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Robust Automatic Line Scratch Detection in Films

Alasdair Newson, Andrés Almansa, Yann Gousseau, and Patrick Pérez

Abstract—Line scratch detection in old films is a particularly
challenging problem due to the variable spatiotemporal char-
acteristics of this defect. Some of the main problems include
sensitivity to noise and texture, and false detections due to
thin vertical structures belonging to the scene. We propose a
robust and automatic algorithm for frame-by-frame line scratch
detection in old films, as well as a temporal algorithm for the
filtering of false detections. In the frame-by-frame algorithm,
we relax some of the hypotheses used in previous algorithms in
order to detect a wider variety of scratches. This step’s robustness
and lack of external parameters is ensured by the combined use
of an a contrario methodology and local statistical estimation.
In this manner, over-detection in textured or cluttered areas
is greatly reduced. The temporal filtering algorithm eliminates
false detections due to thin vertical structures by exploiting the
coherence of their motion with that of the underlying scene.
Experiments demonstrate the ability of the resulting detection
procedure to deal with difficult situations, in particular in the
presence of noise, texture, and slanted or partial scratches.
Comparisons show significant advantages over previous work.

Index Terms— Film restoration, line scratches, adaptive detec-
tion, a contrario methods, affine motion estimation.

I. INTRODUCTION

HE restoration of old films is a subject of primary interest

due to the great quantities of old film material present
in film archives. Unfortunately, manual digital restoration is
extremely time-consuming and labour intensive. For instance,
the recent restoration of George Melies’s “Voyage dans la
Lune” (1902)' took one year (for fifteen minutes of film).
It is clear, therefore, that automatic or semi-automatic tools
designed for the detection and restoration of defects are highly
desirable.

Some of the most common defects in films include dust/dirt,
blotches, flicker and line scratches. Here, we consider the
last defect, the line scratch, usually caused by an abrasion
to the physical film. A good explanation of the physical
origins of line scratches may be found at [1]. These line
scratches appear as thin bright or dark lines which are roughly
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straight and vertical. These defects also present the singular
characteristic of temporal persistence, meaning that they
remain in the same or a similar spatial position for several
frames. Consequently, line scratch detection algorithms must
be specially adapted to this defect.

However, these characteristics are very variable, making
line scratch detection and restoration a particularly difficult
challenge. For instance, in some cases, the scratch is semi-
transparent, so that some of the original image informa-
tion is still available, whereas in others all the information
is removed. Also, scratches are not necessarily completely
straight and vertical, and their shape may in fact vary from
frame to frame. Finally, although scratches can often be static,
they may also move with any type of motion.

We propose a line scratch detection method which is com-
posed of two algorithms: a “spatial” algorithm which provides
a pixel-precision detection of line scratches in single frames,
and a “temporal” step which rejects false alarms based on
information available in the whole image sequence.

The contributions of this paper are as follows. Firstly,
we propose a pixel-precision line scratch detection algorithm
which is robust to the presence of noise and texture. The
algorithm’s robustness is due to the use of the a contrario
methodology [7], previously used for gradient alignment
detection in images. In particular, we propose a modification to
the methodology which makes the detection robust to texture
and clutter with characteristics that vary throughout the image.
This drastically reduces the number of false alarms. The spatial
algorithm presents good recall (most of the scratches are
detected), with very few true scratches being rejected.

Secondly, we propose a temporal filtering step to remove
false detections left over from the spatial detection. In contrast
to most previous approaches, we reject false detections, rather
than validating true scratches. This is done by using a motion
coherence criterion: we consider that detections which move in
the same manner as the underlying scene are not true scratches.
In particular, we avoid the difficult task of tracking true
scratches, whose temporal behaviour is difficult to determine.
In order to decide on the rejection of a detection, we also
estimate a robust affine scene motion, in contrast to some
previous methods [9], [19] which employ less robust motion
estimation.

The advantages of our method will be demonstrated in
Section V on a series of degraded film sequences and discussed
in comparison with previous work.

The paper is structured as follows. In Section II we briefly
recall some of the previous works on spatial and temporal
line scratch detection. In Section III we present the proposed
method for spatial scratch detection. In Section IV, we intro-
duce the temporal, motion-based filtering whose goal is the
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removal of false alarms. Finally, experimental validations are
presented in Section V. Preliminary versions of our work have
appeared in [20], [21].

II. PRIOR WORK

Line scratch detection can be performed using only spatial
information, on a frame-by-frame basis. Another body of
work, which we shall call temporal approaches, include motion
information to improve the detection. As acknowledged in a
recent review [16], both approaches are complementary and
benefit from one another’s advantages.

Kokaram [15] was the first to introduce a spatial model for
the detection of line scratches. This model is based on the
hypothesis that “side-lobes” are visible on either side of a
line scratch. The horizontal scratch profile is modelled by a
damped sinusoid and Bayesian estimation is used to determine
whether an observed profile corresponds to a scratch or not.
In [5], Bruni et al. provide a physical explanation for this
model; the side-lobes are caused by light diffraction during
the film scanning process. This model is also used in the work
by Bruni et al. [4]. This approach is considered to be among
the most efficient for line scratch detection (see the recent
review in [16]) and we use it for comparison with the proposed
approach. In other methods, such as [2] and [19], scratches
are detected in the wavelet domain. The Hough transform is
used in both [15] and [6] to detect prominent lines. Finally,
Kim et al. use neural networks in [14] to establish scratch
texture characteristics, before applying morphological filtering.

These spatial detection algorithms have several weaknesses.
Firstly, the scratch is represented as a straight, vertical line.
In practice, this hypothesis is often violated, and as a con-
sequence many true scratches may be missed. With such
methods, a slanted or non-straight scratch will be at best
partially detected, which is of little use for restoration since
the scratch will most likely have to be annotated by hand.
Furthermore, experiments show that existing algorithms cope
badly in noisy or textured regions. We deal with this important
problem explicitly, by considering a locally adaptive detection
model, and setting the thresholds accordingly. Finally, line
scratch detection algorithms often represent the scratches as
covering the entire height of a frame. This sort of detection
runs the risk of restoring parts of the image which are not
degraded. We relax several of the hypotheses found in other
papers, such as the existence of side-lobes, allowing our
algorithm to detect a wider variety of scratches.

Temporal approaches may be found in [9], [11]-[13]
and [19]. The goal of these algorithms is to validate the
detections based on hypotheses concerning the temporal nature
of line scratches. Joyeux et al. use the hypothesis that scratches
have sinusoidal horizontal motion, due to the supposition
that they are caused by rotating mechanical parts. The true
scratches are then tracked by integrating this hypothesis into
a Kalman filter. The drawbacks of this approach are the
restrictive nature of the sinusoidal hypothesis, and the lack
of any global motion analysis. In [9], Giilli et al. propose
the local block matching error between frames as a criterion
for distinguishing true scratches from false alarms. If the
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local block matching error around a scratch is high, then
the scratch trajectory is validated as a true scratch. Unfor-
tunately, this criterion is quite sensitive to phenomena such as
flickering or other film degradations. This sensitivity degrades
the robustness of the validation decision. Finally in [19],
Miiller et al. use motion estimation for line scratch filtering.
The algorithm rejects any scratch detections which display
similar motion to that of the scene. The scene motion is
determined by hierarchical block matching in the left and right
neighbourhoods of each scratch, and the scratch’s motion is
determined on the spatial location of the scratch itself. While
the basic principle of this approach (the motion of a scratch
is not coherent with the scene motion) is very reasonable and
will also be included in the present work, the approach from
[19] suffers from clear disadvantages. Firstly, in practice it
is extremely difficult to track thin structures from frame to
frame. Second, block matching is not particularly well-adapted
to such structures. Finally, the global motion is estimated in a
very basic and non-robust manner.

In order to illustrate the benefits of our approach, we shall
compare our work to three of the previous algorithms. For
spatial detection, we shall use the work of Bruni et al. [4],
and for the evaluation of our temporal filtering, we shall use
the work of Giillii et al. [9] and Miiller et al. [19].

We now proceed to describe our spatial line scratch detec-
tion algorithm.

III. SPATIAL LINE SCRATCH DETECTION ALGORITHM

The proposed algorithm consists of a pixel-by-pixel scratch
detection step, followed by the grouping and validation of
these detections into visually significant scratch segments.
Our grouping algorithm uses the a contrario methodology, a
generic and automatic approach to setting detection parame-
ters. Furthermore, we propose a modification of the classical
methodology, relying on a local estimation of background
models, which allows for grouping under spatially varying
conditions of noise and clutter. This variant could potentially
be used for other tasks.

A. Pixel-Wise Detection Criteria

We first identify the potential scratch points by relying on a
pixel-wise detection criterion. Several other such criteria have
been presented in the literature, and are based on operations
such as morphological filters [12], [14] or extrema detection in
a 1D signal. Our criterion is a close variant of the classical test
introduced by Kokaram [15], consisting of a threshold on the
difference between the grey-scale image, and a horizontally
median filtered version of this image. This test basically
detects outliers with respect to a horizontal neighbourhood.
In addition, in [15] the image is vertically subsampled before
the thresholding, to highlight the scratches. Contrary to this
original criterion, we do not take the central pixel into account
when determining the median value. We also use a 3 x 3
Gaussian filter with a standard deviation of one pixel to reduce
the noise in the image, instead of vertical sub-sampling.

A drawback of this criterion is its tendency to detect steep
intensity fronts, rather than just “peaks”. We avoid this by
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Fig. 1.

Line scratch profile and pixel-wise detection criteria.

Fig. 2. Binary detection image from “Laurel and Hardy”. White pixels are
detected and black pixels are not. (a) Original frame. (b) Binary detection
image.

stipulating that the average grey-level values should be similar
on either side of the scratch.

Our final pixel-wise detection criteria may be written in the
following manner. Let I, (x, y) be the Gaussian filtered grey
level image. Let I, (x, y) denote the median value over a local
horizontal neighbourhood of pixel (x,y), and I;(x,y) and
I, (x, y) be the left and right horizontal averages, as defined
below. The two Boolean criteria are:

c1(x,y) 1 Hg(x, y) — In(x, V)| = Smed,
c2(x,y)  i(x,y) — I(x,y)] < Savg- (1)

where, Speq and sqpg are grey-level thresholds. We can there-
fore define a binary image indicating detections as

L if ci(x,y) and ca(x,y)
0 otherwise

Ip(x,y) = [ )
Fig. 1 shows an illustration of our two detection criteria.
For the proposed criteria, we set the width of the median fil-

ter to 5 pixels, and the value of s,,.4 to 3 grey levels. These val-

ues are the same as in [15] and also appeared to us to be good
empirical choices. The left and right averages are each taken
over 3 pixels on either side of the 5 central pixels, and 54, has
been experimentally set to 20 grey levels. These parameters
were used for all the examples in the experimental section.
As may be seen in Fig. 2, such a pixel-wise detection is
bound to produce many false alarms, and also misses some
scratch pixels. Therefore, a further grouping step is needed in
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order to determine the significant scratch segments present in
the pixel-wise scratch detections.

B. Scratch Point Grouping and Validation

Because of false detections due to noise and texture (see
Fig. 2), an extremely robust approach is needed to group the
pixels into segments. One of the most well-known methods
of detecting prominent lines in binary images is the Hough
transform, and this is used by [6] and [15] for the grouping
of scratch detections. Unfortunately, this approach contains
thresholds which need to be tuned from sequence to sequence,
and does not offer a precise spatial localisation of line seg-
ments. In order to group the pixel-wise detections, we turn to a
more sophisticated set of methods known as a contrario meth-
ods, used for alignment detection by Desolneux ef al. in [8].

In a word, the a contrario methodology is a generic way to
detect visual objects in digital images. Detection thresholds are
set in order to control the number of false detections in a white
noise image, or more generally under a background model.
This model usually relies on an independence assumption on
the basic elements to be grouped for the detection. A group
is validated as soon as it is very unlikely that this group has
been generated by the background model. That is, groups are
detected when they are very unlikely under the hypothesis that
basic elements are independent. A comprehensive presentation
of such approaches may be found in [8].

1) A Contrario Line Segment Detection: First of all, we
present the a contrario approach as it is used to detect line
segments in [7]. In this case, the basic elements to be grouped
are pixels, and segments are detected as groups of pixels whose
gradients are perpendicular to a given direction.

Given a line segment made of [ pixels, a variable x; is
associated to each pixel. The variable x; is equal to 1 if the
pixel is aligned with the segment and O otherwise. “Aligned”
pixels are those whose gradient orientation is orthogonal to the
segment orientation, up to some angular precision px radians,
with p € [0,1]. Let s = x1 + --- 4+ x; be the number of
aligned pixels. This is the quantity upon which the detection
of segments is based. Larger values of s are associated to more
meaningful line segments.

Now, the detection of segments require thresholds that
depend on / and p and are therefore non-trivially set. The aim
of the a contrario approach is precisely to set these thresholds.
The detection relies on the probability distribution of s under
some background model.

In the case of line segments as described in [7], the
background model specifies that all gradient orientations are
independent and follow a uniform distribution in [0, 27 ]. This
is the case, for example, in a Gaussian white noise image. As
above, we consider a segment made of / pixels. Let X; be a
random variable associated to the deterministic observation x;.
Under the background model, each X; follows a Bernoulli
distribution of parameter p, so that the random number of
aligned points S; = X1 + --- + X; follows a binomial law:

l

Pr(S; = ko) = (,i)p"(l - p) = B(piko, D). (3)

k=ko
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Segments of length [ having ko aligned pixels are mean-
ingful when B(p;ko,l) is small enough. Intuitively, this
probability is small when the observed segment has a number
of aligned points ky which is too large to occur by chance
(as specified by the background model). In order to threshold
this probability, the total number of tested line segments has
to be taken into account. Indeed, even very improbable events
can occur if the number of tests is high enough. For this, one
considers the number of false alarms (NFA), defined in [7] as:

NFA(la kO) = NtestsB(p§ kOa l)’ (4)

where Niegs is the total number of segments to be tested.
Since segments are defined by a beginning and end point, it is
easily seen that this number may be approximated as Nyesrs =
M?*N?, with M and N the linear dimensions of the image.
A segment is detected if NFA(/, kg) < & for some parameter
¢. In other words, a segment is only meaningful if the number
of false alarms under the background model is less than ¢. It
is shown in [8], that such a definition of meaningful segments
implies that the expected number of detected segments under
the background model is bounded by e¢.

2) Locally Adaptive Grouping for Line Scratch Detection:
We now rely on the same principles to group pixels
that have been detected by the pixel-wise procedure of
Section III-A. We must first define a background model to rep-
resent the binary image obtained with Equation (2). In the case
of orientation grouping (see Section III-B.1), the background
model corresponds to an image where the direction of the
gradients are randomly and uniformly distributed. This crucial
hypothesis accounts for situations in which we do not wish
to detect alignments (homogeneous regions, noisy regions,
isotropic texture etc.). In the present case, such a background
model would not be satisfactory. The difficulty arises because
the pixel-wise detection step produces an amount of false
detections that varies greatly across the image. For example,
strongly textured or cluttered areas yield many more detections
than smooth regions, as seen in Fig. 2. Moreover, the visibility
of scratches depends on their local neighbourhood. Given that
the power of the a contrario methodology hinges on the
background model, we shall now consider our background
model to be a binary image in which labels are independent
and the label probability of each pixel varies spatially. The
computation of this probability will be based on a locally
adaptive estimation.

The label probability for a given pixel is estimated as the
maximum detection density on four squares of equal size
surrounding the pixel. Four squares are used in order to deal
with situations where the pixel is on the border of areas with
different background models. Detection density is defined as
the proportion of pixels, contained within a square, whose
labels equal 1. The size of the sides of these squares is set
to the width of the image, divided by a constant. We set this
constant to 30 for all experiments in this paper.

Under this background model, the probability for a given
segment to have at least ko pixels with a label value of 1 is
no longer given by a binomial distribution. It is easy to see
that it is now given by a Poisson binomial distribution and is
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equal to:
I 1
Pr(Si = ko) => > [[ria-p", 4
k=ko XX =1
2xi=
where pi,..., p; are the local detection probability at each

pixel, the definition of which will be given below. This
expression is quite costly to estimate and an approximation is
therefore needed. In [8], Desolneux et al. suggest the use of
Hoeffding’s inequality [10], which provides an upper bound on
the probability that the sum of some independently distributed
random variables exceeds a certain value. In the present case,
the interest of this approximation is that it still holds when
the variables are independent but not identically distributed
[10]. Therefore, it provides us with an approximation of
Pr(S; > ko), where again S is the number of pixels having a
label value of 1 along a segment of length /. The approxima-
tion is the following:

Pr(S) > ko) < H(l, ko) := e e T HITNE ) (g

where (p) = I7!> p; is the average detection probability
along the segment, r = kTO and (p)l < ko < I. We therefore
define the number of false alarms of a segment as

NFA(l, ko) = Niests H (U, ko). @)

A segment is detected if its NFA is smaller than ¢: such a seg-
ment is said to be “e-meaningful”. Thanks to Inequality 6, the
expected number of detected segments under the background
model is smaller than e.

In all experiments, we use the parameter ¢ = 1,
as in [7]. This choice is reasonable, since & is a bound on
the expected number of false detections under the background
model. However, it may be further tuned to fit the user’s needs,
depending on whether the importance should be put on recall
or precision. Furthermore, as explained in [7], detection results
vary slowly with respect to ¢, making it an easy parameter
to tune, if so desired. The impact of this parameter will be
empirically tested in Section V-D.

Since scratches are roughly vertical, we test all segments
with a maximum deviation from the vertical direction of
410 degrees. We discretise these angles by 0.5 degrees. The
Niests parameter is therefore set to M2N®, where © is the
number of angles tested. With the aforementioned parameters,
we have © = 40.

3) Maximality: With the previous detection procedure,
many redundant segments are detected. This is because a very
meaningful segment often contains, and is contained by other
segments which are e-meaningful. In order to keep only the
best detection for such cases, we use the notion of maximality,
as introduced in [7]. A segment is maximal meaningful if it
neither contains, nor is contained, by a segment which is more
meaningful (that is, a segment with a smaller NFA). Therefore,
we only accept segments which possess this property.

When using the usual NFA definition, Equation (4), it may
be shown [8] that maximal meaningful segments start with
a detected pixel preceded by an undetected pixel, and end
similarly. Knowing this, the number of segments tested, and
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therefore the computational cost, is greatly reduced. This result
relies on the properties of the binomial law.

Now, our approach relies on the use of the Hoeffding
approximation for the NFA definition, Equation (6). A natural
question is whether maximal segments according to this new
definition have the same property. In the Appendix, it is shown
that this is indeed the case. Maximality of segments may
therefore be tested in the same way as with the usual definition,
which also yields the same crucial computational acceleration
of the detection.

4) Exclusion Principle: Since scratches have a width of
several pixels, different segments may correspond to the same
scratch. Since for restoration purposes we would like as
precise a representation of the scratches as possible, we use an
exclusion principle as defined in [8], which states that a pixel
may belong to one scratch only. If a pixel s is contained by
several segments, then the most meaningful segment retains s.
All other segments which contain s have this pixel removed.
The NFAs of the modified segments are then recalculated, and
those that are no longer e-meaningful are thrown away. This
principle can be applied not only to pixels which belong to
several segments, but also to those which are at a distance
of 7, from more than one segment. In our experiments, we
set 7, to three pixels. The entire spatial detection algorithm is
represented in Fig. 3.

5) Algorithm Speed-Up: In order to speed-up the procedure,
we apply a pre-selection of scratches candidates. For this, we
apply a very permissive Hough transform to /p, and only
analyse the lines which correspond to local maxima. Tests
show that no or very few real scratches are lost by this
pre-processing. Note that this sort of speed-up has been used
previously by other authors in [6], [15]. In fact, a parallel may
be drawn with the work of Kokaram [15] in that the latter con-
sists of a permissive Hough transform, followed by a statistical
parameter estimation method. However, there are two main
differences between our work and the latter approach. Firstly,
our statistical (a contrario) step does not require an explicit
scratch profile model. Secondly, our approach looks for the
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best sub-segments in a line, rather than validating the whole
line. For these reasons, our approach appears more powerful
and robust than that of [15].

In the next section, we shall explore the temporal aspects
of line scratch detection and present our temporal filtering
algorithm.

IV. TEMPORAL FILTERING ALGORITHM

Although the previous algorithm detects line scratches with
good spatial precision and is robust to noise and texture, it does
not deal with the problem of false alarms due to thin vertical
structures that are part of the captured scene. On a frame-by-
frame basis, these closely resemble line scratches. In some
situations, it is practically impossible to differentiate the two
without prior knowledge concerning the scene structure.

Unfortunately this sort of knowledge is difficult to obtain
and use. One other way to distinguish between true and false
scratches is to use temporal information contained in the image
sequence. Since scratches are caused by physical damage to
the actual film, their motion is completely independent of
that of the scene. Therefore, any detections displaying motion
which is coherent with the scene should correspond to false
detections.

Consequently, we reject any scratch detections having a
trajectory which conforms to the dominant scene motion. We
shall refer to this criterion as the motion coherence criterion.

This criterion does not deal with scratches which move
with the scene, or are completely still in a static scene.
However, such situations are impossible to resolve without
prior knowledge on the nature of scratches.

A. Motion Coherence

The major challenge when using motion information for
scratch filtering is determining the trajectories of true and/or
false detections. This is a very difficult task in the case of true
scratches due to the generic nature of the trajectories of line
scratches. Instead, we shall try to determine the trajectories of
false detections.
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(b)

Fig. 4.
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(d)

Different x—¢ binary maps, for the “Afgrunden 2” sequence. The horizontal axis represents the average horizontal position of a scratch, and the

vertical axis represents the frame number ¢ which the scratch belongs to. Each white point corresponds to a detected scratch segment in a given frame. The
original video may be viewed at: http://www.enst.fr/~gousseau/scratches. (a) Original detections (/7). (b) Realigned detections (I’T). (c) Detected trajectories.

In red false alarms, in green true scratches. (d) Final filtered detections.

In all that follows, we suppose that a scratch detector
provides the initial detections. In our work, we naturally use
the detection scheme presented in Section III, but it should be
noted that it is possible to use any spatial detection scheme
in the literature, although the results may be worse if pixel-
precision detections are not given.

For temporal filtering purposes, we shall represent a scratch
detection by its average column position and the index of
the frame in which it is found. Let I7 be the x—¢ binary
detection map of the detected scratches. For an example of this
representation, see Fig. 4 (a). Let S represent an initial scratch
detection. We will refer to this as a segment. Let x(S) and y(S)
be the average column and row indices of the segment, and
t(S) denote the frame in which the segment was detected.

The first step of the proposed temporal filtering is to deter-
mine the trajectories of the false detections, a non-trivial task
given the irregularity of the detection map. Instead of deter-
mining the trajectories in Ir, we will create another binary
map in which the positions of the segments are realigned
with respect to an estimated global scene motion. Let us
call this new detection map . Before explicitly defining
the new detection map, let us observe that the positions of
false detections will appear as straight vertical lines, due to
the motion coherence hypothesis. For an example of I/, see
Fig. 4(b). The problem of detecting straight, vertical lines in
an image is much more constrained than following generic
trajectories, and therefore easier to solve.

In order to realign the segments, we need to obtain an
estimation of the scene’s global motion. To do this, we use
the algorithm from Odobez et al. [22] to estimate an affine
approximation of the dominant motion in a robust manner. At a
pixel position ¢ = (x4, y4), the motion vector (#(g), v(g)) is
expressed as:

[M(Q) = c1+aixg + a2y )

v(g) = c2 +asxg +asy,’

where ¢; and ¢ are the parameters describing the constant
motion components, and aj...as4 are the parameters associated
with the spatially varying components of the motion.

Let (x,y) be a pixel in a frame ¢ and (x’,y’) be the
corresponding position in frame ¢ 4+ 1. We have the following
relationship:

x/ al+1 a ¢ X B X
YVil=| @3 at+le|y| =AY 9
1 0 0 1 1 1

This motion estimation is carried out between each consec-
utive pair of frames throughout the image sequence.

Let x and y represent the spatial coordinates of a pixel in
frame ¢. It is possible to find its corresponding coordinates,
(x",y"), in a frame r with the following relationship:

X _ X
Yo =4y | (10)
1 1
with ~ N ~ N
Ar,t = At—l,tAr—Z,r—l Ar,r+l~ (11)

This provides us with the necessary tools with which to
realign the segments. The binary detection map I} resulting
from this realignment is defined as:

1if 35 | ¥(S) =x, t(S) =t

0 otherwise (12)

Ip(x, 1) = [
where x"(S) is the average column index of the segment
warped to the reference frame. It is important to note that
it is the original detection segments which are realigned
with respect to the global motion, and not the detection
map Ir itself. This is due to the fact that several segments
may correspond to the same spatio-temporal point in /7. An
example of a realigned detection map may be seen in Fig. 4(b).

Once the segments have been realigned, we need to detect
vertical line segments in I/., and thereby determine the tra-
jectories of the false detections. Interestingly, the a contrario
step of the algorithm presented in Section III may be used
for this task, since we wish to detect line segments in a
new binary image (the detection map). The detection also
guarantees a precise and unique description of the trajectories,
using the maximality and exclusion principles defined in
Section III-B. The maximality principle implies that trajec-
tories with temporal holes may be grouped together, and also
that the beginning and end points of the trajectories can be
detected very robustly. By using the exclusion principle, only
the best representation within a certain neighbourhood will
be chosen, which avoids having to make difficult decisions if
trajectories are too close to each other. A trajectory detected
in this manner will simply be a list of x-r positions in ;.

In terms of implementation details, we allow a maximum
slope of 5 degrees in comparison to the vertical when detect-
ing the trajectories. This corresponds, roughly, to allowing
a trajectory to deviate one pixel every eleven frames with
respect to the underlying scene motion. Before detecting the
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trajectories, we perform a horizontal morphological dilation
of one pixel on I} (x, ). This is necessary, since the spatio-
temporal trajectories shown in Fig. 4(c) are discretised, and
therefore the trajectories may not be precisely detected without
dilation.

We now define a trajectory set T as the set of segments
whose x-¢ positions are within a horizontal distance of one
pixel of the x-t positions of a given detected trajectory.

Up to this point in the paper, it has been assumed that all the
trajectories detected as vertical lines in 7. correspond to false
detections. Unfortunately, true scratches may be coherent with
the global scene motion when the scene is static. Therefore,
scratches may be totally or partially represented as straight ver-
tical lines in /7. Such a situation may be seen in Fig. 4(c). Two
short trajectories are present (in green) which correspond to
the partial trajectories of true scratches. Since these scratches
happen to be static, their trajectories are detected as vertical
segments in I} when the scene does not move, but naturally
are lost when the scene moves (they become significantly
slanted after that point). The scratches should not be rejected
as there is no significant motion of the scene over the time
interval during which they are detected.

We determine whether the scene has moved sufficiently
during a trajectory’s timespan by inspecting the maximum
horizontal motion of the scene. For this purpose, it is sufficient
to look at the original positions of the segments in the
trajectory set. Since these have been identified as conforming
to the underlying scene motion, their original positions reflect
this motion. This obviously holds true in the case of a static
scratch and no scene motion. Therefore, we reject a trajectory
set if there exist two segments Q and R belonging to this set
which verify the following inequality:

1X(Q) — X(R)| = 7,

where 7, is a motion threshold. This corresponds to the
absolute distance that the scene has moved between the frames
t(Q) and t(R). It is important to note that this corresponds to
the scene motion locally in the area of the scratches. This can
be crucial for situations such as zooming, in which case the
scene presents different motion at different positions in the
image. In all of our evaluations, we set the parameter 7, to
10 pixels.

13)

B. Further Filtering Criteria

Apart from motion coherence, there are other criteria which
are reasonable to use for scratch filtering, and which are
much more easily implemented than the motion coherence.
One example, which we have used in our evaluations, is
a scene cut criterion. This stipulates that an entire tra-
jectory set is rejected if its beginning and ending frame
indices are within a temporal distance 7. from a scene
cut. In our experiments, we set 7; to 5 pixels and 7, to
4 frames. We used a simple Edge Change Ratio based
scene cut detection algorithm (see [18]) for the detection
of the scene cuts, in which the edge detection was done
using the Sobel operator. This can obviously be replaced by
other scene cut detection algorithms, if necessary. This is a
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minor step of the proposed procedure. Indeed, in all of our
experiments, it was used only for the “Laurel and Hardy”
sequence.

V. RESULTS

In this section, we present quantitative results of our algo-
rithm. Its performance is compared with other approaches with
respect to three criteria: recall, precision and the F'1-score.
Table I shows this quantitative evaluation. Recall is defined
as the number of true detections divided by the total number
of true scratches present in an image. Precision is defined as
the number of true detections divided by the total number of
detections. Basically, recall determines what percentage of the
line scratches are detected, and precision shows what percent-
age of our detections were correct detections. The F'1-score is
a reflection of both criteria, and defined as 2%.
We evaluate both the spatial detection step and the tem-
poral filtering algorithm. These two contributions are com-
pared with three other algorithms: the spatial method of
Bruni et al. [4] and the temporal algorithms of Giillii et al.
[9], and Miiller ef al. [19]. While another more recent spatial
method [14] exists, it is a supervised algorithm (contrary to
Bruni’s and ours, which are automatic) and contains several
parameters which are not given in the paper, such as the
number of nodes in the input and hidden layers of the neural
network, making implementation impossible without testing a
series of architectures.

In our experiments, all the parameters are set to the values
given throughout the paper. In particular, the detection thresh-
old ¢ is set to 1, the exclusion parameter 7, is set to three
pixels, and the motion threshold 7,, to 10 pixels. Note that
we impose a minimum scratch length of one tenth of the
image height for all of our spatial detections. The parameters
for Bruni’s algorithm are those given in [3] and [4], apart
for the scratch colour parameter (black or white), which
was set manually for each sequence. Three parameters are
required by Giilli’s algorithm. As it relies on Bruni’s algorithm
for the initial spatial detection step, the scratch colour must
be specified (black or white). The second parameter is a
maximum search distance for the block matching algorithm.
For this, we chose a maximum distance of 7 pixels either
side, which corresponds to the maximum motion we expect
in the sequence. Finally, we need a maximum mean absolute
difference (MAD) threshold which identifies the presence
of a scratch. We chose 15 grey levels for this threshold.
These last two thresholds are not specified in [9]. Finally,
Miiller et al. [19], propose both a spatial approach and a
temporal filtering step. Unfortunately, their spatial detection
algorithm is not fully detailed, and cannot be reimplemented.
However, we can compare the temporal step of the present
approach with the temporal step from [19], which has some
similarities with ours. Therefore, we use our spatial detections
as inputs and filter these detections with the temporal part of
the approach from [19]. This algorithm requires the setting of
a neighbourhood size on the left and right hand sides of the
scratch. This parameter is not specified in [19], and we chose
a horizontal neighbourhood of 5 pixels. The other necessary
thresholds are given in [19].
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F1 value as a function of the background model estimation box size
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model estimation. The box size is a fraction of the image dimension for each sequence.
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Variation of the performance (f1-score) of the spatial detection algorithm with respect to the values of ¢ and the box size used for the background

Evaluation Algorithm Fllm
Knight  Sitdown Star California ~ Laurel-Hardy =~ Choses Vie  Afgrunden 1 Afgrunden 2 Keldjian Gate
Bruni 100.00 80.93 95.00 82.07 41.87 43.43 75.11 59.43 12.63 49.81
Giillii 100.00 80.93 95.00 35.56 38.74 29.99 68.75 52.98 11.48 31.29
Recall Miiller 09.57 17.26 41.20 54.07 38.65 16.31 50.65 42.34 14.06 47.12
Spatial 79.34 73.72 82.21 81.10 59.35 64.88 86.66 94.01 71.35 89.03
Temporal 79.34 72.63 79.68 80.82 59.26 60.11 86.39 93.71 77.16 89.03
Bruni 29.54 56.47 56.87 10.79 08.84 25.06 09.35 07.85 07.11 02.45
Pixel-wise evaluation 23.93 2854 13.67 06.62 07.88 05.67 03.20 01.85 01.75 00.48
Precision Giillii 29.54 56.47 57.32 11.91 12.01 25.45 10.27 07.43 05.98 02.27
Pixel-wise evaluation 23.93 28.54 13.78 06.67 10.37 03.47 03.56 01.74 01.47 00.44
Miiller 79.86 51.62 46.57 81.22 31.89 75.48 48.17 35.28 29.08 03.06
Spatial 71.70 72.07 53.15 79.60 38.31 67.80 45.85 28.01 17.43 03.32
Temporal 73.97 71.85 56.25 79.89 45.29 69.19 67.76 50.92 38.06 11.93
Bruni 45.61 66.52 71.15 19.08 14.60 31.78 16.62 13.86 09.10 04.68
Giillii 45.61 66.52 71.50 17.84 18.33 27.53 17.86 13.03 07.86 04.23
F'1-score Miiller 17.09 25.87 43.72 64.92 34.95 26.82 49.38 38.49 18.96 05.74
Spatial 75.33 72.88 64.56 80.34 46.56 66.31 59.97 43.16 28.45 06.40
Temporal 76.56 72.24 65.95 80.35 51.34 64.33 75.94 65.99 50.98 21.04
Execution time (s) Brupi 0.03 0.05 0.08 0.03 0.03 0.12 0.08 0.08 0.06 0.06
Spatial 0.49 106.22 98.67 17.13 1.85 2.52 5.33 4.65 2.24 12.63

We are presented with a difficulty when comparing our
algorithm, which produces a precise description of the line
scratches, with methods that suppose that line scratches cover
the entire height of the image. Our approach has an advan-
tage in terms of precision, whereas the second type has an
advantage with respect to recall. In terms of recall, we shall
evaluate all the algorithms on a pixel-wise basis, in other
words the number of annotated scratch pixels detected divided
by the total number of scratch pixels. For the algorithms of
Bruni et al. and Giillii er al. we shall consider that all the
pixels in a detected column are detected. On the other hand, a
fair and meaningful comparison of precision is more difficult
to achieve. Naturally, we should evaluate our algorithm and
that of Miiller er al. on a pixel-wise basis, that is to say
the number of annotated pixels detected divided by the total
number of pixels detected. However, if we do this for the
algorithms in [4] and [9], we shall bias the precision of
their algorithms, especially when short scratches are present.
Therefore, for these algorithms, we shall consider that a
detection is “correct” if it touches at least one annotated pixel.
This obviously confers a considerable advantage on Bruni’s

and Giillii’s algorithms, but it would be unfair to evaluate them
otherwise. For comparison, we have also included the pixel-
wise precision evaluation for Bruni’s and Giillii’s algorithms
in Table I, which are written in smaller font below the main
evaluation. For all of these evaluations, we allow a spatial
detection error of 2 pixels.

Tests were carried out on ten film sequences of varying char-
acteristics. The first three (“Knight”, “Sitdown” and “Star”) are
commonly found in the line scratch literature, and are found in
Kokaram’s book [17]. “California” and “Laurel and Hardy”,
contain straight, vertical scratches, similar to the first three
examples. “Les Choses de la Vie” displays scratches which
are more difficult to detect (not completely straight, slanted
and/or faint). While the first six sequences are useful for
the evaluation of our spatial line scratch detection algorithm,
the temporal filtering step is of little use in these cases,
since the sequences are either very short, or contain no false
alarms which may be rejected using temporal aspects. The
last four sequences are longer and illustrate the improve-
ment on precision we are able to obtain by using temporal
filtering.
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Fig. 6.

Spatial scratch detections. From top to bottom: “Knight,” “Sitdown,” “Star” and “Les Choses de la Vie.” Correct detections are shown in green,

false alarms in red. Please note that we enforce a minimum scratch height of one tenth of the height of the image for our algorithm. (a) Original frame.

(b) Detection from [4]. (c) Our spatial detection.

Fig. 6 shows some examples of our spatial detection results,
compared with those of the algorithm presented in [3]. Table I
presents the results of our two algorithms, in comparison with
the results of the algorithms of Bruni, Giillii and Miiller. We
have also shown the average execution times per frame of our
spatial algorithm with that of Bruni et al., for each sequence.
The execution times of the temporal algorithms were not
compared since they do not constitute a significant bottleneck
of the detection process. The computer architecture is an
Intel Core i5 CPU (2.67 GHz), and the code was written in
Matlab, with mex functions for certain parts of the algorithm.

Our execution times are slower than those of Bruni et al., due
to the fact that we test many segments in the image. However,
it is clearly possible in the present case to use acceleration
techniques as found in [23].

The annotation of the sequences was done by manually
noting the beginning and end points of each scratch seg-
ment. In the case of scratches which were not completely
straight, several consecutive segments were annotated. We
performed this annotation task because, to the best of our
knowledge, no standard database exists for scratch detec-
tion. The complete annotated sequences, as well as the
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Fig. 7.
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Detections from a frame of “Keldjian” with false alarms due to thin vertical objects removed with temporal filtering. Correct detections are shown

in green, false alarms in red. (a) Original frame. (b) Spatial detections. (c) Detections after temporal filtering with the proposed method.

detection results can be downloaded from the following
address: http://www.enst.fr/~gousseau/scratches.

A. Recall

In the first four sequences, Bruni’s and Giillii’s algorithms
produce better recall than ours. This is due to the fact that our
evaluation gives the benefit of the doubt to these algorithms
by considering that all of the pixels in a detected column
are detected. Our spatial algorithm, on the other hand, must
determine the beginning and end points of the scratch with
high spatial precision. In the “Knight” sequence, for example,
we are also able detect the correct column indices of the
scratches 100 percent of the time, but sometimes miss certain
parts of a scratch.

In the remaining sequences, we see our spatial algorithm’s
strong points: it is able to detect scratches with varying
characteristics. This may be explained by our algorithm’s
ability to detect and represent slanted and disjointed scratches
as a collection of segments with varying length and angle. It is
also able to detect faintly contrasted scratches, even in highly
textured areas (as in the extract from “Les Choses de la Vie”
example). Contrary to the other tested methods, our recall is
high for all sequences.

It can be seen that the algorithm of Miiller et al. produces
relatively poor recall on all of the sequences. This is because
their corresponding rejection criterion is often verified by true
scratches. Indeed, due to the lack of an efficient tracking
scheme, a large number or correct detections are rejected
as long as the local motion is large enough (more than
0.2 pixels per frame, in absolute vale). Furthermore, in practice
many “temporal holes” are observed in the resulting scratch
detections. This means that a restoration process using these
detections is likely to produce flickering scratches, which may
be a very undesirable result.

It should be noted that algorithms which filter the detections
according to a temporal criterion (ours as well as those of
Giillii et al. and Miiller et al.) can only decrease recall (since
no new detections are produced). Therefore, an important
property of the temporal filtering stage is that it should not
deteriorate recall. It may be observed in Table I that our
algorithm induces very little loss of recall, with a maximum
loss of 4.77 percent in the “Les Choses de la Vie” sequence.

Miiller’s algorithm, on the other hand, decreases recall by a
maximum of 69.77 percent (“Knight”).

B. Precision

As stated earlier, our evaluation procedure confers a strong
advantage on Bruni’s and Giillii’s algorithms in terms of
precision. In spite of this advantage, our spatial algorithm
is able to outperform these algorithms in nine out of ten of
the sequences. This performance is due to the a contrario
grouping and validation process, which limits the number of
false detections in noisy situations as well as in textured areas.

As previously mentioned, the first six sequences do not
present any interesting situations in terms of temporal filtering,
which explains why the precision is practically the same
for our spatial and temporal algorithms for these sequences.
In the last four sequences, however, our temporal algorithm
significantly improves the precision of our spatial algorithm,
with a maximum increase of 22.91 percent (“Afgrunden 2”).
In Fig. 7, a visual example of the benefits of the temporal
filtering step may be seen. The temporal filtering step increases
precision in all of the sequences apart from “Sitdown”, which
decreases by 0.22 percent only.

Miiller’s algorithm presents good precision on most of the
videos. In three cases, this algorithm outperforms our temporal
approach. Unfortunately, this precision comes with very low
recall, which is of little use for restoration purposes. This is
reflected in the F'1-scores, which are generally quite low.

Giillii’s algorithm fails to significantly increase precision
because the MAD threshold introduced in [9] is not robust
enough. It is sufficient that one MAD value be quite high for
an entire trajectory to be validated as a true scratch. In practice,
this happens often even though we allow a very tolerant MAD
threshold. Conversely, our algorithm robustly determines a
complete trajectory, so that a better-informed decision can be
made.

C. F1-Score

The F1-score is defined as the harmonic mean of the recall
and precision:

Fen recall % preci.si.on (14)
recall + precision
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Fig. 8.

An illustration of our spatial method’s robustness to texture and noise on two highly textured test images. In the first example, our locally adaptive

method produces only one false detection, whereas with a global background model estimation, the algorithm fails. The second example illustrates this
principle on an image with real scratches. (a) Original frame. (b) Binary detection. (c) A contrario detection with a global background model estimation.
(d) A contrario detection with a local background model estimation. (e) Original frame. (f) Binary detection image. (g) A contrario detection with a global
background model estimation. (h) A contrario detection with a local background model estimation.

This score illustrates the performances of the methods more
clearly than either the recall or precision alone. The results
show that our spatial algorithm retains a good F1-score for
all of the sequences, and outperforms Bruni’s, Giilli’s and
Miiller’s algorithms in nine out of ten sequences. Furthermore,
our temporal filtering step improves the F'1-score of our spatial
algorithm in all of the sequences apart from “Sitdown” where
it decreases by 0.64 percent, and “Les Choses de la Vie” where
it decreases by two percent. This is an important point, since
it implies that this temporal filtering step may be used on any
type of sequence (short, long, with or without motion) with
practically no deterioration in the resulting detection.

To resume, both the spatial and temporal algorithms intro-
duced in this paper provide a significant improvement on
previous methods. The same set of parameters was used for
all the sequences. We do not have to specify to our algorithm
whether black or white scratches are being detected, which is
a significant advantage over other methods. Furthermore, our
algorithm produces pixel-precision detections, which can be
crucial for avoiding restoring non-degraded parts of images.

D. Algorithm Parameters

In this section, we will have a short discussion about
several of the more important parameters in our algorithm.
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Fig. 9. A high definition scratched film (1074 x 1920). As in all other experiments, a minimum scratch length of one tenth of the image height was imposed.
Correct detections are shown in green, false alarms in red. (a) Original frame. (b) Detection from [4]. (c) Our spatial detection.

Although the same parameters were used for all of our exper-
iments, we would like to illustrate the evolution of the algo-
rithm’s performance with respect to certain key parameters.
In particular, we inspect the influence of the box size used for
local estimation and the parameter ¢. These two parameters
are of great importance, since they determine our background
model and line scratch detection threshold. The results of this
analysis may be seen in Fig. 5.

We can see that the F'1 score is relatively stable around
¢ = 1, which is to be expected given the log-dependence
of the NFA on ¢ (see [7]). It may be seen that in some
sequences, the maximum value of the F'1 score is not centred
on ¢ = 1. Howeyver, this does not mean that we have chosen the
incorrect value of ¢. Since the spatial algorithm is incapable
of distinguishing between true scratches and thin vertical
structures, lowering ¢ does not imply an increase of the F1
score; we need the temporal filtering step for this. We may
also see that the F'1 score is stable with respect to the box size
used for empirically estimating the local background model.
We have shown of range of values from % to % of the image
dimension. This means that it is a reasonable choice to make
this parameter dependant on the image size.

The thresholds on our scratch model (width of the median
filter, the parameters $;,e¢ and sqp¢) were empirically deter-
mined for the scratches which were found in our sequences.
However, they may need to be changed for higher resolution
images, in which the scratch may cover more pixels.

Another parameter which may be discussed is t,,, the
motion threshold which flags a trajectory as being a series of
false detections. The most important aspect of this threshold is
that it should not be set too low otherwise all the true scratches
in still frames will become flagged as false alarms; we need
to be very sure that the scene has moved significantly before
taking any action. Ideally, we would like to determine the
maximum error of the global motion estimator of [22] and
set 7, to a value greater than this. However, this may be too
close an analysis for such a task. The parameter was set to a
conservative value (10 pixels) and was sufficient to deal with
all the sequences in our experiments.

E. Robustness to Noise and Texture

One of the major assets of a contrario detection procedures
is their ability to control the number of false detections in noisy
or cluttered images. Often, such methods rely on statistics that
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are learned globally from the considered image. In our case,
we found it necessary to estimate such statistics locally, in
order to be resistant to textured regions.

In this section, we illustrate the ability of the approach to
control the number of false detections and the importance of
performing local statistical evaluation.

This can be observed in the images in Fig. 8. Due to
the highly textured nature of the images, false detections are
produced when we try to use our algorithm with no local
estimation. When we introduce local estimation, detections are
limited in areas with high detection density, which illustrates
one of the strong points of our algorithm. In the image of the
monkey, we produce one false alarm with local estimation,
which is coherent with the chosen value for ¢.

F. Scratch Detection in High Definition Images

In Fig. 9, an example of a high definition image containing
scratches is given. This example is interesting since, as was
mentioned at the beginning of the paper, the restoration of
films is being done for formats of high resolution. It can be
seen that the algorithm from [3] is unable to detect the faint,
white scratches present on the right hand side of the image,
whereas the proposed method locates them with a high degree
of spatial precision. In the example in Fig. 9, it may be seen
that certain false alarms are present which are not due to
vertical scene structures. This is likely due to the preliminary
Gaussian filtering stage of our spatial detection algorithm. This
filtering may not be sufficient for dealing with noise, since the
standard deviation is fixed. Setting this parameter adaptively
could help performance.

VI. FUTURE WORK

There are several aspects of the current work which could
be developed further. Firstly, the spatially varying a contrario
model presented here could potentially be applied to other
detection problems, such as the detection of parametric shapes
in preprocessed images. Secondly, the global motion model
estimates one affine motion only. This is obviously a rela-
tively simple model, and several motions could potentially
be estimated to allow for more complex situations. However,
the estimation of more complex motions would decrease the
robustness of the temporal filtering step. This decrease in
robustness must be compared with the robustness of actually
tracking the true scratches (as in [9]), and a compromise or a
mixture of these methods could therefore be of great interest.
Finally, although we have carried out quantitative testing of
our detection procedure, the true evaluation of defect detection
lies in the final restored sequence. In future, therefore, we
could also evaluate the detection qualitatively by inspecting
the resulting restoration.

VII. CONCLUSION

In this paper we have presented a precise spatial line
scratch detection algorithm and a temporal filtering step which
eliminates false alarms. The spatial algorithm uses an a
contrario validation step to determine if the detected segments
are visually significant or not. Our algorithm provides a
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precise description of the detected scratches, which is not
given by any other fully automatic algorithm. Furthermore,
it has similar performance to the state-of-the-art in simple
cases, and outperforms the latter considerably in more difficult
situations. The temporal filtering step eliminates false alarms
which are caused by thin vertical structures belonging to the
scene, by identifying scratch detections which are coherent
with the scene’s motion or which stop at a scene cut. Our
experiments and evaluations were carried out without any
sequence-dependant tuning, which illustrates the robustness of
the algorithms.

APPENDIX
MAXIMALITY PROPERTY AND HOEFFDING’ S
APPROXIMATION

In this section, we prove two properties of the meaning-
ful segments defined using the NFA relying on Hoeffding’s
approximation, Formula (7). These properties are necessary
for speeding up the search for maximal segments, as explained
in Section III-B.3. These properties are as follows:

« If one appends a 0 (non-detected pixel) to the segment,

its meaningfulness decreases (its NFA increases)

o If one appends a 1 (detected pixel) to the segment, its

meaningfulness increases (its NFA decreases)

Using Formula (7), these properties reduce to:

H[l,kl < H[l +1,k], (15)
and
H[l,k]> H[l+ 1,k +1], (16)
where H is defined as
k [ —k
H(l, k) :=exp(—klog— — (I —k)log————), (17)
Ip I(1—p)

where Ip < k < [. Since the exponential function is strictly
increasing, we need to study the following function:

fk, )= —klog% —( —k)log (18)

I —k
I(1—p)
Now, let us prove Equations (15) and (16).
For Equation (15) to be true, we need the partial derivative
of f with respect to [ to be positive:
of(k,) 1 [ 0 [—k

—k
(19)

We have the partial result:
0 i I—k k
— 1o = .
ol Bla—p) 10—k

Therefore,
of(k,1 k I —k k
f(,):__logi_(l_k)i
al I I(1—p) Il —k)
o l—1Ip
8Tk

We know that | —Ip > [ — k, because Ip < k (the condition
for the Hoeffding approximation to hold true). Therefore,
the right hand term of Equation (19) is strictly positive, so
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that f(k,[) increases strictly with /. This means that when
a 0 is appended to a segment, its meaningfulness decreases
(since its probability increases). This shows the first inequality
(Equation (15)) in the case of Hoeffding’s approximation.

Now we prove Equation (16). This case is slightly more
complicated, since two variables (k and /) vary at the same
time. However, since we add the same quantity to both
these variables, it is enough to study the partial derivative of
f(k 41,1+ t) with respect to .

We have
k+t —k
flk+t, l+t)y=—(k+t)log ————(—k)log ————,
I+0p I+ —p)
so that:
oftk+t,1+t k+t 0 k+t
OfkALIHD o0 KL Do KL
ot (U+0vp ot (+tp
0 [ —k
—(—k)—log———.
ot I+ —p)
Now
0 k+t I —k
— log = )
ot I+np *k+0U+1)
and
) SR
ot g(l+t)(1—p)_ [+t
so that
of(k+t,1+1t k+1t l—k
M:_Ogi_(k_’_t)i
ot (U+0vp k+0)d+1)
1
[ —k)—
+ )l+t
Ip+tp
gik .
+t

This quantity is strictly negative, since Ip < k and tp < t.
Therefore, f(k,l) decreases when k and [/ increase from
the same quantity. Therefore, we have in particular, that
H({+ 1,k + 1) < H(l, k), meaning that meaningfulness
increases if a 1 is appended to a segment. Thus, the second
inequality (Equation 16) holds true.

We have proven the two necessary properties for a segment
to be maximal meaningful in the case of Hoeffding’s approx-
imation, thus we can safely prune the search for maximal
meaningful segments as explained in Section III-B.3.
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