
Constrained Sparse Texture Synthesis

Guillaume Tartavel1, Yann Gousseau1, and Gabriel Peyré2

1 LTCI, CNRS / Telecom ParisTech
{tartavel,gousseau}@telecom-paristech.fr

2 Ceremade, Université Paris-Dauphine
gabriel.peyre@ceremade.dauphine.fr

Abstract. This paper presents a novel texture synthesis algorithm that
performs a sparse expansion of the patches of the image in a dictionary
learned from an input exemplar. The synthesized texture is computed
through the minimization of a non-convex energy that takes into ac-
count several constraints. Our first contribution is the computation of a
sparse expansion of the patches imposing that the dictionary atoms are
used in the same proportions as in the exemplar. This is crucial to enable
a fair representation of the features of the input image during the syn-
thesis process. Our second contribution is the use of additional penalty
terms in the variational formulation to maintain the histogram and the
low frequency content of the input. Lastly we introduce a non-linear re-
construction process that stitches together patches without introducing
blur. Numerical results illustrate the importance of each of these contri-
butions to achieve state of the art texture synthesis.

Keywords: texture synthesis, sparse decomposition, dictionary learn-
ing, variational methods.

1 Introduction

Texture synthesis aims at generating an image that is visually similar to a
given input exemplar but at the same time exhibits a strong randomness. Classi-
cal methods learn a global statistical model from the exemplar, and then sample
a realization from this distribution. Simplest models consider independent sta-
tionary coefficients over a Fourier [6] or a wavelet basis [7,3]. More realistic
syntheses are achieved by using an adapted representation learned from the ex-
emplar [16] or by using higher order models taking into account dependencies
among the coefficients [12].

Another class of methods are based on the Markov Random Field (MRF)
assumption that each pixel of the texture depends only on its neighborhood. [2]
introduced a parametric MRF model to textures. [4] and [15] propose a non-
parametric MRF model where the probability law of a pixel given its neighbors
is sampled directly from an exemplar of the texture to be synthesized. These
approaches have been improved by several author, see for instance the recent
review [14].

2 Tartavel, Gousseau, Peyré

These patch-based synthesis methods share similarities with recent sparsity-
based methods developed for image restoration. These methods build a dictio-
nary to perform a sparse expansion of the patches of the image in order to
achieve state of the art denoising results, see for instance the work of Elad and
Aharon [5]. Peyré shows in [11] that dictionary learning can be used for texture
synthesis, the dictionary encoding in a compact manner the geometric features
of the input image.

Our method builds upon the sparse texture synthesis method of Peyré [11],
but extends it significantly to achieve state of the art results in terms of visual
quality. We integrate several constraints to enrich the model and propose a
variational energy that is minimized during the synthesis.

2 Dictionary Learning

The first step of our method trains a dictionary to approximate patches from
the input exemplar. We take here the opportunity to introduce our notations
while recalling the process of dictionary learning.

Matrix Notation. We denote ai and aj the rows and columns of a matrix
A = (aji)i,j . The transposed matrix is denoted by A∗. Its ℓ2 (Frobenius) norm is

defined by ||A||2 = tr(A∗A) =
∑

i,j |a
j
i |
2. The indicator function ιC of a set C is

by definition equal to +∞ outside C and equal to 0 inside C. The ℓ0 pseudo-norm
of a vector w counts its non-zeros coordinates, ||w||0 = # {i \ wi 6= 0}.

Patches and Dictionary. We process and synthesize an image u by manipu-
lating its patches. Given a set (xk)

K
k=1 of K pixel locations, the patch extractor

is Π(u) = (pk)k ∈ R
L×K where for t ∈ {0, . . . , τ − 1}2, pk(t) = u(xk + t) defines

the patch pk ∈ R
L of τ × τ pixels, so that L = dτ2 where d = 1 for grayscale

images and d = 3 for color images. We constrain the sampling locations on a
regular grid xk = k∆ for k ∈ Z

2 where the spacing ∆ > 0 controls the amount
of sub-sampling.

A dictionary D = (dn)
N
n=1 ∈ R

L×N is used to approximate the patches P =
Π(u) as P ≈ DW , where W ∈ R

N×K are the coefficients of the approximation.
Note that this corresponds to approximating independently each patch as pk ≈
Dwk within the dictionary. The quality of the approximation is measured using
the ℓ2 norm, ||P −DW ||2 =

∑K
k=1 ||pk −Dwk||

2
2.

Learning Stage. Given an exemplar u0 of a texture we want to synthesize,
an adapted dictionary D0 ∈ R

L×N is learned to provide an optimal sparse
approximation of the patches P0 = Π(u0) ∈ R

L×K . Similarly to most dictionary
learning methods, such as [5], we solve a non-convex optimization problem over
the coefficients W0 ∈ R

N×K and the dictionary D0

(W0, D0) ∈ argmin
W,D

||P0 −DW ||2 + ιCcols
(W) + ιCdict

(D) (1)

Constrained Sparse Texture Synthesis 3

where we enforce the coefficients to be S-sparse using

Ccols =
{

W ∈ R
N×K \ ||wk||0 6 S ∀k

}

(2)

and where the atoms of the dictionary are constrained to be normalized using
Cdict =

{

D ∈ R
L×N \ ||dn|| 6 1 ∀n

}

.

Several algorithms have been proposed to minimize approximately a non-
convex energy of the form (1), see for instance the K-SVD method of [5].

3 Variational Formulation of the Synthesis Process

Once the dictionary D0 has been learned from an input exemplar u0, a tex-
ture u (and the associated coefficients W of Π(u)) is synthesized by minimizing
a non-convex energy E(u,W) equal to

1

Z
||Π(u)−D0W ||2+ιCcols

(W)+ιCrows
(W)+αW2

2 (µu, µu0
)+β||h⋆(u−u0)||

2. (3)

Here Z = ⌈ τ
∆
⌉2 is constant so that the ℓ2 data fidelity is normalized with respect

to the number of extracted patches. The two parameters α, β > 0 are weighting
the influence of their respective terms. The synthesized images are stationary
points of E that are sampled at random with an iterative scheme, which is
described in Sect. 4. We now give the precise definition and the rationale for
each term of this energy.

Sparse Coding Constraint. The sparse coding energy 1
Z
||Π(u) − D0W ||2 +

ιCcols
(W) is the same as the one used for the dictionary learning minimization (1).

It requires that all the patches of u are well approximated by an S-sparse ex-
pansion in D0.

Frequency Constraint. The constraint Crows imposes that all the geometrical
features of u0 encoded in the dictionary are represented with the same respective
proportions in u and u0. It enforces that atoms of D0 be used with the same
frequencies of occurrence for the sparse expansion of both Π(u0) and Π(u). It
is defined as

Crows =
{

W ∈ R
N×K \ ∀n, ||wn||0 6 Fn

0

}

.

The frequencies Fn
0 are estimated from the input exemplar coefficients W0 as

Fn
0 =

K

K0
||wn

0 ||0, (4)

where K and K0 are the number of patches extracted from u and u0 respectively.

4 Tartavel, Gousseau, Peyré

Histogram Constraint. Maintaining the gray-level or color histogram of a
texture is perceptually important for texture synthesis. This is achieved by pe-
nalizing the deviation between the empirical gray-level or color distributions µu

and µu0
of u and u0.

An efficient and robust distance between distributions is the optimal trans-
port distance, also known as the Wasserstein distance (see e.g. [13]). When u
and u0 have the same number of pixels, the L2 Wasserstein distance is defined
as

W2
2 (µu, µu0

) = min
σ

||u− u0 ◦ σ||
2. (5)

where σ runs over all the permutations of the pixels. This definition can be
extended for images having a different number of pixels. For grayscale images,
the optimal permutation is computed by simply sorting the pixel values. For color
images, the Wasserstein distance is more involved to compute and to minimize.
We approximate it as the sum of the grayscale distances along the three channels
in a principal component orthogonal basis.

Low-Pass Constraint. Low frequency patterns, whose sizes exceed τ , are not
controlled by the patch decomposition. To avoid the apparition of artifacts, we
penalize the deviation of the low frequencies of u with respect to those of u0

using the term ||h ⋆ (u−u0)||
2, where ⋆ is the discrete convolution. We use a box

filtering kernel h = (τ−2)16i,j6τ which performs an averaging over the spatial
extension of a patch.

4 Synthesis Algorithm

The synthesis is obtained by randomly sampling the stationary points of
E(u,W) by a block-coordinate descent method that minimize E iteratively with
respect to u and W . Pseudo-code 1 details the different steps of the method that
are detailed in the remaining part of this section.

Algorithm 1: texture synthesis algorithm by minimization of (3).

Data: input texture u0.
Input: parameters τ,∆, S, α, β,N .
Output: synthesized texture u.
1. Dictionary learning: compute (D0,W0) by minimizing (1).
2. Frequency estimation: compute (Fn

0)n using (4).
3. Initialization: set u to be a random white noise image.
4. Block-coordinate minimization: repeat until convergence

– image update: u ≈ argmin
u

E(u,W), see Sect. 4.1.

– coefficient update: W ≈ argmin
W

E(u,W), see Sect. 4.2.

Constrained Sparse Texture Synthesis 5

4.1 Step 1: Minimization with respect to u

Given a fixed set of coefficients W , we compute the minimization of E(u,W)
with respect to u alone

min
u

ẼW (u) =
1

Z
||Π(u)− P ||2 + αW2

2 (µu, µu0
) + β||h ⋆ (u− u0)||

2 (6)

where P = D0W is fixed.

Gradient Descent. The function ẼW is smooth almost everywhere since W2
2

is defined in (5) as the minimum among a set of paraboloids. It has a Lipschitz
gradient. We thus use a gradient descent scheme to solve approximately (6)

u(ℓ+1) = u(ℓ) − η∇ẼW (u(ℓ))

where u(0) is initialized from the previous iteration of the synthesis process.
The gradient of ẼW reads

∇ẼW (u) = 2R(u, P) + α∇uW
2
2 (µu, µu0

) + 2βh̄ ⋆ h ⋆ (u− u0) (7)

where R(u, P) =
1

Z
Π∗ (Π(u)− P)

and where h̄(x) = h(−x). The step sizes η must be smaller than twice the inverse
of the Lipshitz constant of this gradient, 0 < η < 4× (1 + α+ β)−1.

Gradient of the Wasserstein Distance. When u and u0 are grayscale images
with the same number of pixels, the gradient of u 7→ W2

2 (µu, µu0
) reads

∇uW
2
2 (µu, µu0

) = 2
(

u− u0 ◦ σu0
◦ σ−1

u

)

where σv is a permutation that order the pixel values (vi)i of an image v,

vσv(1) 6 . . . 6 vσv(i) 6 vσv(i+1) 6 . . .

The permutation σu is not unique when u 7→ W2
2 (µu, µu0

) is not differentiable.
However, a descent direction is obtained by considering any valid ordering. When
u and u0 are color images, ∇uW

2
2 (µu, µu0

) is computed as the sum of the gra-
dients over the three channels of the principal components of the distribution of
the pixels of u0.

Non-linear Improved Reconstruction. We note that 1
Z
Π∗Π = diagi(ρi/Z)

where ρi 6 Z is the number of patches that overlap at a pixel location i. In the
case of a perfect tiling, ρi = Z is constant and 1

Z
Π∗Π = Id: we can thus write

diagi(Z/ρi)R(u, P) = u−Π+P

where Π+ = (Π∗Π)−1Π∗ = diagi(1/ρi)Π
∗ is the pseudo-inverse of Π. The term

R(u, P) thus involves images that are reconstructed linearly by an averaging
of patches. This step thus typically induces blur in the image u recovered at
convergence. We improve this reconstruction by replacing the linear pseudo-
inverse Π+ by a Non-Linear (NL) reconstruction operator Π+

NL, and replace, in
the gradient expression (7), R(u, P) by RNL(u, P) = u−Π+

NL(P).

6 Tartavel, Gousseau, Peyré

Graph-Cuts Reconstruction. As a particular example of non-linear, edge-
preserving, reconstruction operatorΠ+

NL(P), we use the graph-cut reconstruction
introduced in [9] for texture synthesis. The idea is to sequentially blend each pair
of adjacent patches along a cut. The patches are juxtaposed instead of being
averaged. For a given patches collection, the resulting image is much sharper
than the image obtained by linear reconstruction Π+(P).

A vertical cut γ between two consecutive patches (p1, p2) in P is a vertical
path splitting the overlapping pixels into 2 groups. It is thus a subset of edges
joining pairs of pixels (x1, x2). An optimal cut is computed by minimizing a
functional measuring how well the two patches can be juxtaposed seamlessly
along γ

J(γ, p1, p2) =
∑

(x1,x2)∈γ

||p1(x1)− p2(x1)||
2 + ||p1(x2)− p2(x2)||

2

||p1(x1)− p1(x2)||2 + ||p2(x1)− p2(x2)||2
. (8)

The minimization of J(γ, p1, p2) with respect to γ is done by linear programming.
The full image reconstruction Π+

NL(P) is performed in a greedy manner. Patches
are first merged using vertical cuts resulting in complete rows. These rows are
then merged together using large horizontal cuts.

Note that the resulting term RNL(u, P) = u−Π+
NL(P) does not correspond

anymore to the true L2 gradient. The non-linear behavior of the graph cut
operator makes it difficult to analyze the convergence of the resulting process.
Numerical simulations indicate that the process converges in practice, and that
no blur is created by these iterations. An interesting question for future work is
to understand whether the modification of the descent scheme can be re-casted
as a minimization of some edge-preserving energy.

4.2 Step 2: Minimization with respect to W

The minimization of E with respect to W when u is fixed corresponds to the
following combinatorial optimization problem

min
W

||P −D0W ||2 + ιCcols
(W) + ιCrows

(W) (9)

where P = Π(u) is fixed. Even in the case where Crows is dropped (usual sparse
coding), this problem is known to be NP-hard. We thus extend the Matching
Pursuit (MP) greedy algorithm [10] to take into account the additional con-
straint Crows and compute an approximate solution of (9). Pseudo-code 2 de-
scribes the steps of this Constraint Matching Pursuit (CMP) algorithm, that
are detailed in the remaining part of this section.

Index Selection Step. At step ℓ, the algorithm greedily updates the co-
efficients W (ℓ) to reduce as much as possible the amplitude of the residual
R(ℓ) = P − D0W

(ℓ) while staying within the constraint sets Crows and Ccols.
This update only increases by at most one the number of non-zero coefficients

ε⋆ = argmin
||ε||0=1

||P −D0(W
(ℓ) + ε)||2 + ιCcols

(W (ℓ) + ε) + ιCrows
(W (ℓ) + ε).

Constrained Sparse Texture Synthesis 7

Algorithm 2: constrained matching pursuit to approximately solve (9).

Data: patches P , dictionary D0.
Input: sparsity S, frequencies F0.
Output: coefficients W .
for ℓ = 0 to SK − 1 do

– select the indices (k⋆, n⋆) by solving (10).
– update the coefficients to obtain W (ℓ+1) using (11).
– update the residual R(ℓ+1) = P −D0W

(ℓ+1) using (12).

Similarly as in the case of the MP algorithm, the optimal 1-sparse vector ε⋆

indexes an atom dn⋆ and a patch r
(ℓ)
k⋆ of the residual R(ℓ) = (r

(ℓ)
k)k. These

indices can also be shown to maximize the correlations

(k⋆, n⋆) = argmax
(k,n)∈Iℓ

|〈r
(ℓ)
k , dn〉| (10)

where Iℓ is the set of indices that are still available at step ℓ

Iℓ =
{

(k, n) \
∑

n′ 6=n
||(w(ℓ))n

′

k ||0 < S and
∑

k′ 6=k
||(w(ℓ))nk′ ||0 < Fn

0

}

where W (ℓ) =
(

(w(ℓ))nk
)

k,n
are the coefficient at step ℓ.

Coefficient Update Step. The coefficients are then updated according the
MP rule

(w(ℓ+1))nk =

{

(w(ℓ))nk + 〈r
(ℓ)
k , dn〉 if (k, n) = (k⋆, n⋆),

(w(ℓ))nk otherwise;
(11)

and the residual R(ℓ+1) = P −D0W
(ℓ+1) becomes

r
(ℓ+1)
k =

{

r
(ℓ)
k − 〈r

(ℓ)
k , dn〉 · dn if k = k⋆,

r
(ℓ)
k otherwise.

(12)

Computational Complexity. Under the assumption that S 6 L,N 6 K, the
number of operations of the CMP algorithm is O(KN(L + logK)) when pre-
computing the inner products and using a heap max-search. The computation
of all inner products 〈pk, dn〉 provides a rough lower bound KNL for both our
algorithm and the original version of MP [10].

4.3 Multi-scale Synthesis

The energy E(u,W) is highly non-convex and the optimization process is
likely to fall in bad local minima. Following several works on texture synthesis
such as [11], we use a multi-scale strategy, that is particularly efficient when

8 Tartavel, Gousseau, Peyré

synthesizing images with features having various scales, such as a quasi-periodic
tiling of small scale features.

We first proceed by filtering and down-sampling the input exemplar u0 to
produce a multi-scale hierarchy of J images (uj)

J−1
j=0 , where uj corresponds to a

sub-sampling by a factor 2j . Keeping a fixed patch size but a varying resolution
allows the method to capture details of varying sizes. A dictionary Dj is learned
for each uj following the method described in Sect. 2. The synthesis algorithm
detailed in pseudo-code 1 is then applied for j = J − 1, . . . , 1, 0 with (uj , Dj) in
place of (u0, D0). Between two scales j and j − 1, the current texture u output
at scale j is up-sampled by a factor 2 using bi-cubic interpolation to serve as the
initialization for the synthesis step at scale j.

5 Synthesis Experiments

In this section, we provide comparisons between the proposed method and 3
classical synthesis algorithms. We also illustrate the contribution of each term
in the energy (3).

Choice of the Parameters. For all numerical experiments in this section,
we use patches of width τ = 12 and a spacing ∆ = τ/2. The synthesis is
performed through J = 3 scales. We choose S = 4 non-zero values per patch
and N = 384 elements in the dictionary. The parameters of the energy (3) are
chosen as α = β = 1; we observed that changing these values within reasonable
proportions has little visual influence on the results.

Comparison. Our results are compared with 3 other decomposition-based tex-
ture synthesis algorithms [7,12,11]. Peyré’s approach [11] is, to the best of our
knowledge, the only synthesis model using sparse dictionary decomposition; our
work is based on this approach. The method from Portilla and Simoncelli [12]
is a state of the art method for generic texture synthesis. Let us here emphasize
that we are interested in algorithms that truly generate a new texture from an
exemplar. Copy-paste methods such as the classical Efros-Leung algorithm [4]
and numerous related approaches (see e.g. [14]) produce visually striking results
on a larger class of textures than [12]. However they merely proceed, either ex-
plicitly or not, by stitching together pieces from the exemplar, as illustrated in
Fig. 1. These approaches are therefore not included in the present comparison.
The method from Heeger and Bergen [7] is included for methodological reasons.
It relies on the prescription of both the marginals of wavelet coefficients and the
gray level (or color) distribution of images. Therefore, it is closely related to our
method, albeit working in a prescribed, non-adaptive dictionary.

In Figure 2 are displayed several successful synthesis examples on textures
from the Brodatz database [1]. On these, the proposed method performs sig-
nificantly better than the method from Heeger and Bergen [7], especially for
structured textures. This is mostly due to the fact that learned dictionary are

Constrained Sparse Texture Synthesis 9

Original Coordinates Synthesis [4] Coordinates

Fig. 1. A synthesis example using the method from [4]. From left to right: input, pixel
coordinates visualized via a colormap, synthesis result, original position of the pixels
used for the synthesis. Although pixels are synthesized one at a time, the texture is
produced by stitching together pieces from the exemplar.

Input [7] [12] Our method [11]

Fig. 2. From left to right: input texture, result using [7], result using [12], result from
the proposed method, and result using the original framework [11]. The latter is often
too smooth because of the multi-scale processing. All textures are from the Brodatz
album [1].

10 Tartavel, Gousseau, Peyré

more efficient than wavelet dictionary at capturing edges, corners or other ge-
ometric characteristics of these textures. Second, results on these examples are
comparable to those from [12]. Observe that this last method relies on second
order statistics (correlations) between wavelet coefficients, while our approach
only controls the proportion in which each dictionary atom is used. This indi-
cates that the learned atoms could provide an interesting mathematical model
of textons, as defined in [8]. Third, the importance of the penalty terms we
introduced in energy (3) is evident through the comparison with the original
method [11].

In Figure 3 are displayed two failure examples, a very large scale texture in
the first row and a micro-texture in the second row. While the synthesis of very
large scale textures without copy-pasting is still an open problem, micro-textures
are successfully captured by relatively simple models such as the random phase
model from [6]. A rough explanation of the inability of our method to synthesize
such textures is that the sparse decomposition model is not adapted for noise-like
patches.

Input [7] [12] Our method [11]

Fig. 3. Failure examples. Top: a large scale texture, bottom: a micro-texture for which
the sparse hypothesis is not adapted.

Step-by-Step Analysis. In this second set of experiments, we illustrate the
contributions of both the different components of energy (3) and the chosen min-
imization strategy. For each tested texture, we compare the following synthesis
procedures:

– basic: only keep the first two terms (sparse coding constraint) and the fourth
term (histogram constraint) of energy (3), which gives a method very similar
to the initial framework of [11],

– atom frequency: add the atom frequency constraint Crows,
– graph cut: add the graph-cut reconstruction described in Sect. 4.1,
– multi-scale: add the multi-scale strategy described in Sect. 4.3,
– low frequency: add the low frequency constraint (last term of (3)), yielding

the complete proposed procedure.

Constrained Sparse Texture Synthesis 11

Several observations can be drawn from the results shown in Fig. 4. First, the
atom frequency constraint is important for the generation of geometric structures
and avoids an excessive use of smooth patches. Second, the non-linear image re-
construction procedure yields sharper results than the averaging of patches by
the operator Π∗. Third, the multi-scale strategy introduces large scale coher-
ence, without the computational cost of using larger patch sizes. Last, the low
frequency constraint prevents from large scale variations due to the independence
of patches.

Input Basic Atom freq. Graph cut Multi-scale Low freq.

Fig. 4. Step-by-step examples. For each example, the result in the second column is
obtained using a basic sparse synthesis scheme. Each column then shows the effect of
adding a new constraint or of changing the minimization strategy. The last column is
the complete proposed synthesis procedure.

Conclusions and Future Work

In this article we presented a variational approach to the texture synthesis
problem. It extends significantly the initial sparsity-based framework of [11].

We identified a set of constraints to make the sparse approach suitable for tex-
ture synthesis. The first constraint controls the frequency of occurrence of each
atom of the dictionary. The second constraint compensates the lack of coherence
between adjacent patches. The third refinement is a cut-based reconstruction in
the patch-based framework. The last and common refinement is the multi-scale
processing.

The resulting model is well adapted to textures with sharp edges and small
quasi-periodic patterns as shown in Fig. 2. It is less suitable for textures with
high frequencies or structures at very large scale. Interesting perspectives include
a better modeling of noisy textures, possibly through constraints on the power
spectrum of images as in [6], as well as the use of a multi-scale learned dictionary.

12 Tartavel, Gousseau, Peyré

Another perspective is to explore the variational approach which formulates
the synthesis problem as a (highly non-convex) minimization problem. This pa-
per uses a basic gradient descent but more efficient approaches may be used.
The solutions given by the minimization algorithm are (at most) local minima
of the energy. Do they all look similar? If not, how to get a “good” solution?

Acknowledgement: this work has been partly supported by the ANR project
MATAIM and by the ERC project SIGMA-Vision.

References

1. P. Brodatz. Textures: A Photographic Album for Artists and Designers. Dover,
New York, 1966.

2. G.R. Cross and A.K. Jain. Markov random field texture models. Pattern Analysis

and Machine Intelligence, IEEE Transactions on, (1):25–39, 1983.
3. J.S. De Bonet. Multiresolution sampling procedure for analysis and synthesis of

texture images. In Proceedings of the 24th annual conference on Computer graphics

and interactive techniques, pages 361–368, 1997.
4. A.A. Efros and T.K. Leung. Texture synthesis by non-parametric sampling. In

Computer Vision, 1999. The Proceedings of the Seventh IEEE International Con-

ference on, volume 2, pages 1033–1038. IEEE, 1999.
5. M. Elad and M. Aharon. Image denoising via learned dictionaries and sparse rep-

resentation. In Computer Vision and Pattern Recognition, 2006 IEEE Computer

Society Conference on, volume 1, pages 895–900. IEEE, 2006.
6. B. Galerne, Y. Gousseau, and J.-M. Morel. Random phase textures: Theory and

synthesis. Image Processing, IEEE Transactions on, 20(1):257–267, 2011.
7. D. J. Heeger and J. R. Bergen. Pyramid-based texture analysis/synthesis. In

SIGGRAPH ’95, pages 229–238, 1995.
8. B. Julesz. A theory of preattentive texture discrimination based on first-order

statistics of textons. Biological Cybernetics, 41(2):131–138, August 1981.
9. V. Kwatra, A. Schodl, I. Essa, G. Turk, and A. Bobick. Graphcut textures: Image

and video synthesis using graph cuts. ACM Transactions on Graphics, 22(3):277–
286, 2003.

10. S.G. Mallat and Z. Zhang. Matching pursuits with time-frequency dictionaries.
Signal Processing, IEEE Transactions on, 41(12):3397–3415, 1993.

11. G. Peyré. Sparse modeling of textures. Journal of Mathematical Imaging and

Vision, 34(1):17–31, 2009.
12. J. Portilla and E.P. Simoncelli. A parametric texture model based on joint statis-

tics of complex wavelet coefficients. International Journal of Computer Vision,
40(1):49–70, 2000.

13. Cédric Villani. Topics in optimal transportation, volume 58. Amer Mathematical
Society, 2003.

14. L.-Y. Wei, S. Lefebvre, V. Kwatra, and G. Turk. State of the art in example-
based texture synthesis. In Eurographics 2009, State of the Art Report, EG-STAR.
Eurographics Association, 2009.

15. L.Y. Wei and M. Levoy. Fast texture synthesis using tree-structured vector quanti-
zation. In SIGGRAPH ’00, pages 479–488. ACM Press/Addison-Wesley Publishing
Co., 2000.

16. S.C. Zhu, Y. Wu, and D. Mumford. Filters, random fields and maximum entropy
(FRAME): Towards a unified theory for texture modeling. International Journal

of Computer Vision, 27(2):107–126, 1998.

