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Interpolation of Digital Elevation Models Using
AMLE and Related Methods

Andrés Almansa, Frédeéric Cao, Yann Gousseau, and Bernard Rougé

Abstract—interpolation of digital elevation models becomes whose level is known are in general chosen such that they are
necessary in many situations, for instance, when constructing representative of the real elevation. Therefore, the elevation be-
i;‘g?y)fro(;r figmogirsggﬁfy (afggbéisig'b gogipsog?'g'tgegzggg{c tween two adjacent lines always lies between the corresponding
views,,which often leaves large areas where point correspondenceé_evels' MoreO\_/er,_ '_t is not likely that OSC_'I_Iat'OnS betv_veen both
cannot be found reliably. lines can be significant, else some additional level lines would

The absolutely minimizing Lipschitz extension (AMLE) model have also been represented. This implies that a reasonable inter-
is singled out as the simplest interpolation method satisfying a set polation method must not artificially create some oscillations
of natural requirements. In particular, a maximum principle is  patween given level curves otherwise, it may create some arbi-

proven, which guarantees not to introduce unnatural oscillations t inf i hich t be inf df the data. In th
which is a major problem with many classical methods. We then rary information which cannot be intérred irom the data. in the

discuss the links between the AMLE and other existing methods. S€cond case, correlation is commonly used to find point corre-
In particular, we show its relation with geodesic distance transfor- spondences. In this case, one of the major reasons why matching
mation. We also relate the AMLE to the thin-plate method, thatcan fajls is that the variations of the image are not high enough in

be obtained by a prolongation of the axiomatic arguments leading me reaion. which impli hat th rr nding elevation i
to the AMLE, and addresses the major disadvantage of the AMLE ﬁlc()eI;toegeoréguI;r plies that the corresponding elevation is

model, namely its inability to interpolate slopes as it does for values. 3 . L .
Nevertheless, in order to interpolate slopes, we have to give up the An interpolation model called absolutely minimizing Lip-
maximum principle and authorize the appearance of oscillations. schitz extension (AMLE) was introduced in [2] as the most
We also discuss the possible link between the AMLE and Kriging  simple interpolant satisfying a set of natural axioms. We think
methods that are the most widely used in the geoscience literature. that these axioms are also very well-suited for the interpolation
We end by numerical comparison between the different methods. L . . . .

of digital elevation models. We recall these axioms in Section II.

Index Terms—Digital elevation models, image interpolation, A very nice property of the AMLE, that can be mathematically

partial differential equations. proved, is that it does not create any artifacts nor oscillations.
This model is a real interpolation model that exactly fits the
l. INTRODUCTION datal It can interpolate values on isolated curves and even iso-

. . lated points (for instance mountain or hill top).
N THIS PAPER, we study the problem of interpolating two- We show in Section Il how the AMLE can be related to other

dimensional (2-D) data. This is motlyated by several pfo_‘?ﬁ thods already used for DEM interpolation. First, it can be
lems that may be encountered when trying to reconstruct digif wed as the stationary state of iterated geodesic distance trans-
elevation models formations (see Section IlI-A). Second, it may happen that the
* Forinstance, for maps which are not yet available in digit@levation is known not only on isolated points but on a domain
form, the elevation is only known on a limited number ognq we want to reconstruct the elevation outside this set. In this
level curves, and we then have to interpolate in order {se we can take advantage of the value on the boundary of
retrieve a three-dimensional (3-D) model of elevation. the domain but also of some higher order information such as
* One way to construct elevation models is to find points Ghe slope of the data. The AMLE cannot handle more than ze-
correspondence between two images from a stereo Visigjih order information and neither do geodesic distance inter-
pair of a scene. Most existing matching algorithms fail 0po|ators. The thin-plate model discussed in Section I1I-B can
some parts of the image and no elevation can be retrieigd viewed as an attempt to generalize the axiomatic approach
[1]. Interpolation is then also necessary. leading to the AMLE. It allows to interpolate values as well as
In both cases, we may assume that the elevation is regular in gfradient fields on the boundary of the interpolation domain, but
areas where it ig priori unknown. In the first case, the linesit does not guarantee to avoid oscillations as the AMLE model
does. Kriging methods (see Section I1I-C) are also related to the
Manuscript received November 29, 2000; revised August 28, 2001. thin-plate model in some cases, and we compare the AMLE, the
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II. AMILE MODEL Before we give the general form of an interpolation operator

In this section, we introduce the AMLE model. It has beenii satisfying these properties, let us give some notations.{If C
' 2 — R, the gradient of; denoted byDu, is the vector with

troduced in [2] as one of the pertinent models for image interp _ordinatei ) of the partial derivatives of u with respect
lation, though it had been previously studied from a complete Uz s Uy :
g b y P Tg)x and y. We denote bypu=, the vector obtained fronbu

th tical point of view in [3], [4 d[5]. Th h th
eoretical point of view in [3], [4], and [5]. The approach the y a rotation of angler /2 [the orientation does not matter; we

use is axiomatic, that is, from a small number of natural pos? = ™" . I .
tulates, they derive a classification of interpolation operatoﬁ;bltrarlly chose it such th@D;" Du)is c_ountercl_ockwuse i
Among the ones satisfying the largest number of these natural # 0]. We also den_ote bp u the He55|a.n. matrix of, that

properties, the AMLE model will be particularly relevant in thdS tosay, the symmetric matrix whose coefficients are the second

problems we are interested in. In particular, it will be very effi(_jenvatlves of u. As usual, we canonically associate a quadratic

5 .
cient to interpolate data between level lines. This shall be intdP™ 10 D“u. We also use the notation
esting for elevation reconstruction from a scanned map where wee — D Dy Du
only a few level lines (iso-level curves) are available. We shall € |Du|” | Dul

also use it to interpolate scattered data obtained from a corretla- L N
. ; 0 represent the second derivativewfn the direction of the
tion between stereo pairs of a scene.

Let us now give the main ideas leading to the AMLE modeﬂradlent’ and similarly

We assume that the elevation we want to interpolate is the inte- » (Dut Dut
rior of a domair€? in the plane. We assume that we only know Uiy = D7 <W’ W)
the valuey of elevation ond(2, the boundary of2. Note that 4nq

this is realistic in the interpolation of iso-level lines. We assume , (Dut Du
that it is possible to interpolatg inside 2. Let us denote by Uneg u <W’ M)

E(Q, ¢): @ — R the obtained elevation. We now review some
natural properties tha(£2, ¢) should satisfy. to represent the second derivativewofn the direction of the

(P1) The interpolation is stable, that is to say, if we interlevel curves, and the mixed derivative, respectively. The fol-
polate the values oE(2, ©) on a subdomain of?, the lowing result characterizes all interpolators satisfying the re-
7 ’

result does not change. More precisely, for any subdom&Hired axioms:

Q' C Q. we have Theorem 1 [2]: Assume thaE (€2, ¢) satisfies the properties

(PD)—(P8). Then, it is a viscosity solution of the equation
E(Q, E(Q, ¢)aar) = E(, ¢)jor (1) Gluge, Unpy, e ) = 0 (4)

where the subscriptt designs the restriction of a functionwhereG(a, b, ¢) is positively homogeneous of degree one and

to the setA. nondecreasing with respect to the matrix ;). If we assume

(P2) The interpolation respects the global elevation othat( is differentiable at the poin0, 0, 0), then,G is linear,

dering, that is thatisG(a, b, ¢) = ca+ Bb+ yc where(w, 3, ) satisfies the
propertya3 — v2 > 0.

if o < ondQ2, thenE (LY, ) < E(L, ). (2)  The viscosity solution theory is the correct mathematical set-

_ _ . o ting for nonlinear elliptic equations of the type (4). We refer the
(P3) Finally, we give a more technical property giving thgeader to [6]and [7] for complete details.
behavior of£” on second order polynomials. It consists in |n the following, we shall assume that the functiénin (4)

assuming the existence of a functibrsuch thatifu(x) = s differentiable, and, thus, linear. We see, that the most simple
¢+ (p, x — wo) + 1/2(A(x — 20), (x — x,)), then equations correspond to the case.
1) G(a, b, ¢) = a + b. In this case, the equationisu = 0,
lim EQu, 4po, n)wo) ~ulzo) _ F(A, p, ¢, z0). (3) thE’:lt is Lazplace equation.
=0 r2/2 2) G(a, b, ¢) = a, yielding the equation
To this three basic axioms, we add a set of natural geo- ) Du  Du
metric properties. <M7 W) -
(P4) The interpolation does not depend on the position of o
Q. In other terms, it commutes with translation. which is Aronsson’s AMLE model.
(P5) It does not depend on the orientationtogither. Put ~ 3) G(a, b, ) = b, yielding the equation
another way, it commutes with plane rotations. , (Dut Dut
(P6) It is also scale invariant (i.e., commutes with dila- RV
: < |Du| " |Dul )
tions).
(P7) The reference level is arbitrary, hence the interpola-  This equation means that the curvature of the iso-level
tion must commute with the addition of a fixed value. lines equals zero. As a consequence, these curves are
(P8) The elevation unit is also arbitrary. Therefore, the in- straight lines.
terpolation has to commute with multiplication by a fixed_aplace equation is well known for regular interpolation since
constant. it can describe the equilibrium temperature distribution in a do-
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main with source on the boundary. Nevertheless, by classical reSection IV shows some experimental results using this model,
sults of potential theory, this model does not allow to fix valueand in Appendix A we give some details on the numerical solu-
atisolated points, and we say that it lzaso capacity for points tion of this equation and its computational complexity.

For instance, if: = D(0, 1)\{0} in the plane (the pointed unit

disk) and if we fixe = 0 on the unit circle angp = 1 at the |||. RELATIONS TO PREVIOUS WORK ON DEM INTERPOLATION

origin, the solution of Laplace equation is identically zero, let-
ting the value at the origin ignored! It is possible to prove that Whereas the AMLE model has been recently proposed for

any linear combination of the form image proces.sing in. [2], it is essentially new in the. geospience

domain. In this section we explore the close relationships be-
Du  Du Dut Dut tween AMLE and other classical methods that have been pro-
aD?u <m, m) + BD*u <W, m) posed in the geoscience literature.

with positivec and3 satisfies the same undesirable property.A- Geodesic Distance Transformations

The equation Interpolators based on geodesic distances are to the best of
N N our knowledge the main tool for constructing DEMs from con-
2 <DL DL) _ tour lines, and fast algorithms have been proposed in [10] and
|Du|” | Dul [11]. Starting from the assumption that the boundary can be par-

. . titioned into two disjoint region®2 = 9€2; U d€2, such that
may not have a unigue solution. In [8], Masnou and Morel foung

: X X 1TOUNfe boundary conditions are constant in each of the regions, i.e.,
a Way_to chopse the_ best solutlon by |ntr(_)dUC|_ng a var|at|0_n IaQl — ¢ € Randulsg, = c» € R, the geodesic distance
condmo_n. This e_llgorlthm, called dlsocclu5|_on gives 'm_press'\{ﬁterpolator can be defined as

results in restoring images, but the dom&must be simply

connected (which is a too strong condition for our application) _cady, (z, 0) + crdg, o(x, 0) 5

and the fact that iso-level curves are straight curves somehow u(@) = doy, /(z, 00) + da, 5(z, Q) 6
gives irrealistic elevation models.

On the contrary, the AMLE model can interpolate isolatedheredq, ,(z, A) is the generalized geodesic distance from a
values. In the case of the pointed disk, the solution is the opeintz to a set A, i.e., the minimal usual geometric length of a
we can expect, that is(z) = 1 — |z|. The AMLE model is pathC entirely contained irf2, which minimizes the geodesic
mathematically well posed as exposed in the following theorenﬁstancefcg among all paths joining: to a pointy € A.

Theorem 2 [3] and [5]: Let{2 be a bounded domain. AssuméNhereas in [10] a constant weighting functigiwas used, in
thaty is continuous o@$2. Then, there exists a unique viscositya later article [11] it was proposed to use the Euclidean distance

solution of to the borderg(z) = [d(x, Q)] as a weighting function, in
order to avoid certain artifacts occurring when geodesic paths
D2y <ﬂ ﬂ) =0 (5) ¢ become tangent to the border.
|Dul’ | Dyl This produces results which are very close to the AMLE

model, which is not surprising since the AMLE model can
heuristically be obtained as a fixed point of geodesic distance
interpolations. In fact, assuming that eq.,< ¢, consider the
Yollowing iteration:

with boundary value equal tp. Moreover, the AMLE satisfies
the properties#1)—(P8).

(A generalization of this result, which relaxes the continuit
assumption on the boundary datawas proven in [9].)

The reason why this model is named AMLE is given by the ) cada, 1 (z, ON) + da, 1 (z, O)ey
following proposition. uolr) = —— 900 T do 90

Theorem 3 [5]: Let Q be a bounded domain agdbe a Lip- 2,1(®, Ofh) +da, (=, 96t2)
schitz function ord$2. Then the AMLE is the unique function s (1) = c2dg s (, O4) + do u, (2, I2)ct
u interpolatingy and satisfying the property et da, ue (z, 0Q) + da, u, (x, )

if n>0. (7)

V' cQ, VYwlLipschitzind®', w =uondY =
| Dulloe < [[Dwlloo.  If the iteration converges to a fixed point

This means that the AMLE minimizes the Lipschitz constant on _c2dg ue (7, 00) +dg u. (T, 0 2)cy
any subdomain, which is an important property when interpo- too = da, ue_(x, 0Q) + da, u. (x, 0Q0)
lating elevation models because it is a way to ensure that the ‘
interpolation will not create information that is not present ifh€nu. is AMLE. Indeed, the geodesic paths associated to the
the original data. potentialu, are locally the gradient cuneof u.,. Hence,
Many interpolation methods may produce oscillations (Gibgluation (8) means that.; is linear along its own gradient
effects, overshoots) which are not apparent from the origir@#"ves, i.e.|| Du.|| is constant in the direction dpu., or put
data. Suc_:h oscillgtions appear rather asa byproduct of regularity, . 1o complement operation is definedjas= —g + maxa g.
assumptions which do not match the given data. Theorem 3 en, gradient curve of a function u is a curve such that its tangent vector is
sures that the AMLE interpolant cannot create such oscillatiorsvays parallel taDu.

(8)
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another way u, satisfies the AMLE equatioP?«(Du, Du) = consists of solving the biharmonic problem
0.
This result has two important implications: 1) the different Ay|lg =0
variations of (noniterated) geodesic distance transform methods ulon -
can be interpreted as truncated implementations of the AMLE 5 (10)
model and 2) they can be used to write faster algorithms to solve au =1
the AMLE in the particular case of contour line interpolation. I | s

. and is known to have a unique solution under quite general con-
B. Thin Plate Model ditions ong2, ¢, andx).

A major drawback of the AMLE model is that it cannot in- This interpolator was called thin-plate spline because it
terpolate slopes, it can only interpolate boundary data. As wl®sely models the shape taken by a thin-metal plate when
shall see later in this section and in Section IV, this does not &brced to the given boundary conditions. In such a situation,
ways represent a serious problem, and there are many reasbaglate minimizes its bending energy
for keeping the AMLE method despite this drawback. However,
the fact that it cannot interpolate slopes may result in flat moun- 92u\ 2 92y \ 2 9%
tain tops and slope discontinuities across some level curves. THiS®) = // <W) +2 <m) + <8—y2
is not really serious, at the sides of a mountain or when looking 1Y)

at the DEM as a gray-level image, but it becomes sometimesb. .
.. . ) .stbject to the boundary conditionsg = ¢ anddu/dn|ag =
ﬁ':ﬁ;:;%?;;iﬂ':csémmg the DEM as a 3-D surface, produug}g We can easily show that the biharmonic equation (10) is the
Actually the fact tﬁat the AMLE cannot interpolate slo eSEuIer—Lagrange of the bending energy (11).
y , . P - SIOPES hig thin-plate spline model has been introduced as an inter-
comes from the axiomatic approach that leads to this model.

: . . Olation tool for spatial data in [15] and the references therein.
Hence, in order to avoid these artifacts, we have to go back : o .
. . ‘ 1e authors also discuss some variations of the model like the
our assumptions and do the necessary adaptations. First, we W

. : in-plate spline with tension with the aim of avoiding the os-
require our operator E to interpolate not only boundary daté;\ lations that it ma d Thi hh i
“[ y produce. This approach however relies on

but also boundary slopes. Put another way, our operator wi o ) .
take the formE(Q, ¢, ) @ — R whereg = ulg is the a tradeoff between Laplacian interpolation (which has zero ca

boundary e s sl and- 0l s h deatve ot P2 1 PONS) andinarmor erpolaten nd e e
u in the direction of the inner normal @. The stability P1) P P X

and invariance propertieR4)—(P8) can be trivially generalized section we shall concentrate on the thin-plate model.

: . . . Both from the PDE formulation and from the variational for-
to the new notation. The other two axioms will require, however ~~ . = . : . )
. . mulation, it is straightforward to verify that the thin-plate spline
certain adaptations. o . . -
. . . operator satisfies the invariance propertR4)(P8). Similarly,
First, once we requird’ to interpolate slopes as welP2) o , ;
¥ the stability property R1) and the regularity propertyP@)
does no longer make sense. A reasonable generalization is 10 .. . g g
: are direct consequences of its PDE formulation. The maximum
require an order for the slopes as well as for the data principle (P2), however, remains more subtle. Actually, [16]
5 ((F;Z) If o1 < g2 @Ndyfy < 92 ONORthenE(Q, o1, Y1) < 5y [17] conjectured that it should be true for quite general do-
(8, 2, 1)2). mainsS?, since Boggio showed that it was true for circular do-

Similarly, since itis not possible to interpolate data and SIOpﬁ?ains. Nevertheless 40 years later a number of counterexamples
with second-order operators, we will require at least fourtIS1

2
) drdy (11)

. . i dth jecture. Forinst ,[18] showed itis false f
order. Hence, we have to modify the regularity property as fo isproved the conjecture. Forinstance, [18] showed itis false for

ectangulaK?, and [19] and [20] showed it is false for elliptic

lows: . . .y . .
. . . - domains with eccentricity two. In any case, the maximum prin-
(P3) If u(z) is a fourth order polynomial with COeffICIentSc:iple remains valid for small perturbations of circular domains
c, - .., ¢y then [21]
Unfortunately, there is no equivalent for Theorem 3 either.
ou We do know [23] that for bounded and Lipschitz domaihsf
Elu,u , — (o) — u(zo) N )
. Plzo,m) O | D(zo,r) A%y = 01in Q then
lim ! !
r—0 4
= F(cn, .-, co, 7). (9) 1Dullz==() < CliDull=on). (12)

FEUt the constant is not necessarily one and depends on the

Among fourth-order differential operators the biharmonic o
g P Lipschitz character of the domain.

erator
Furthermore, to the best of our knowledge it is not known
, Of 92 o* whether an interpolation operator exists, which satisfies all of
AT=ogt 273352%2 t ot the axioms P1), (P2, P3) and P4)—(P9). If it exists it would

be a nice generalization of the AMLE model for slope-interpo-
is well-known, and its application to surface interpolation datdating operators. In its absence the thin-plate model comes close
back to [12]-[14]. The interpolating operator= F (£, ¢, 1) by satisfying all but the maximum principl®8).
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C. Kriging degreek. Let us write V;, for the dimension of the spadg,,

A widely used procedure to interpolate data is kriging, @"d1pi}i=1-, for a basis of this space. In this paper, we are
method originally developed in the framework of geostatisticdterested in particular fields of the form
We present here a brief account of this method, and give Ny,
some details on a specific case to be used in our experiments. X(z) = Z a;pi(z) + e(x), (16)
General references on the subject are [24]—-[26]. The surface to =0
interpolate is viewed as a realization of a random figldof . i o . IRE such thafie — 0, and thes are random

which we know value( (), ..., X (?7") atsome sites CRQ_' variables. Fields of the type (16) may be shown to be k-IRF, and
Through some second (?‘rder _prop”eryes (usu_ally to be est|ma§ said to have a polynomial drift. The Kriging problem is then
from the dat"?‘) ofX, a preqllctor X of X is constructed, expressed, in this particular case, in the same manner as in the
defined as a linear combination of the known values{of stationary case, that is to say thitsatisfies (14) and (15). It
may be shown that this predict(ﬁ is obtained by inverting a
X(z) = Z A@) X (2s)- (13) Jinear system, depending only erand the datdz;).

=1 For these fields the following function, defined far> 0, is
This predictor satisfies two conditions. Firsf, is requested to & Valid generalized covariance, provided(int2) < k, where
be unbiased, that is, for afl, writing E for the mathematical Nt(«) is the integer part ofr/2
expectation,

n

Calz|®, if g ¢ N
EX(z) = EX (). (14) v(x) = o (17)
Colz|* log(|z]), if 5 € N
The predictor also minimizes the least square error, that is, for

all z, where C,, are convenient constants depending @nin the
) rest of this paper, we consider Kriging with fields having
E< X(a;) — X(a:)‘ ) such a generalized covariance, and, thus, we do not address
the problem of estimating this function from the data. This
2 is primarily motivated by the fact that, as we will see more

(15) precisely, this choice of lead to the same solution of the
interpolation problem as with the thin-plates spline method,
when choosingr = 2. We will thus be in a position to compare

In other words X is a best linear unbiased predictor (BLUP)put results with thin-plates and Kriging interpolators, in a
a well-known predictor in statistics. unified manner with various values @f (see Section V).

If the field X is second-order stationary (EX is constant and/e further assume that the value bf (the degree of the
E(X(2)X(y)) = C(x — y), for some functiorC), thenX is polynomial drift) is 1, and thus allows for valués< a < 4.
found by inverting a linear system depending only on C arld this case, and when = 2, X (actually the realization
the data{zy, ..., z,,} (see [25]). However, and this is quiteof X corresponding to the realization df) may be shown
clear in the case of DEMY cannot be assumed to be stationaryo be a solution of the biharmonic problem (10), &3,
Therefore,X is assumed to have a “drift,” that 8(X (z)) = with limit conditions [keeping the same notations as in (10)]
>°; @; f3(x), for some functiond f; } of R*. The general math- u(x;) = ¢(;), fori = 1, ..., n, anddu/dn = 0 at infinity
ematical framework in which to address the Kriging problertsee [29] and [30]). Numerically, the equivalence may be seen
is the one of “intrinsic random functions,” a concept first introby considering radial functions as discussed in Appendix C.
duced by [27] following the work [28]. Let us briefly introduceExplicitly, we writeg = (y(zg — z1), ..., Y(zo — zn)), P =
this particular type of random fields. We defid& to be the (p1(z0), ....pn(%0)), 2 = (Z(x1), ..., Z(zs))T, and
set of polynomials ofR? of degree less or equal fa and an define the matrice& = ((v(z; — z;))) andP = ((p;(z;)))4
increment with respect t&, to be a sef{(3;, y;)};=1.... of Then, the value of the predictor at a point is given by (see

—min F

(A}

Z NX () — X(x)

(R x R?)™, for some integern, such that [25]):
m Z(xo) =ga+ pb (18)
> Bif(y;) =0
j=1 wherea andb are column vectors such that
for all functionsf € P,. An intrinsic random function of order Ga+Pb==z
k (k-IRF) is a random field such that there exist a function -
~: R? — R, a “generalized covariance,” such that P a=0. (19)
Whenk = 1 and+ is given by (17) witha = 2, these are the
var <Z /JiX(yi)> = Z BiBiv(yi — ;) same equations as in the resolution of the thin-plate problem

4Let us recall that in our experiments we only consider 1-IRFsk se-
for allincrements{(3%;, ;)}. These fields are completely deterd: N = 3, and the basis af, is made up of: () = 1. p2(;) = @, and
mined by the generalized covariangeup to a polynomial of ps() = v-
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2000

(a) Original DEM
(a) AMLE interpolation

2000

(b) Quantized DEM 2000

Fig. 1. (a) Elevation model used throughout the experiments. It represent (b) Thin-plate interpolation

12.4x 6.9 km area around Mount Sainte Victoire with heights values ranging

between 190 and 1011 m. The horizontal sampling is 30 m, whereas the vertigigl 2. Interpolations of the quantized elevation model from Fig. 1(b). Light
precision is about 2 m standard deviation. In all figures, all axes values @y colors represent known data points whereas dark gray colors represent
expressed in meters, but the vertical axis has been stretched by a factor of tinggpolated points. Observe how AMLE produces certain flat regions and
with respect to the real aspect ratio in order to better visualize the irregularitisiepe discontinuities, but better preserves ridges and avoids some oscillations
of the terrain. (b) In the quantized DEM light gray colors represent known dasaoduced by the thin-plate spline.

points whereas dark gray colors represent unknown points to be interpolated.

It has been obtained from the original by only keeping level-curves at regular

intervals of 50-m height. as a way to simulate the kind of data that can be obtained
from scanning nondigital cartography [see Fig. 1(b)]. Then,

through radial functions like in [31], since in that case the vayY€ Iy to reconstruct the original DEM by interpolation using
iogram~(z) = |z|?log(x) is the fundamental solution of thethe AMLE model [see Fig. 2(a)] and the thin-plate models

biharmonic equatiol\2y = §. More generally, whem # 2, 5€€ Fig. 2(b)].

the kriging solution may be obtained by usings a radial func- _ AS @ second experiment we simulated the kind of interpola-
tion. tion domains that arise in DEMs produced from stereoscopic

views. We present four examples: in the first one, we eliminate
the top of a mountain [Fig. 3(a)], in the following two, we elimi-
nate a closed region on the side of it, Fig. 3(b) and (c), and in the
The figures and tables in this paper show some results of intkrst one we eliminate a flat region, Fig. 3(d). The corresponding
polation by both the AMLE model, and the classical thin-platéaterpolations by AMLE and kriging models can be observed in
and Kriging models discussed in this paper. To illustrate theB@s. 4—7. In Table |, we display th&* distances between orig-
methods we chose the elevation model shown in Fig. 1(a) (whémal and interpolated DEMs for the different methods.
height is represented as a three-dimensional illuminated surin these experiments, we can observe how (unlike the AMLE
face). Thisisa 12.4% 6.9 km DEM around Mount Sainte Vic- model), the thin-plate and Kriging models allow to interpolate
toire where each pixel represents a 8080 m patch. Height slopes, and produc€” (i.e., with one continuous derivative)
values vary between 190 and 1011 m and have a precisionirdérpolants across imposed level curves. Thanks to this ability
about 2 m. As explained in Section Ill C, we chose a Kriginthey allow to roughly recreate the mountain top in Fig. 4(c).
model with generalized covariance given by (17), so that thin- Onthe other hand, they are somehow much more diffusive than
plate interpolation corresponds mathematically to the aase the AMLE model, producing too smooth reliefs. For instance
2. The use of radial functions enables these two methods to agireexamples b and c [Figs. 5(a) and 6(a)] we see how the AMLE
also from the numerical point of view. model better preserved the ridges. In the second case AMLE
As a first experiment we quantized this elevation model kg better both visually and in terms of RMS error, whereas in
keeping only the level curves at regular intervals of 50-m heiglthe first case AMLE is visually better despite a slightly larger

IV. EXPERIMENTS
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(a) Original DEM for example a (b) Original DEM for example b

(c) Original DEM for example ¢ (d) Original DEM for example d

Fig. 3. Interpolation domains used for the second experiment. Light gray colors represent known data points whereas dark gray colors repwasenintakno
to be interpolated.

RMS error. A similar observation can be made about the last V. DISCUSSION ANDFURTHER WORK
example in Fig. 7(a), where AMLE is visually better despite In this paper we propose the AMLE as a new method for in-
a slightly larger RMS error. I.n general,. the AMLE produc_:e erpolating digital elevation models and explore its relationship
a better result when the region to be interpolated is entir

tained ide of th ai ) hiv flag previously used methods.
contaned on one side of the mountain or in a roughly Mat \;, ;e other methods that have been proposed in the geo-

region. In those cases the relative slope variations around Cence literature. the AMLE satisfies a maximum principle
boundary are not important so it is not necessary to actu ' ’

: them: th I i imolicit in the bound ich ensures that it does not create oscillations. We also
:jm?ose em: the average siope Is implicit In the boundagy, e through experiments that it also preserves ridges much
ata. better than Kriging and thin-plate methods, which are much

Furthermore the fact that thin-plate and kriging do not Sakiore diffusive. Even though Kriging for high values of

isfy a maximum principle means that they are less safe than {36,,45 a bit closer to the AMLE (in terms of ridge preserva-
AMLE model, in the sense that it can create unnatural 0SCifgy s exactly whene is high that Kriging produces the
lations. With respect to Kriging, we can observe how a larg@fost undesirable oscillations. Also in terms of computational
value ofa can be used to reduce the diffusive behavior of theficiency it can be faster than Kriging, depending on the data.
thin-plate (v = 2), and make it better preserve ridges, although |n the case of interpolation of iso-level lines AMLE can
not as good as the AMLE. However, larger valuescééad also  pe interpreted as iterated geodesic distance transformations,
to increasingly ill-conditioned systems and to even more unngfhich explains why it shares some qualitative properties with
ural oscillations, as it can be observed for instance in Fig. 5(dhis method.

Authorized licensed use limited to: Telecom ParisTech. Downloaded on July 8, 2009 at 07:32 from IEEE Xplore. Restrictions apply.



ALMANSA et al: INTERPOLATION DIGITAL ELEVATION MODELS 321

1000. 1000,

800 ..t

900 .

800 800 .

700 700

600 600

1000 1400 1000 e ) ‘ 1400

200 200

(a) AMLE interpolation of figure 3a (b) Kriging interpolation of figure 3a, o = 1
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(c) Kriging (and thin plates) interpolation of figure 3a, o = (d) Kriging interpolation of figure 3a, & = 3
Fig. 4. Interpolations of the first example, Fig. 3(a). Light gray colors represent known data points whereas dark gray colors representip@irgelate

The major disadvantage of AMLE is the fact that it canngionent of the interpolation domain, either a human decision,
interpolate slopes as well as values. For this purpose we proposedn automatic procedure which first applies AMLE and then
a reasonable generalization to slope-interpolating operatorskeeps it if the slope discontinuities it creates on this connected
the axiomatic approach that leads to the AMLE model. Noremmponent are below a certain threshold, or substitutes it by
of the currently known methods satisfies all of these axiomkriging. Another possibility consists of adding to the AMLE
The thin-plate method comes closest by satisfying all but tierpolation, a factor < 1) times the solution of thin-plate
maximum principle, hence it may produce unnatural oscillationsterpolation with zero boundary condition, and slope boundary
The search for a (possibly nonlinear) fourth-order differentigiondition equal to the slope discontinuity introduced by AMLE.
operator satisfying all of the proposed axioms remains dinis would probably produce a quasislope-interpolating oper-
interesting problem for future research, since it might leaator which better preserves ridges.
to a slope-interpolating operator with all the advantages of
AMLE.

In the absence of such a generalized interpolator, we would
propose a combined use of AMLE and Kriging or thin-plate
methods. This could be done in a way which allows to useln this section we briefly discuss the complexity of the
AMLE whenever fixing slope values is not necessary, aragorithms we used for computing the different interpolation
Kriging otherwise. This would require for each connected comaethods proposed. The computing times we needed on a

APPENDIX
ALGORITHMIC COMPLEXITY
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(b) Kriging interpolation of figure 3b, o = 1
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(c) Kriging (and thin plates) interpolation of figure 3b, (d) Kriging interpolation of figure 3b, o = 3

a=2 .

Fig. 5. Interpolations of the second example, Fig. 3(b). Light gray colors represent known data points whereas dark gray colors represesd ipténgmlat
Observe how AMLE better preserves the ridges. Among Kriging methods, ridges are best preserved by the highestwdlueatdhe cost of more oscillations
than lower values oft and AMLE. Lower values ofv, on the other hand are much too diffusive.

SUN UltraSparc processor at 336 MHz to run the examplesabout2L points, except if data is not available on the dilated
Table | are given in Table Il. These figures should be taken wittoundary as in the case of contour-line interpolation.

care when comparing methods, because our implementations

of these algorithms are not optimal in all cases, and they ake AMLE Using Finite Differences

implemented in different languages (C for AMLE and Matlab | 135] 4 consistent finite-difference scheme was proposed for

for thin-plate and Kriging). _ S solving the AMLE. It consists of iterating
In the following paragraphs, we give an indication of the com-

putational complexity as well as some possible improvements in ou ) Du Du

their implementations. This should be more useful to compare 9t U |Du|’ | Dy

the performance of the different methods.In all cases we assume

that the regior2 to be interpolated consists éf grid-points, with the same boundary conditiarft, =) = ¢(x), (¢, z) €

and that its boundargs? is composed of. grid-points. Fur- (0, +o0) x 9 and any initial condition (0, z) =
thermore, we calii/ the number of interpolation constraintsuo(x), = € € until a steady-state is found (far — o),
which in the case of AMLE and distance transformdds= L  which satisfies the AMLE equatio®?w(Dw, Du) = 0 up to

and in the case of thin-plate and Kriging is usually in the rangecertain tolerance. Each time step is discretized in a semi-im-
M € [L, 2L]. This is due to the fact that in order to imposelicit manner, using one iteration of nonlinear over-relaxation
slopes on the boundary, what we do in practice is impose tteesolve it. The global complexity is themNC flops, where
values on a dilated boundary, which is normally composed #ofs the number of iterations needed to reach the steady-state,
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(a) AMLE interpolation of figure 3¢ (b) Kriging interpolation of figure 3¢, o = 1

(c) Kriging (and thin plates) interpolation of figure 3¢, = 2 (d) Kriging interpolation of figure 3¢, « = 3

Fig. 6. Interpolations of the third example, Fig. 3(c). Light gray colors represent known data points whereas dark gray colors representdintenptslate
Observe how AMLE preserves the ridges remarkably better than Kriging.

andC = 50 is the constant number of floating point operations thennCN flops, but the number of iterationsis here much
per point and iteration. In our exampleg,~ 200 and we need smaller than in the case of finite differences.

aboutn = 100 iterations to achieve a precision of two decimal

digits, and about: = 200 iterations for a precision of four C. Thin-Plate and Kriging Through Radial Basis Functions

digits. Total running times for these examples are 0.2 and 0.3 SKriging and thin-plate interpolations can be both computed,

respectively, on a _Sun .SPARC yvorkstation. as explained in Section 1I-C, by solving (19) in order to find the
_ The number_of |terat|ens is _h|ghly dependent t_hough on ﬂi’@riging coefficient vectors andb [which takesl /3(M + 3)3
size of the _maX|mal gap in the interpolation domam. In a blggﬁ{)pS in the case of 1-IRF, wher§, — 3], and then using equa-
example;/wthN ~ 100 000]; we nc?ed_ ab?? = 3000 iterations (18) to find the value of the interpolant at each point [which
(10 min) for a precision of two decimal digits. takes(M + 3)N flops]. So, the total complexity i$/3(M +

. Neyertheless, our implementa_tion _Of the AMLE can b§)3 + (M + 3)N flops. This is much faster than AMLE when
significantly accelerated for domains with large gaps by meaps i sma| with respect tav (a roughly circular interpolation

of a multigrid algorithm, and by substituting nonlinear OVer-&30 main for instance), but much slower whihis large, which

laxation by a variant of the preconditioned conjugate gradieﬂéppens' e.g., when the interpolation domain has a very irreg-
method. ular boundary.

B. AMLE Through Iterated Geodesic Distance Transforms D. Thin-Plate Through Finite Differences

As we observed in Section llI-A, in the special case of con- In the special case ok = 2 Kriging coincides with the
tour-line interpolation, the AMLE can be obtained by iteratethin-plate model and we can use a finite difference method to
geodesic distance transform interpolations. The complexity flve it. The spatial discretization of the biharmonic equation
oneiterationig' N flops, where” is a small constant, if we com- with boundary conditions (10) leads to a sparse (block-banded)
pute the weighted geodesic distances by a propagation algorithih+ M) x N linear system with 21 bands (one for each point
like the one in [33], which visits each pixel just a few number af the 5 x 5 stencil used to discretize the bilaplacian operator).
times. The total complexity of AMLE through geodesic distancég solve this system we used either a multigrid approach, or a
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(c) Kriging (and thin plates) interpolation of figure3d, a=2

Fig. 7.

TABLE |
L? DISTANCES BETWEEN ORIGINALS AND INTERPOLATED FOREXAMPLES a—d,
FIG. 3 (ALL VALUES ARE EXPRESSED INMETERS

method example a | example b | example ¢ | example d
AMLE 52.88 25.21 25.03 10.64
Kriging, o = 1 26.57 28.22 37.22 7.15
Kriging, o = 2 (thin plates) 16.72 24.834 37.00 5.41
Kriging, o = 3 20.57 22.40 3241 5.81
Kriging, o = 3.9 27.94 25.90 29.01 8.75
TABLE 1l

COMPUTATIONAL RESOURCES FOR THEEXAMPLES IN TABLE |. ALL VALUES
ARE EXPRESSED INSECONDS(AND M FLOPS). AT THE END WE INDICATE
THE SIZE OF THE PROBLEM IN TERMS OF N (SIZE OF REGION TO BE
INTERPOLATED IN PIXELS) AND M (SiZE OF REGION BOUNDARY, I.E., THE
NUMBER OF INTERPOLATION CONSTRAINTS)

method example a | example b example ¢ | example d
AMLE 0.2(1.97) | 1.1(1536) | 3.9(2049) | 1.1(11.77)
Kriging, oo = 1 0.14(2.78) | 1.84(22.78) | 1.74(20.58) | 0.69 (9.45)
Kriging, o = 2 (thin plates) | 0.15 (2.89) | 2.23 (23.47) | 1.97 (21.72) | 0.86 (9.78)
Kriging, o = 3 0.16 (2.78) | 2.11(22.78) | 1.74(20.58) | 0.87(9.45)
Kriging, & = 3.9 0.17 (2.78) | 1.94(22.78) | 1.20(20.58) | 0.82 (9.45)

N 197 768 745 471

M 140 296 285 216

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 40, NO. 2, FEBRUARY 2002

(b) Kriging interpolation of figure 3d, o« = 1

(d) Kriging interpolation of figure 3d, o = 3

Interpolations of the third example, Fig. 3(d). Light gray colors represent known data points whereas dark gray colors representiptergslate

thennm(N + M), wheren is the number of iterations of the
conjugate gradient algorithm and is the number of nonzero
elements per row in the incomplete LU factorization. In our ex-
perimentsm ~ 150 andn < (N + M), typically » = 50 for

a four digit precision. Thus, for large values &f this method
performs much better that the radial basis function method de-
rived from Kriging.
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