements**

- Soient
  - un segment discret  $S = (x_1, \dots, x_l)$
  - $X_i = \mathbb{I}(x_i \text{ aligné à la précision } p \text{ avec } S)$
  - $\bullet S_l = \sum_{i=1}^l X_i.$

alors sous  $H_0$ ,  $S_l \sim \mathcal{B}(p, l)$ , i.e.  $Pr_{H_0}(S_l = k) = \binom{l}{l} p^k (1 - p)^{l - k}$ .

On variousland descentile de détaction

• On va calculer des seuils de détection tels que, en moyenne, il y a moins de  $\epsilon$  detections sous l'hypothèse de "bruit"  $H_0$  sur les  $\xi(i,j)$ .

### Seuils de détection

- Soit  $\epsilon > 0$
- Définition : un segment  $(x_1, \ldots, x_l)$  est  $\epsilon$ -significatif si il contient au moins k(l) points alignés, où

$$k(l) = \min\{k \in \mathbb{N} | Pr_{H_0}(S_l \ge k) \le \frac{\epsilon}{N^4} \}$$

# Esperance du nombre de détection dans le bruit

- Soit  $e_i$  l'évenement "le ieme segment de l'image est  $\epsilon$ -significatif".
- Soit *m* le nombre total de segments
- Soit  $R = \sum_{i=1}^m e_i$
- Alors

$$E_{H_0}(R) = \sum_{i=1}^m E(e_i) = \sum_{i=1}^m Pr(S_{l_i} \ge k(l_i))$$
 (1)

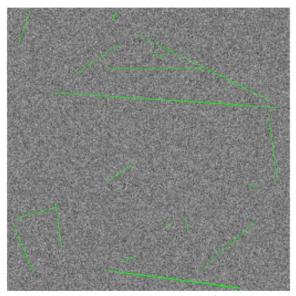
$$\leq \sum_{k=1}^{m} \frac{\epsilon}{N^4} = m \frac{\epsilon}{N^4} \leq \epsilon \tag{2}$$

• car le nombre total de segments vérifie  $m = N^2(N^2 - 1) \le N^4$ 





Alignements significatifs ;  $\epsilon=1,$   $p=\frac{1}{16}.$ 



Alignements dans un bruit blanc gaussien ;  $\epsilon=10^4, p=\frac{1}{16}$  ( $\epsilon=10^3$  : pas de détection).

# Degré de confiance d'un alignement : le NFA

- Soit un segment S de longueur l avec k points alignés
- Définition : le nombre de fausses alarmes de S est

$$NFA(l,k) = N^4 Pr(S_l \ge k) = N^4 \sum_{i=k}^{l} {l \choose j} p^j (1-p)^{l-j}.$$

• NFA(l,k) est la plus petite valeur de  $\epsilon$  telle que S soit  $\epsilon$ -significatif. En effet :  $Pr(S_l \ge k) = N^{-4}NFA(l,k)$  et  $Pr(S_l \ge x)$  est décroissant en x.

# Quelques propriétés du NFA

- $NFA(l, 0) = N^4$  et  $NFA(l, l) = N^4 p^l$ .
- $NFA(l, k + 1) \leq NFA(l, k)$
- NFA(l,k) < NFA(l+1,k)
- $\bullet \ \mathit{NFA}(l+1,k+1) < \mathit{NFA}(l,k)$

$$\bullet \to \to \bullet \to \to \bullet$$

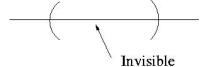


### Remarques

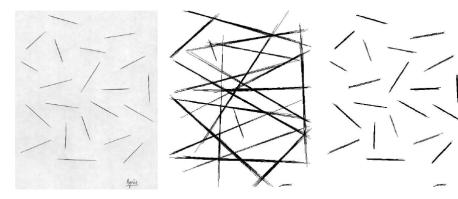
- Influence de  $\epsilon$  en log
- Limites de la perception visuelle de l'ordre de grandeur de  $p = \pi/30$ .
- Si p devient trop faible : apparition du phénomène de quantification.

### Maximalité

- A l'interieur d'un segment, de nombreux segments plus petits sont détectés.
- De même, de nombreux segments s'appuient sur des segments plus petits.
- Problème de masquage :



- Un segment A est maximal si
  - Pour tout  $B \subset A$   $NFA(B) \ge NFA(A)$
  - Pour tout  $A \subset B$  NFA(B) > NFA(A)
  - A est maximal significatif si il est significatif et maximal.



alignements significatifs; droite: maximaux significatifs.





Haut : alignements significatifs ; bas : maximaux significatifs ;  $\epsilon=1, p=\frac{1}{16}.$ 



Alignements maximaux significatifs;  $\epsilon = 10^{-2}, 10^{-3}, 10^{-6}$ 

# Propriétés des segments maximaux significatifs

- Extremités alignés avec le segment  $(\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow)$
- Points immédiatement en dehors du segment pas alignés
   (→→→→→ →→)•
- Question : les segments maximaux de même direction sont-ils disjoints ?
   → question ouverte.

### Algorithme

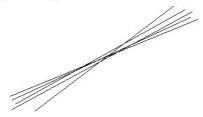
ullet Pour chaque ligne discrète  $(N^2)$  : liste d'intervalles candidats :

$$\bullet(\to\to\to\to\to\to\to)\bullet$$

• Pour toute paire de candidat (I,J) avec  $I \subset J$ , si  $NFA(J) \leq NFA(I)$ , on supprime I de la liste, sinon on supprime J.

# Principe d'exclusion

• De nombreux segments apparaisent en faisceaux :



- Solution : on veut que les segments maximaux significatifs soient disjoints
- Soient  $S_1, \ldots, S_n$  les segments max. significatifs.
  - Pour chaque  $x \in \bigcup_i S_i$ , soit i(x) tel que

$$NFA(S_{i(x)}) = \min\{NFA(S_j)|x \in S_j\}.$$

• Pour chaque  $j = 1 \dots n$ ,

$$\tilde{S}_i = \{x | i(x) = j\}.$$

• On ne garde que les  $\tilde{S}_j$  significatifs.



maximaux significatifs et principe d'exclusion.





Segments avec principe d'exclusion ( $\epsilon=1$ )





Segments avec principe d'exclusion ( $\epsilon=1$ )

# Principe général des méthodes a contrario

- Dans une population  $O_1, \ldots, O_M$  ayant des attributs  $A_1, \ldots, A_M$ , on cherche à détecter des groupes  $\{O_{i(1)}, \ldots, O_{i(n)}\}$ .
- La formation d'un groupe dépend de seuils  $\theta_n$  et de fonctions  $g_n$ :  $\{O_{i(1)},\ldots,O_{i(n)}\}$  forment un groupe si

$$g_n(A_{i(1)},\ldots,A_{i(n)}) \leq \theta_n$$

- On définit l'hypothèse  $H_0 = \{ les A_i sont i.i.d. \}$ .
- Soit G le nombre possible de groupes.
- La méthode a contrario consiste à fixer les  $\theta_n$  de sorte que

$$E_{H_0}(\text{ nombre de groupes }) \leq \epsilon.$$

• Une possibilité est, pour tout n,

$$Pr_{H_0}(\{A_1,\ldots,A_n\} \text{ forment un groupe }) \leq \frac{\epsilon}{G}$$

# Tests d'hypothèses

- Deux hypothèses :
  - $H_0 = \{ \text{ Les attributs sont i.i.d. } \},$
  - $H_1 = \{$  Les attributs forment un groupe  $\}$
- Fonction de test  $\delta_n(A_1,\ldots,A_n)=1\!\!1(g_n(A_{i(1)},\ldots,A_{i(n)})\leq\theta_n)$ .
- On fixe  $\theta_n$  de sorte à contrôler l'erreur de première espèce ( $\alpha$ -erreur ou probabilité de faux-positif) :  $Pr_{H_0}(g_n(A_{i(1)},\ldots,A_{i(n)}) \leq \theta_n) \leq \alpha$ .

# Tests d'hypothèses multiples

- Pour prendre en compte la famille de tests  $\delta_n$ , on remplace  $Pr_{H_0}(\delta_n(A_{i(1)},\ldots,A_{i(n)})=1)\leq \alpha$  par  $Pr_{H_0}(\delta_n(A_{i(1)},\ldots,A_{i(n)})=1)<\alpha_n$
- Solution simple (et conservatrice) :  $correction\ de\ Bonferroni$  :  $\alpha_n=\alpha/G$  ; Alors

$$Pr(\exists n | \delta_n(A_{i(1)}, \ldots, A_{i(n)}) = 1) \leq \alpha$$

et

$$E(\text{ nombre de détections }) < \alpha.$$

- Le seuil peut être très conservateur.
- Alternative: False Discovery Rate (Benjamini-Hochberg 95).

### Applications en vision

- Alignements (Desolneux-Moisan-Morel 2000, Grompone 2012, Elder et al. 2020)
- Detection d'ellipses (Martorell et al. 2021)
- Segmentation (Desolneux-Moisan-Morel 2001, Cao-Musé-Sur 2005, Burrus 2009)
- Bonne continuation (Cao 2003)
- Points de fuite, convergences (Almansa-Desolneux-Vamech 2003, Desolneux-Doré 2016)
- Clustering (Desolneux-Moisan-Morel 2003, Cao et al. 2005)
- Constance de largeur (Villeger 2005)
- Detection de jonctions en T (Xia-Delon-Gousseau 2012)
- Detection de changement (Lisani-Morel 2003, Pelletier-Koepfler-Dibos 06, Liu-Gousseau-Tupin 2017, Vidal et al. 2019), de similarité (Cao-Bouthemy 2005), d'anomalies (Davy et al. 2019), imagerie IR (Hessel et al 2023)
- Reconnaissance d'objets (Myaskouvskey et al. 2013)
- Mise en correspondance de formes (Musé et al. 2006), de descripteurs locaux (Rabin et al. 2009, Mazin-Delon-Gousseau 2012), de la composition couleur (Hurtut-Gousseau-Schmitt 2008)
- Suivi (Primet-Moisan 2012, Dimiccoli-Jacob-Moisan 2016)
- Etc.

# Lignes contrastées

Desolneux-Moisan-Morel 2001

- Principe : trouver les contours qui contredisent une hypothèse de distribution i.i.d. du contraste
- Repose sur les lignes de niveau de l'image
- Principe de maximalité grâce à la structure hiérarchique des lignes

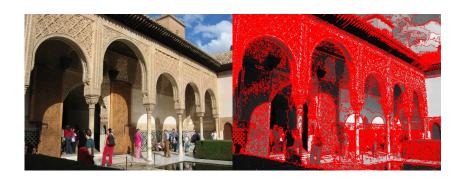
# Carte topographique de l'image

Ensembles de niveau

$$\forall \lambda \in \mathbb{R}$$
  $\gamma_{\lambda}(u) = \{x \in \mathbb{R}^2 | u(x) \ge \lambda\}$ 

- Remarque :  $u(x) = \sup\{\lambda | x \in \chi_{\lambda}(u)\}$
- Lignes de niveau : composantes connexes des  $\partial \chi_{\lambda}(u)$   $\rightarrow$  carte topographique de l'image représentation complète, hiérarchique de l'image (Monasse 2000).

# Exemple



# Lignes contrastées

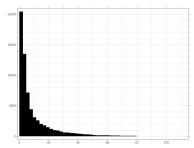
- Soit  $L = \{x_1, \dots, x_l\}$  une ligne de niveau
- Soit  $c(x_i) = |Du(x_i)|$  le contraste en  $x_i$
- L'hypothèse nulle est  $H_0 = \{ \text{ les variables } c(x_i) \text{ sont i.i.d. } \}$
- La ligne L est dite contrastée si l'événement suivant est vrai :

$$e_L = \{ \forall i, c(x_i) \ge \mu \}$$

On a alors Pr<sub>H0</sub>(e<sub>L</sub>) = Π<sub>i</sub>Pr(c(x<sub>i</sub>) ≥ μ) = H(μ)<sup>l</sup>,
 où H est la fonction de repartition de la variable c(x)

#### Distribution du contraste

- Quel modèle choisir pour H (la distribution du contraste)?
- Loi uniforme pas appropriée
- Experimentalement :



- Modèle possible :  $f(c) = C \exp\left(\frac{x}{\beta}\right)^{\beta}$
- Solution retenue : histogramme empirique de c sur l'image

$$H(\mu) = \frac{1}{N^2} \# \{ x | c(x) \ge \mu \}$$

# Lignes contrastées

- Soit M le nombre total de lignes de niveau
- Pour une ligne  $L = \{x_1, \dots, x_l\}$ , soit son contraste  $\mu(L) = \min\{c(x_i)\}$ .
- Définition Le nombre de fausses alarmes de la ligne L est

$$NFA(L) = M.H(\mu(L))^l$$

*L* est  $\epsilon$ -significative si  $NFA(L) \leq \epsilon$ .

### Bords contrastés

- o contours des objets et lignes de niveaux ne coïncident pas en général
- Hypothèse plus fine : les contours des objets sont constitués de morceaux de lignes de niveau
- Définition Le NFA d'un morceau de ligne  $E \subset L$  de longueur k est

$$NFA(E) = M_m H(\mu(E))^k$$
,

où  $M_m$  est le nombre de morceaux de lignes dans l'image,

$$M_m = \sum_{i=1}^M \frac{l_i(l_i-1)}{2}$$

• E est  $\epsilon$ -significatif si  $NFA(E) \leq \epsilon$ 

# Propriétés du NFA

- Soit  $F(l, \mu) = M.H(\mu)^l$
- Si  $l \leq l'$ ,  $NFA(l, \mu) \geq NFA(l', \mu)$
- Si  $\mu \leq \mu'$ ,  $NFA(l, \mu) \geq NFA(l, \mu')$
- A  $\mu$  fixé, la longueur minimale pour être significatif est

$$l_m(\mu) = \frac{\log \epsilon - \log \mu}{\log H(\mu)}$$

à nouveau une dépendance en  $\log\epsilon$ 

A l fixé,

$$\mu_m(l) = H^{-1}\left(\left(rac{\epsilon}{M}
ight)^{l^{-1}}
ight)$$

#### Maximalité

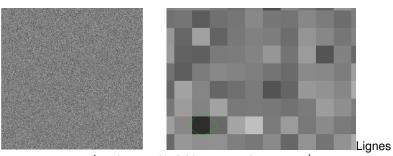
- $\bullet$  Les bords des images numériques sont flous  $\to$  nombreuses lignes significatives
- Maximalité grâce à la structure d'arbre des lignes
- Soient  $L_1$  et  $L_2$  deux lignes, D et D' leurs intérieurs, alors
  - soit  $D \cap D' = \emptyset$
  - Soit  $D \subset D'$  ou  $D' \subset D$
  - → structure d'arbre
- Définition On appelle intervalle monotone maximal une famille de lignes  $\{L_i\}$  telle que
  - pour  $i \ge 2$ ,  $L_i$  est le seul fils de  $L_{i-1}$
  - le niveau de gris varie de manière monotone le long de la branche
  - l'intervalle est maximal

#### Maximalité

- On considère l'arbre des lignes significatives
- Pour chaque intervalle monotone maximal on garde la ligne ayant le NFA minimum
- Pour les bords :  $E \subset L$  maximal significatif si :  $\forall E' \subset L$  tel que  $E \subset E'$  ou  $E' \subset E$ ,

$$NFA(E) \leq NFA(E')$$

Les bords (et lignes) maximaux significatifs sont disjoints



contrastées dans un bruit blanc gaussien ;  $\epsilon=10^1$ .





10421 lignes significatives ( $\epsilon=1$ )



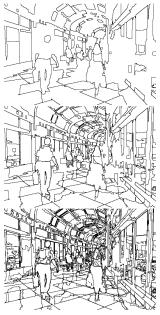


691 lignes maximales significatives ( $\epsilon=1$ )





381 lignes maximales significatives ( $\epsilon=10^{-3}$ )

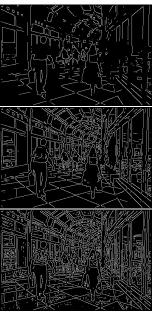


Segmentations de Mumford-Shah avec plusieurs  $\lambda$ 



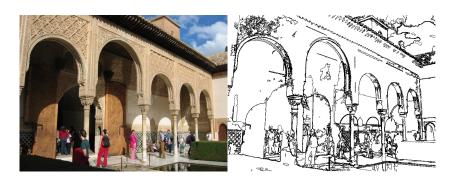


Bords maximaux significatifs ( $\epsilon=1$ )



Detecteur de Canny; seuils 5, 20, 50 sur le gradient

# Lignes significatives



# Principe de bonne continuation

[F. Cao 03]

- But : detecter les morceaux de ligne réguliers
- Principe : la régularité est caractérisée par la courbure maximum et on utilise un modèle a contrario de distribution uniforme des directions du gradient (cf alignements)

#### Courbure discrète

- Soit  $L = \{x_1, \dots, x_l\}$  un morceau de ligne de niveau échantillonné régulièrement
- En chaque point, soit  $\theta(x_i)$  l'angle formé par  $\xi(x_i)$  (vecteur unitaire perp. au gradient) avec l'horizontale
- On approxime la courbure par  $k_i = \theta_i \theta_{i-1}$
- En effet si C(s) est une courbe à paramétrisation euclidienne (T = |C'(s)| = 1) alors

$$T'=kN$$
,

donc si

$$T = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix} \qquad \qquad T' = \theta' \begin{pmatrix} -\sin \theta \\ \cos \theta \end{pmatrix} \qquad \qquad k = \theta' \quad (3)$$

• Pour une courbe  $L = \{x_1, \dots, x_l\}$ , on s'intéresse à l'évenement

$$E = \{ \forall i, k(x_i) < \kappa \}$$

- Modèle de fond  $H_0$ :  $k(x_i)$  i.i.d. et uniforme sur  $[-\pi, \pi]$  (bien que l'on soit sur un morceau de ligne fermée)
- Alors  $Pr_{H_0}(E) = \left(\frac{\kappa}{\pi}\right)^l$
- Comme pour les bords contrastés on définit :

$$NFA(L) = M_m \cdot \left(\frac{\kappa(L)}{\pi}\right)^l,$$

οù

$$M_m = \sum_{\mathsf{COURDES}\ i} rac{l_i(l_i-1)}{2}$$

et  $\kappa(L) = \max\{k(x_i)\}$ 

• L est  $\epsilon$ -significative (pour la bonne continuation) si  $\mathit{NFA}(L) \leq \epsilon$ 

