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Interpolation of Digital Elevation Models Using
AMLE and Related Methods

Andrés Almansa, Frédéric Cao, Yann Gousseau, and Bernard Rougé

Abstract—Interpolation of digital elevation models becomes
necessary in many situations, for instance, when constructing
them from contour lines (available e.g., from nondigital cartog-
raphy), or from disparity maps based on pairs of stereoscopic
views, which often leaves large areas where point correspondences
cannot be found reliably.

The absolutely minimizing Lipschitz extension (AMLE) model
is singled out as the simplest interpolation method satisfying a set
of natural requirements. In particular, a maximum principle is
proven, which guarantees not to introduce unnatural oscillations
which is a major problem with many classical methods. We then
discuss the links between the AMLE and other existing methods.
In particular, we show its relation with geodesic distance transfor-
mation. We also relate the AMLE to the thin-plate method, that can
be obtained by a prolongation of the axiomatic arguments leading
to the AMLE, and addresses the major disadvantage of the AMLE
model, namely its inability to interpolate slopes as it does for values.
Nevertheless, in order to interpolate slopes, we have to give up the
maximum principle and authorize the appearance of oscillations.
We also discuss the possible link between the AMLE and Kriging
methods that are the most widely used in the geoscience literature.
We end by numerical comparison between the different methods.

Index Terms—Digital elevation models, image interpolation,
partial differential equations.

I. INTRODUCTION

I N THIS PAPER, we study the problem of interpolating two-
dimensional (2-D) data. This is motivated by several prob-

lems that may be encountered when trying to reconstruct digital
elevation models

• For instance, for maps which are not yet available in digital
form, the elevation is only known on a limited number of
level curves, and we then have to interpolate in order to
retrieve a three-dimensional (3-D) model of elevation.

• One way to construct elevation models is to find points of
correspondence between two images from a stereo vision
pair of a scene. Most existing matching algorithms fail on
some parts of the image and no elevation can be retrieved
[1]. Interpolation is then also necessary.

In both cases, we may assume that the elevation is regular in the
areas where it isa priori unknown. In the first case, the lines
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whose level is known are in general chosen such that they are
representative of the real elevation. Therefore, the elevation be-
tween two adjacent lines always lies between the corresponding
levels. Moreover, it is not likely that oscillations between both
lines can be significant, else some additional level lines would
have also been represented. This implies that a reasonable inter-
polation method must not artificially create some oscillations
between given level curves otherwise, it may create some arbi-
trary information which cannot be inferred from the data. In the
second case, correlation is commonly used to find point corre-
spondences. In this case, one of the major reasons why matching
fails is that the variations of the image are not high enough in
some region, which implies that the corresponding elevation is
likely to be regular.

An interpolation model called absolutely minimizing Lip-
schitz extension (AMLE) was introduced in [2] as the most
simple interpolant satisfying a set of natural axioms. We think
that these axioms are also very well-suited for the interpolation
of digital elevation models. We recall these axioms in Section II.
A very nice property of the AMLE, that can be mathematically
proved, is that it does not create any artifacts nor oscillations.
This model is a real interpolation model that exactly fits the
data.1 It can interpolate values on isolated curves and even iso-
lated points (for instance mountain or hill top).

We show in Section III how the AMLE can be related to other
methods already used for DEM interpolation. First, it can be
viewed as the stationary state of iterated geodesic distance trans-
formations (see Section III-A). Second, it may happen that the
elevation is known not only on isolated points but on a domain
and we want to reconstruct the elevation outside this set. In this
case, we can take advantage of the value on the boundary of
the domain but also of some higher order information such as
the slope of the data. The AMLE cannot handle more than ze-
roth order information and neither do geodesic distance inter-
polators. The thin-plate model discussed in Section III-B can
be viewed as an attempt to generalize the axiomatic approach
leading to the AMLE. It allows to interpolate values as well as
gradient fields on the boundary of the interpolation domain, but
it does not guarantee to avoid oscillations as the AMLE model
does. Kriging methods (see Section III-C) are also related to the
thin-plate model in some cases, and we compare the AMLE, the
thin-plate and kriging in Section IV where we show some inter-
polation results for methods. Finally in Section V we discuss
some issues for future research.

1Here, we mean a model that actually fits the data on curves and isolated
points, and does not have zero capacity for points like Laplace’s operator for
instance (see Section II for a discussion).
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II. A MILE MODEL

In this section, we introduce the AMLE model. It has been in-
troduced in [2] as one of the pertinent models for image interpo-
lation, though it had been previously studied from a completely
theoretical point of view in [3], [4], and [5]. The approach they
use is axiomatic, that is, from a small number of natural pos-
tulates, they derive a classification of interpolation operators.
Among the ones satisfying the largest number of these natural
properties, the AMLE model will be particularly relevant in the
problems we are interested in. In particular, it will be very effi-
cient to interpolate data between level lines. This shall be inter-
esting for elevation reconstruction from a scanned map where
only a few level lines (iso-level curves) are available. We shall
also use it to interpolate scattered data obtained from a correla-
tion between stereo pairs of a scene.

Let us now give the main ideas leading to the AMLE model.
We assume that the elevation we want to interpolate is the inte-
rior of a domain in the plane. We assume that we only know
the value of elevation on , the boundary of . Note that
this is realistic in the interpolation of iso-level lines. We assume
that it is possible to interpolate inside . Let us denote by

the obtained elevation. We now review some
natural properties that should satisfy.

(P1) The interpolation is stable, that is to say, if we inter-
polate the values of on a subdomain of , the
result does not change. More precisely, for any subdomain

, we have

(1)

where the subscript designs the restriction of a function
to the set .
(P2) The interpolation respects the global elevation or-
dering, that is

if on then (2)

(P3) Finally, we give a more technical property giving the
behavior of on second order polynomials. It consists in
assuming the existence of a functionsuch that if

, then

(3)

To this three basic axioms, we add a set of natural geo-
metric properties.
(P4) The interpolation does not depend on the position of

. In other terms, it commutes with translation.
(P5) It does not depend on the orientation ofeither. Put
another way, it commutes with plane rotations.
(P6) It is also scale invariant (i.e., commutes with dila-
tions).
(P7) The reference level is arbitrary, hence the interpola-
tion must commute with the addition of a fixed value.
(P8) The elevation unit is also arbitrary. Therefore, the in-
terpolation has to commute with multiplication by a fixed
constant.

Before we give the general form of an interpolation operator
satisfying these properties, let us give some notations. If

, the gradient of denoted by , is the vector with
coordinates of the partial derivatives of u with respect
to x and y. We denote by , the vector obtained from
by a rotation of angle [the orientation does not matter; we
arbitrarily chose it such that is counterclockwise if

]. We also denote by the Hessian matrix of , that
is to say, the symmetric matrix whose coefficients are the second
derivatives of u. As usual, we canonically associate a quadratic
form to . We also use the notation

to represent the second derivative ofin the direction of the
gradient, and similarly

and

to represent the second derivative ofin the direction of the
level curves, and the mixed derivative, respectively. The fol-
lowing result characterizes all interpolators satisfying the re-
quired axioms:

Theorem 1 [2]: Assume that satisfies the properties
(P1)–(P8). Then, it is a viscosity solution of the equation

(4)

where is positively homogeneous of degree one and
nondecreasing with respect to the matrix . If we assume
that is differentiable at the point , then, is linear,
that is where satisfies the
property .

The viscosity solution theory is the correct mathematical set-
ting for nonlinear elliptic equations of the type (4). We refer the
reader to [6]and [7] for complete details.

In the following, we shall assume that the functionin (4)
is differentiable, and, thus, linear. We see, that the most simple
equations correspond to the case.

1) . In this case, the equation is ,
that is Laplace equation.

2) , yielding the equation

which is Aronsson’s AMLE model.
3) , yielding the equation

This equation means that the curvature of the iso-level
lines equals zero. As a consequence, these curves are
straight lines.

Laplace equation is well known for regular interpolation since
it can describe the equilibrium temperature distribution in a do-
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main with source on the boundary. Nevertheless, by classical re-
sults of potential theory, this model does not allow to fix values
at isolated points, and we say that it haszero capacity for points.
For instance, if in the plane (the pointed unit
disk) and if we fix on the unit circle and at the
origin, the solution of Laplace equation is identically zero, let-
ting the value at the origin ignored! It is possible to prove that
any linear combination of the form

with positive and satisfies the same undesirable property.
The equation

may not have a unique solution. In [8], Masnou and Morel found
a way to choose the best solution by introducing a variational
condition. This algorithm, called disocclusion gives impressive
results in restoring images, but the domainmust be simply
connected (which is a too strong condition for our application)
and the fact that iso-level curves are straight curves somehow
gives irrealistic elevation models.

On the contrary, the AMLE model can interpolate isolated
values. In the case of the pointed disk, the solution is the one
we can expect, that is . The AMLE model is
mathematically well posed as exposed in the following theorem.

Theorem 2 [3] and [5]: Let be a bounded domain. Assume
that is continuous on . Then, there exists a unique viscosity
solution of

(5)

with boundary value equal to. Moreover, the AMLE satisfies
the properties (P1)–(P8).

(A generalization of this result, which relaxes the continuity
assumption on the boundary data, was proven in [9].)

The reason why this model is named AMLE is given by the
following proposition.

Theorem 3 [5]: Let be a bounded domain andbe a Lip-
schitz function on . Then the AMLE is the unique function
u interpolating and satisfying the property

Lipschitz in on

This means that the AMLE minimizes the Lipschitz constant on
any subdomain, which is an important property when interpo-
lating elevation models because it is a way to ensure that the
interpolation will not create information that is not present in
the original data.

Many interpolation methods may produce oscillations (Gibbs
effects, overshoots) which are not apparent from the original
data. Such oscillations appear rather as a byproduct of regularity
assumptions which do not match the given data. Theorem 3 en-
sures that the AMLE interpolant cannot create such oscillations.

Section IV shows some experimental results using this model,
and in Appendix A we give some details on the numerical solu-
tion of this equation and its computational complexity.

III. RELATIONS TO PREVIOUSWORK ON DEM INTERPOLATION

Whereas the AMLE model has been recently proposed for
image processing in [2], it is essentially new in the geoscience
domain. In this section we explore the close relationships be-
tween AMLE and other classical methods that have been pro-
posed in the geoscience literature.

A. Geodesic Distance Transformations

Interpolators based on geodesic distances are to the best of
our knowledge the main tool for constructing DEMs from con-
tour lines, and fast algorithms have been proposed in [10] and
[11]. Starting from the assumption that the boundary can be par-
titioned into two disjoint regions , such that
the boundary conditions are constant in each of the regions, i.e.,

and , the geodesic distance
interpolator can be defined as

(6)

where is the generalized geodesic distance from a
point to a set A, i.e., the minimal usual geometric length of a
path entirely contained in , which minimizes the geodesic
distance among all paths joining to a point .
Whereas in [10] a constant weighting functionwas used, in
a later article [11] it was proposed to use the Euclidean distance
to the border as a weighting function, in
order to avoid certain artifacts occurring when geodesic paths

become tangent to the border.2

This produces results which are very close to the AMLE
model, which is not surprising since the AMLE model can
heuristically be obtained as a fixed point of geodesic distance
interpolations. In fact, assuming that e.g., consider the
following iteration:

if (7)

If the iteration converges to a fixed point

(8)

then is AMLE. Indeed, the geodesic paths associated to the
potential are locally the gradient curves3 of . Hence,
equation (8) means that is linear along its own gradient
curves, i.e., is constant in the direction of , or put

2Here the complement operation is defined asg = �g +max g.
3A gradient curve of a function u is a curve such that its tangent vector is

always parallel toDu.
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another way u satisfies the AMLE equation
.
This result has two important implications: 1) the different

variations of (noniterated) geodesic distance transform methods
can be interpreted as truncated implementations of the AMLE
model and 2) they can be used to write faster algorithms to solve
the AMLE in the particular case of contour line interpolation.

B. Thin Plate Model

A major drawback of the AMLE model is that it cannot in-
terpolate slopes, it can only interpolate boundary data. As we
shall see later in this section and in Section IV, this does not al-
ways represent a serious problem, and there are many reasons
for keeping the AMLE method despite this drawback. However,
the fact that it cannot interpolate slopes may result in flat moun-
tain tops and slope discontinuities across some level curves. This
is not really serious, at the sides of a mountain or when looking
at the DEM as a gray-level image, but it becomes sometimes
visible when representing the DEM as a 3-D surface, producing
undesirable artifacts.

Actually the fact that the AMLE cannot interpolate slopes
comes from the axiomatic approach that leads to this model.
Hence, in order to avoid these artifacts, we have to go back to
our assumptions and do the necessary adaptations. First, we will
require our operator E to interpolate not only boundary data,
but also boundary slopes. Put another way, our operator will
take the form where is the
boundary data as usual, and is the derivative of
u in the direction of the inner normal to. The stability (P1)
and invariance properties (P4)–(P8) can be trivially generalized
to the new notation. The other two axioms will require, however
certain adaptations.

First, once we require to interpolate slopes as well, (P2)
does no longer make sense. A reasonable generalization is to
require an order for the slopes as well as for the data

(P2′) If and on then
.

Similarly, since it is not possible to interpolate data and slopes
with second-order operators, we will require at least fourth-
order. Hence, we have to modify the regularity property as fol-
lows:

(P3′) If is a fourth order polynomial with coefficients
then

(9)

Among fourth-order differential operators the biharmonic op-
erator

is well-known, and its application to surface interpolation dates
back to [12]–[14]. The interpolating operator

consists of solving the biharmonic problem

(10)

and is known to have a unique solution under quite general con-
ditions on , and .

This interpolator was called thin-plate spline because it
closely models the shape taken by a thin-metal plate when
forced to the given boundary conditions. In such a situation,
the plate minimizes its bending energy

(11)

subject to the boundary conditions and
. We can easily show that the biharmonic equation (10) is the

Euler–Lagrange of the bending energy (11).
This thin-plate spline model has been introduced as an inter-

polation tool for spatial data in [15] and the references therein.
The authors also discuss some variations of the model like the
thin-plate spline with tension with the aim of avoiding the os-
cillations that it may produce. This approach however relies on
a tradeoff between Laplacian interpolation (which has zero ca-
pacity for points) and biharmonic interpolation, and requires the
empirical selection of a tension parameter. So in the rest of this
section we shall concentrate on the thin-plate model.

Both from the PDE formulation and from the variational for-
mulation, it is straightforward to verify that the thin-plate spline
operator satisfies the invariance properties (P4)–(P8). Similarly,
the stability property (P1′) and the regularity property (P3′)
are direct consequences of its PDE formulation. The maximum
principle (P2′), however, remains more subtle. Actually, [16]
and [17] conjectured that it should be true for quite general do-
mains , since Boggio showed that it was true for circular do-
mains. Nevertheless 40 years later a number of counterexamples
disproved the conjecture. For instance, [18] showed it is false for
rectangular , and [19] and [20] showed it is false for elliptic
domains with eccentricity two. In any case, the maximum prin-
ciple remains valid for small perturbations of circular domains
[21].

Unfortunately, there is no equivalent for Theorem 3 either.
We do know [23] that for bounded and Lipschitz domains, if

in then

(12)

But the constant is not necessarily one and depends on the
Lipschitz character of the domain.

Furthermore, to the best of our knowledge it is not known
whether an interpolation operator exists, which satisfies all of
the axioms (P1), (P2′, P3′) and (P4)–(P8). If it exists it would
be a nice generalization of the AMLE model for slope-interpo-
lating operators. In its absence the thin-plate model comes close
by satisfying all but the maximum principle (P3′).
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C. Kriging

A widely used procedure to interpolate data is kriging, a
method originally developed in the framework of geostatistics.
We present here a brief account of this method, and give
some details on a specific case to be used in our experiments.
General references on the subject are [24]–[26]. The surface to
interpolate is viewed as a realization of a random field, of
which we know values at some sites of .
Through some second order properties (usually to be estimated
from the data) of , a “predictor” of is constructed,
defined as a linear combination of the known values of

(13)

This predictor satisfies two conditions. First, is requested to
be unbiased, that is, for all, writing for the mathematical
expectation,

(14)

The predictor also minimizes the least square error, that is, for
all ,

(15)

In other words, is a best linear unbiased predictor (BLUP),
a well-known predictor in statistics.

If the field is second-order stationary (EX is constant and
, for some function ), then is

found by inverting a linear system depending only on C and
the data (see [25]). However, and this is quite
clear in the case of DEM, cannot be assumed to be stationary.
Therefore, is assumed to have a “drift,” that is

, for some functions of . The general math-
ematical framework in which to address the Kriging problem
is the one of “intrinsic random functions,” a concept first intro-
duced by [27] following the work [28]. Let us briefly introduce
this particular type of random fields. We define to be the
set of polynomials of of degree less or equal to, and an
increment with respect to to be a set of

, for some integer , such that

for all functions . An intrinsic random function of order
(k-IRF) is a random field such that there exist a function

, a “generalized covariance,” such that

for all increments . These fields are completely deter-
mined by the generalized covariance, up to a polynomial of

degree . Let us write for the dimension of the space ,
and for a basis of this space. In this paper, we are
interested in particular fields of the form

(16)

where is a k-IRF such that , and the are random
variables. Fields of the type (16) may be shown to be k-IRF, and
are said to have a polynomial drift. The Kriging problem is then
expressed, in this particular case, in the same manner as in the
stationary case, that is to say thatsatisfies (14) and (15). It
may be shown that this predictor is obtained by inverting a
linear system, depending only onand the data .

For these fields the following function, defined for , is
a valid generalized covariance, provided Int , where
Int is the integer part of

if

if
(17)

where are convenient constants depending on. In the
rest of this paper, we consider Kriging with fields having
such a generalized covariance, and, thus, we do not address
the problem of estimating this function from the data. This
is primarily motivated by the fact that, as we will see more
precisely, this choice of lead to the same solution of the
interpolation problem as with the thin-plates spline method,
when choosing . We will thus be in a position to compare
out results with thin-plates and Kriging interpolators, in a
unified manner with various values of (see Section IV).
We further assume that the value of (the degree of the
polynomial drift) is 1, and thus allows for values .
In this case, and when (actually the realization
of corresponding to the realization of ) may be shown
to be a solution of the biharmonic problem (10), on,
with limit conditions [keeping the same notations as in (10)]

, for , and at infinity
(see [29] and [30]). Numerically, the equivalence may be seen
by considering radial functions as discussed in Appendix C.
Explicitly, we write

, and
define the matrices and .4

Then, the value of the predictor at a point is given by (see
[25]):

(18)

where and are column vectors such that

(19)

When and is given by (17) with , these are the
same equations as in the resolution of the thin-plate problem

4Let us recall that in our experiments we only consider 1-IRFs, sok =

1; N = 3, and the basis ofP is made up ofp = 1; p = x, and
p = y.
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Fig. 1. (a) Elevation model used throughout the experiments. It represents a
12.4� 6.9 km area around Mount Sainte Victoire with heights values ranging
between 190 and 1011 m. The horizontal sampling is 30 m, whereas the vertical
precision is about 2 m standard deviation. In all figures, all axes values are
expressed in meters, but the vertical axis has been stretched by a factor of three
with respect to the real aspect ratio in order to better visualize the irregularities
of the terrain. (b) In the quantized DEM light gray colors represent known data
points whereas dark gray colors represent unknown points to be interpolated.
It has been obtained from the original by only keeping level-curves at regular
intervals of 50-m height.

through radial functions like in [31], since in that case the var-
iogram is the fundamental solution of the
biharmonic equation . More generally, when ,
the kriging solution may be obtained by usingas a radial func-
tion.

IV. EXPERIMENTS

The figures and tables in this paper show some results of inter-
polation by both the AMLE model, and the classical thin-plates
and Kriging models discussed in this paper. To illustrate these
methods we chose the elevation model shown in Fig. 1(a) (where
height is represented as a three-dimensional illuminated sur-
face). This is a 12.42 6.9 km DEM around Mount Sainte Vic-
toire where each pixel represents a 3030 m patch. Height
values vary between 190 and 1011 m and have a precision of
about 2 m. As explained in Section III C, we chose a Kriging
model with generalized covariance given by (17), so that thin-
plate interpolation corresponds mathematically to the case
. The use of radial functions enables these two methods to agree

also from the numerical point of view.
As a first experiment we quantized this elevation model by

keeping only the level curves at regular intervals of 50-m height,

Fig. 2. Interpolations of the quantized elevation model from Fig. 1(b). Light
gray colors represent known data points whereas dark gray colors represent
interpolated points. Observe how AMLE produces certain flat regions and
slope discontinuities, but better preserves ridges and avoids some oscillations
produced by the thin-plate spline.

as a way to simulate the kind of data that can be obtained
from scanning nondigital cartography [see Fig. 1(b)]. Then,
we try to reconstruct the original DEM by interpolation using
the AMLE model [see Fig. 2(a)] and the thin-plate models
[see Fig. 2(b)].

As a second experiment we simulated the kind of interpola-
tion domains that arise in DEMs produced from stereoscopic
views. We present four examples: in the first one, we eliminate
the top of a mountain [Fig. 3(a)], in the following two, we elimi-
nate a closed region on the side of it, Fig. 3(b) and (c), and in the
last one we eliminate a flat region, Fig. 3(d). The corresponding
interpolations by AMLE and kriging models can be observed in
Figs. 4–7. In Table I, we display the distances between orig-
inal and interpolated DEMs for the different methods.

In these experiments, we can observe how (unlike the AMLE
model), the thin-plate and Kriging models allow to interpolate
slopes, and produce (i.e., with one continuous derivative)
interpolants across imposed level curves. Thanks to this ability
they allow to roughly recreate the mountain top in Fig. 4(c).

On theotherhand, theyaresomehowmuchmorediffusive than
the AMLE model, producing too smooth reliefs. For instance
in examples b and c [Figs. 5(a) and 6(a)] we see how the AMLE
model better preserved the ridges. In the second case AMLE
is better both visually and in terms of RMS error, whereas in
the first case AMLE is visually better despite a slightly larger
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Fig. 3. Interpolation domains used for the second experiment. Light gray colors represent known data points whereas dark gray colors represent unknown points
to be interpolated.

RMS error. A similar observation can be made about the last
example in Fig. 7(a), where AMLE is visually better despite
a slightly larger RMS error. In general, the AMLE produces
a better result when the region to be interpolated is entirely
contained on one side of the mountain or in a roughly flat
region. In those cases the relative slope variations around the
boundary are not important so it is not necessary to actually
impose them: the average slope is implicit in the boundary
data.

Furthermore the fact that thin-plate and kriging do not sat-
isfy a maximum principle means that they are less safe than the
AMLE model, in the sense that it can create unnatural oscil-
lations. With respect to Kriging, we can observe how a larger
value of can be used to reduce the diffusive behavior of the
thin-plate ( ), and make it better preserve ridges, although
not as good as the AMLE. However, larger values oflead also
to increasingly ill-conditioned systems and to even more unnat-
ural oscillations, as it can be observed for instance in Fig. 5(d).

V. DISCUSSION ANDFURTHER WORK

In this paper we propose the AMLE as a new method for in-
terpolating digital elevation models and explore its relationship
to previously used methods.

Unlike other methods that have been proposed in the geo-
science literature, the AMLE satisfies a maximum principle,
which ensures that it does not create oscillations. We also
showed through experiments that it also preserves ridges much
better than Kriging and thin-plate methods, which are much
more diffusive. Even though Kriging for high values of
comes a bit closer to the AMLE (in terms of ridge preserva-
tion), it’s exactly when is high that Kriging produces the
most undesirable oscillations. Also in terms of computational
efficiency it can be faster than Kriging, depending on the data.

In the case of interpolation of iso-level lines AMLE can
be interpreted as iterated geodesic distance transformations,
which explains why it shares some qualitative properties with
this method.
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Fig. 4. Interpolations of the first example, Fig. 3(a). Light gray colors represent known data points whereas dark gray colors represent interpolated points.

The major disadvantage of AMLE is the fact that it cannot
interpolate slopes as well as values. For this purpose we proposed
a reasonable generalization to slope-interpolating operators of
the axiomatic approach that leads to the AMLE model. None
of the currently known methods satisfies all of these axioms.
The thin-plate method comes closest by satisfying all but the
maximumprinciple,hence itmayproduceunnatural oscillations.
The search for a (possibly nonlinear) fourth-order differential
operator satisfying all of the proposed axioms remains an
interesting problem for future research, since it might lead
to a slope-interpolating operator with all the advantages of
AMLE.

In the absence of such a generalized interpolator, we would
propose a combined use of AMLE and Kriging or thin-plate
methods. This could be done in a way which allows to use
AMLE whenever fixing slope values is not necessary, and
Kriging otherwise. This would require for each connected com-

ponent of the interpolation domain, either a human decision,
or an automatic procedure which first applies AMLE and then
keeps it if the slope discontinuities it creates on this connected
component are below a certain threshold, or substitutes it by
Kriging. Another possibility consists of adding to the AMLE
interpolation, a factor ( ) times the solution of thin-plate
interpolation with zero boundary condition, and slope boundary
condition equal to the slope discontinuity introduced by AMLE.
This would probably produce a quasislope-interpolating oper-
ator which better preserves ridges.

APPENDIX

ALGORITHMIC COMPLEXITY

In this section we briefly discuss the complexity of the
algorithms we used for computing the different interpolation
methods proposed. The computing times we needed on a
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Fig. 5. Interpolations of the second example, Fig. 3(b). Light gray colors represent known data points whereas dark gray colors represent interpolated points.
Observe how AMLE better preserves the ridges. Among Kriging methods, ridges are best preserved by the highest values of�, but at the cost of more oscillations
than lower values of� and AMLE. Lower values of�, on the other hand are much too diffusive.

SUN UltraSparc processor at 336 MHz to run the examples in
Table I are given in Table II. These figures should be taken with
care when comparing methods, because our implementations
of these algorithms are not optimal in all cases, and they are
implemented in different languages (C for AMLE and Matlab
for thin-plate and Kriging).

In the following paragraphs, we give an indication of the com-
putational complexity as well as some possible improvements in
their implementations. This should be more useful to compare
the performance of the different methods.In all cases we assume
that the region to be interpolated consists of grid-points,
and that its boundary is composed of grid-points. Fur-
thermore, we call the number of interpolation constraints,
which in the case of AMLE and distance transforms is
and in the case of thin-plate and Kriging is usually in the range

. This is due to the fact that in order to impose
slopes on the boundary, what we do in practice is impose the
values on a dilated boundary, which is normally composed of

about points, except if data is not available on the dilated
boundary as in the case of contour-line interpolation.

A. AMLE Using Finite Differences

In [32] a consistent finite-difference scheme was proposed for
solving the AMLE. It consists of iterating

with the same boundary condition
and any initial condition

until a steady-state is found (for ),
which satisfies the AMLE equation up to
a certain tolerance. Each time step is discretized in a semi-im-
plicit manner, using one iteration of nonlinear over-relaxation
to solve it. The global complexity is then flops, where

is the number of iterations needed to reach the steady-state,
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Fig. 6. Interpolations of the third example, Fig. 3(c). Light gray colors represent known data points whereas dark gray colors represent interpolated points.
Observe how AMLE preserves the ridges remarkably better than Kriging.

and is the constant number of floating point operations
per point and iteration. In our examples, and we need
about iterations to achieve a precision of two decimal
digits, and about iterations for a precision of four
digits. Total running times for these examples are 0.2 and 0.3 s,
respectively, on a Sun SPARC workstation.

The number of iterations is highly dependent though on the
size of the maximal gap in the interpolation domain. In a bigger
example with , we need about iterations
(10 min) for a precision of two decimal digits.

Nevertheless, our implementation of the AMLE can be
significantly accelerated for domains with large gaps by means
of a multigrid algorithm, and by substituting nonlinear over-re-
laxation by a variant of the preconditioned conjugate gradient
method.

B. AMLE Through Iterated Geodesic Distance Transforms

As we observed in Section III-A, in the special case of con-
tour-line interpolation, the AMLE can be obtained by iterated
geodesic distance transform interpolations. The complexity of
one iteration is flops, where is a small constant, if we com-
pute the weighted geodesic distances by a propagation algorithm
like the one in [33], which visits each pixel just a few number of
times.The total complexityofAMLEthroughgeodesicdistances

is then flops, but the number of iterationsis here much
smaller than in the case of finite differences.

C. Thin-Plate and Kriging Through Radial Basis Functions

Kriging and thin-plate interpolations can be both computed,
as explained in Section III-C, by solving (19) in order to find the
Kriging coefficient vectors and [which takes
flops in the case of 1-IRF, where ], and then using equa-
tion (18) to find the value of the interpolant at each point [which
takes flops]. So, the total complexity is

flops. This is much faster than AMLE when
is small with respect to (a roughly circular interpolation

domain for instance), but much slower whenis large, which
happens, e.g., when the interpolation domain has a very irreg-
ular boundary.

D. Thin-Plate Through Finite Differences

In the special case of Kriging coincides with the
thin-plate model and we can use a finite difference method to
solve it. The spatial discretization of the biharmonic equation
with boundary conditions (10) leads to a sparse (block-banded)

linear system with 21 bands (one for each point
in the 5 5 stencil used to discretize the bilaplacian operator).
To solve this system we used either a multigrid approach, or a
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Fig. 7. Interpolations of the third example, Fig. 3(d). Light gray colors represent known data points whereas dark gray colors represent interpolated points.

TABLE I
L DISTANCESBETWEENORIGINALS AND INTERPOLATED FOREXAMPLES a–d,

FIG. 3 (ALL VALUES ARE EXPRESSED INMETERS)

TABLE II
COMPUTATIONAL RESOURCES FOR THEEXAMPLES IN TABLE I. ALL VALUES

ARE EXPRESSED INSECONDS(AND M FLOPS). AT THE END WE INDICATE

THE SIZE OF THE PROBLEM IN TERMS OFN (SIZE OF REGION TO BE

INTERPOLATED IN PIXELS) AND M (SIZE OF REGION BOUNDARY, I.E., THE

NUMBER OF INTERPOLATION CONSTRAINTS)

preconditioned conjugate-gradient method, with an incomplete
LU factorization as a preconditioner. The total complexity is

then , where is the number of iterations of the
conjugate gradient algorithm and is the number of nonzero
elements per row in the incomplete LU factorization. In our ex-
periments and , typically for
a four digit precision. Thus, for large values of this method
performs much better that the radial basis function method de-
rived from Kriging.
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