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Abstract Accurate junction detection and characterization
are of primary importance for several aspects of scene analy-
sis, including depth recovery and motion analysis. In this
work, we introduce a generic junction analysis scheme. The
first asset of the proposed procedure is an automatic crite-
rion for the detection of junctions, permitting to deal with
textured parts in which no detection is expected. Second, the
method yields a characterization of L-, Y- and X- junctions,
including a precise computation of their type, localization
and scale. Contrary to classical approaches, scale character-
ization does not rely on the linear scale-space. First, an a
contrario approach is used to compute the meaningfulness
of a junction. This approach relies on a statistical modeling
of suitably normalized gray level gradients. Then, exclusion
principles between junctions permit their precise character-
ization. We give implementation details for this procedure
and evaluate its efficiency through various experiments.

Keywords Junction detection · Scale characterization ·
a-contrario method · Scale-invariant keypoints ·
Contrast invariance

G.-S. Xia (B)
State Key Lab. LIESMARS, Wuhan University,
129 Luoyu Road, Wuhan 430079, China
e-mail: guisong.xia@whu.edu.cn

J. Delon · Y. Gousseau
Telecom ParisTech, LTCI CNRS, 46, rue Barrault,
75013 Paris, France
e-mail: delon@telecom-paristech.fr

Y. Gousseau
e-mail: gousseau@telecom-paristech.fr

1 Introduction

Junctions are of primary importance for visual perception
and scene understanding. They are parts of the well known
primal sketch, the schematic representation of images intro-
duced by (Marr 1982). Recent approaches to the computation
of this sketch, as proposed by (Guo et al. 2007), show the key
role played by junctions. Depending on the number of edges
they connect, junctions are often classified into L-, Y- (or T-)
and X-junctions. In particular, the role of T-junctions as cues
for the perception of occlusions has been thoroughly stud-
ied by (Kanizsa 1979). Later, it has been shown in (Rubin
2001) that junctions are essential local cues to initiate con-
tour completion and that their specific configuration (e.g. T-
or Y-junction) has to be taken into account in this process.
The distinct roles of L- and T-junctions for the perception
of motion, in particular through the aperture phenomenon,
has been known for long (Wallach 1935). Junction types
and positions are also shown to have a strong impact on the
perception of brightness and transparency, as investigated in
(Metelli 1974; Adelson 2000).

Junctions are therefore naturally used as important cues
for various computer vision tasks. Since they reveal important
occlusion relationships between objects, they are involved in
figure/ground separation (Geiger et al. 1996; Ren et al. 2006;
Leichter and Lindenbaum 2009; Dimiccoli and Salembier
2009). Junctions are also used for grouping edges and regions
to achieve image segmentations (Fuchs and Förstner 1995;
Lindeberg and Li 1997; Ishikawa and Geiger 1998). The role
of junction for object recognition has been studied since the
early works on automatic scene analysis, see (Guzmán 1968;
Bolles and Cain 1982; Lin et al. 2007).

In the present work, we propose a principled and auto-
matic method for the detection, localization and characteri-
zation of junctions. We define junctions as local or semi-local
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structures at the center of which at least two dominant and
different edge directions meet. Junctions are defined locally,
and not for instance as a by-product of a global image seg-
mentation, mostly to achieve precise description of the junc-
tion. Following observations from psychophysics (McDer-
mott 2004), we nevertheless consider large regions for the
assessment of a junction. This is made possible by an auto-
matic scale selection rule. It should be noticed that not all per-
ceived junctions enter this framework, and that some of them
are only detected while performing scene analysis (McDer-
mott 2004). Nevertheless, as advocated above, we believe
that a precise and accurate description of junction makes
them valuable information in view of a more global scene
analysis.

More precisely, we take interest in a junction detection
method meeting several requirements. First, junctions have
to be clearly related to the geometry of the image. In par-
ticular, the description of the junction branches should be
accurate. This is in strong contrast with the classical corner
detectors such as Harris, that are commonly used as key-
point detectors. Second, an automatic validation rule will be
derived. For this, we rely on the a contrario methodology
(Desolneux et al. 2000), in which structures are validated
by controlling the number of false detections. A key advan-
tage of this approach is the automatic setting of detection
parameters in a way that will prevent the numerous junctions
that are usually detected in textured areas. Third, the position
and scale of the junctions should be detected precisely and be
closely related to the image geometry. This will be achieved
thanks to a competition between junctions relying on a sound
quality measure, the number of false alarms associated with
a junction. A shorter version of this work has appeared in
(Xia et al. 2012).

1.1 Related Works

1.1.1 Corner Detectors

Automatic junction detection has been a very active research
field over the last four decades. Some of the earliest meth-
ods were introduced by (Hannah 1974) and (Moravec 1977),
both considering interest points as points which are not sim-
ilar to their neighbors, the similarity being assessed either
by correlation or by a quadratic distance between patches.
It has then been proposed, in (Förstner 1986) and (Harris
and Stephens 1988), to compute derivative of similarity mea-
sures, and therefore to rely on the so-called Harris matrix to
detect corners. Such approaches are widely used in prac-
tice and a large number of detectors rely on similar ideas,
the detection of corners boiling down to the analysis of the
eigenvalues of this matrix, see e.g. (Shi and Tomasi 1994;
Förstner 1994; Kovesi 2003; Kenney et al. 2005). In partic-
ular, in order to achieve contrast invariance, (Kovesi 2003)

uses phase congruency to derive cornerness measurement.
In this work, the image gradient is normalized over small
wedges. Alternative measurements of self-similarity have
also been proposed, such as the univalue segment assimilat-
ing nucleus (USAN) (Smith and Brady 1995) and its variants
(Trajkovic and Hedley 1998; Rosten et al. 2010). Observe
that such methods relying on a measure of cornerness actu-
ally do not distinguish between different types of junctions.
They are therefore usually used to compute generic interest
points and their use as local cues for occlusion analysis or
figure/ground separation is less clear. Also observe that in
order to identify the characteristic scale of a corner, corner
detectors usually make use of the linear scale-space (Deriche
and Giraudon 1993; Lindeberg 1994; Schmid et al. 2000;
Lowe 2004; Mikolajczyk and Schmid 2004). One of the main
shortcomings of such approaches is that they quickly lose
precision both in localization and scale. A notable excep-
tion is the work of (Förstner et al. 2009) where the keypoint
locations are optimized and their type are identified. For an
overview of the use of linear scale-space for keypoint detec-
tion, one may consult (Dickscheid et al. 2011). An other
approach is to rely on some contrast invariant multi-scale
analysis. In this direction, (Alvarez and Morales 1997) ana-
lyze junctions in images using an affine morphological scale
space.

1.1.2 Boundary Based Methods

A second popular and efficient way to detect corners relies
on explicit boundaries in images. Corners are interpreted
as points in the image where a boundary changes direction
rapidly and points with high curvature are selected. Many
works have concentrated on different and efficient ways to
compute the curvature of curves for detecting corners, see
(Rosenfeld and Johnston 1973; Teh and Chin 1989; Rat-
tarangsi and Chin 1992; Wang and Brady 1995; Mokhtarian
and Suomela 1998; Mohammad and Lu 2008). In a different
way, it has been proposed in (Beymer 1991) to detect junc-
tions by extending disconnected edges and by filling gaps at
junctions. Junction detection can also rely on the grouping
of edges in the neighborhood of a candidate junction (Free-
man 1992; Rohr 1992; Perona 1992; Bergevin and Bubel
2004). In a related direction, it is proposed in (Rosenthaler
et al. 1992) to combine the responses of several oriented
filters to detect junctions. Several works have proposed to
rely on the contrast invariant level lines of images to detect
junctions. (Caselles et al. 1996) have proposed a method
based on a level-set representation, detecting junctions as
points where two level lines meet. Cao (2003) detects cor-
ners as points along level lines where a good continuation
criterion is broken. Corners are detected as points where
the curvature along a level line is abnormally high, in an
a contrario framework. In other approaches, a global seg-
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mentation of the image is first performed, followed by a
heuristic grouping of edges to form junctions (Wu et al.
2007; Maire et al. 2008). It should there be emphasized
that the segmentation process in itself is a very challeng-
ing task. For instance, before detecting junctions, (Maire et
al. 2008) finds contours by the global probability of bound-
ary (gPb) detector learned from a human-annotated data-
base. Such approaches permit to benefit from global image
interpretation to find junctions. On the other hand, bound-
ary are often imprecise in the neighborhood of a junction,
so that such approaches do not enable an accurate charac-
terization of junctions, that in turn can be used to refine
edges.

1.1.3 Template-based Methods

Among existing approaches, the model-based or template-
based ones are the most suitable for accurate local junc-
tion detection. Deriche and Blaszka (1993) presents com-
putational approaches for a model-based detection of junc-
tions. A junction model is a 2D intensity function depend-
ing on several parameters. Starting from a poorly localized
initialization (e.g. from the Harris detector) parameters are
then optimized in view of a precise localization. Parida et
al. (1998) suggest a region-based model for simultaneously
detecting, classifying and reconstructing junctions. A junc-
tion is defined as an image region containing piecewise con-
stant wedges meeting at the central point. This work relies
on a template deformation framework and uses minimum
description length principle and dynamic programming to
obtain the optimal parameters describing the model. This
work also involves junction candidates provided by a pre-
liminary corner detector. Ruzon and Tomasi (2001) model
junctions as points in images where two or more image
regions meet. Regions are described by their color distrib-
utions, which allows textured objects with the same average
color to be distinguished. Following the model of Parida et
al. (1998), (Cazorla and Escolano 2003; Cazorla et al. 2002)
propose both a region-based and an edge-based model for
junction classification by using Bayesian methods. The
region-based one formalizes junction detection as a radial
image segmentation problem under a regions competition
framework and the edge-based one detects junctions as radial
edges minimizing some Bayesian classification error. In this
work, the edge-based approach is shown to yield more accu-
rate junction detections, but at the price of a large num-
ber of false detections, especially in textured regions. More
recently, the work of (Sinzinger 2008) first detects a set
of junction candidates by using a preliminary detector (for
instance the Harris detector) and then refines those candidates
by relying on a radial edge energy.

The different approaches for junction detection, as well as
their properties, are summarized in Table 1.

1.2 Contributions and Outline

As explained earlier in the introduction, the goal of this paper
is to design a junction detection procedure involving an auto-
matic decision step and permitting a geometrically accurate
description of junction properties, including type, localiza-
tion and scale. This is made possible thanks to the use of
an a contrario methodology (Desolneux et al. 2000). The
resulting detection method will be coined ACJ (for a con-
trario junction detection). In short, we first define (in Sect. 2)
junctions as geometrical structures in discrete images and
we associate to each candidate junction a quantity called
strength, which is designed to be high at locations where sev-
eral edges (called branches) meet in the image. This strength
relies on a well chosen normalization of the gradient, which
makes the whole approach robust to local contrast changes.
We then rely in Sect. 3 on a statistical framework in order to
decide automatically which junctions deserve to be detected
or not in a given image. More precisely, meaningful junc-
tions are detected as those which are very unlikely under
some null hypothesis H0. This detection step is followed
by several exclusion criteria, designed to rule out redundant
junctions and to identify precisely the correct scales, posi-
tions and complexities (number of branches) of junctions.
As a by-product of the scale estimation, the whole approach
is robust to resolution changes. Finally, in Sect. 4, details
about implementation and parameter settings are provided.
Section 5 analyzes the proposed algorithm experimentally.

2 Contrast Invariant Junctions

The aim of this section is to define junctions in discrete
images (Sect. 2.2) and to associate to each candidate junction
a strength (Sect. 2.3). The strength of a junction is defined
through both the gradient orientation and magnitude. Robust-
ness to local contrast changes is achieved by normalizing the
gradient magnitude, as explained in Sect. 2.1. The strength of
junctions will be used in Sect. 3 to decide whether junctions
are meaningful or not in a given image.

2.1 Gradient Normalization

Let us start with some definitions and vocabulary that will
be used throughout the paper. A discrete image is a function
I : Ω → R, where Ω is a rectangular subset of Z × Z. We
write ∇ I = (Ix , Iy) for the discrete gradient of the image

I .1 For a pixel q in Ω , we define φ(q) = (arctan Iy(q)
Ix (q)
+

π/2)modulo(2π), the direction perpendicular to the gradient

1 In this paper, we use the following discrete scheme to compute the
gradient: for a pixel q = (x, y), Ix (q) = 1

2 (I (x + 1, y)− I (x − 1, y))

and Iy(q) = 1
2 (I (x, y + 1)− I (x, y − 1)).
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(a) (b) (c)

Fig. 1 Gradient ∇ I and normalized gradient ̂∇ I on an image patch

at q (and set φ(q) = π when Ix (q) = 0). We call this angle
the direction of the pixel q.

In order to be robust to local contrast changes, we locally
normalize the gradient magnitude by dividing it by its average
on a small neighborhood. That is, for q = (x, y), we define
̂∇ I = (̂Ix , ̂Iy) as

̂Ix (q) = Ix (q)

〈
√

I 2
x + I 2

y 〉Nq

and ̂Iy(q) = Iy(q)

〈
√

I 2
x + I 2

y 〉Nq

,

(1)

where Nq is a small neighborhood around q and 〈.〉Nq is
the linear average operator on Nq. The resulting gradient is
robust to contrast changes that can be approximated by affine
transformations on each neighborhood Nq. An example of
the gradient and normalized gradient of an image, obtained
with a square neighborhood of size 5× 5 around each pixel,
is shown in Fig. 1. Observe that the phase of the normalized
gradient is the same as the phase of the plain gradient.

In Sect. 3, we will rely on the empirical distribution of the
gradient to detect meaningful junctions. More precisely, we
will consider the globally normalized gradient

˜Ix =
̂Ix − μx

σx
and ˜Iy =

̂Iy − μy

σy
, (2)

whereμx (resp.μy) and σx (resp. σy) are the empirical mean
and standard deviation of ̂Ix (resp. ̂Iy) over the whole image.
In the following paragraphs, this globally normalized gradi-
ent will be used to weight the contribution of local orien-
tations in order to define the strength of a junction. As we

will see, the distribution of the norm ‖˜∇ I‖ =
√

˜Ix
2 + ˜Iy

2
in

natural images is well approximated by a standard Rayleigh
distribution outside of 0.

2.2 Discrete Junction Definition

A junction is defined as a discrete image structure j :
{

p, r, {θm}Mm=1

}

, characterized by its center pixel p, its scale

r ∈ N and a set of branch directions {θ1, . . . θM } around p.
The number M of branches in the junction is called the order
of the junction : when M = 2, 3 or 4, we speak respectively
of L ,Y or X -junctions. The discrete set D(r) of possible
directions at a given scale r is defined as

D(r) :=
{

2πk

K (r)
; k ∈ {1, . . . K (r)}

}

. (3)

In this definition, K (r) is a prescribed number of discrete
directions on the circle. In the experimental part, K (r) will
be chosen as K (r) = �2πr	.2

For a given scale r and a given direction θ in D(r), we
define the branch of direction θ at p as the disk sector

Sp(r, θ) :=
{

q∈Ω; q 
=p, ‖−→pq‖
≤ r, d2π (α(

−→pq), θ) ≤ Δ(r)
}

, (4)

whereΔ(r) is a precision parameter, α(−→pq) is the angle of the
vector −→pq in [0, 2π ] and where d2π is the distance along the
unit circle, defined as d2π (α, β) = min(|α−β|, 2π−|α−β|).
We note J (r, θ) the number of pixels in a sector of direction
θ at scale r . This size depends on the scale r but also slightly
changes with the direction θ since the image is defined on a
discrete grid.

Finally, we require that two branches of a given junction do
not intersect. It follows that the angle between two directions
in a junction j must be larger than 2Δ(r). As a consequence,

2 For a circle of radius r centered at pixel (0,0), �2πr	 is a good approx-
imation of the number of pixels (x, y) on the circle, in the sense that
round(

√

x2 + y2) = r .
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Fig. 2 A junction with three branches. Each branch is represented by
a disk sector Sp(r, θ) with an angular aperture of 2Δ(r)

the number of possible directions in a junction at scale r
is smaller than π

Δ(r) . An example of a junction with three
branches is shown on Fig. 2.

2.3 Junction Strength

The strength of a junction will be defined from the strength
of its branches. The strength of a branch is a measure of how
well the corresponding angular sector agrees with the pixels
it contains. A pixel q contributes all the more to the strength
as its direction φ(q) is in agreement with the direction α(−→pq)
and as the normalized gradient ‖˜∇ I (q)‖ is large. Precisely,
the strength of a branch is defined as

Definition 1 (Strength of a branch) Let p be a pixel, r a
positive scale and θ a direction in D(r). The strength of the
branch Sp(r, θ) is defined as the quantity

ωp(r, θ) =
∑

q∈Sp(r,θ)

γp(q), (5)

where

γp(q) = ‖˜∇ I (q)‖ ·max
(

| cos(φ(q)− α(−→pq)|
−| sin(φ(q)− α(−→pq))|, 0

)

. (6)

The max operator has been chosen so that the contribution
of the pixel is equal to zero if the difference between α and φ
is larger than π/4. Other choices could be made. The larger
the strength of a branch, the more likely it is that the branch
corresponds to an edge. Figure 3c shows the values of γp(q)
for the image patch shown in Fig. 3a.

The strength of a junction is then derived from the strength
of its branches as follows:

Definition 2 (Strength of a junction) The strength of a junc-

tion j :
{

p, r, {θm}Mm=1

}

is defined as

t (j) := min
m=1...M

ωp(r, θm). (7)

Starting from this definition, a first naive algorithm for
junction detection can be developed. The idea is to detect,
for a fixed scale r and a given threshold t , all the junc-
tions in I having a strength greater than t . In practice,
testing all possible junctions for every point p in Ω is
computationally heavy. Among all the potential branches
at a given point p, we restrict ourselves to the directions
θ in the discrete set D(r) where the periodic function
ωp(r, .) reaches a local maximum. Moreover, in order for
branches not to intersect, we impose that the local maxi-
mality holds over a length 2Δ(r), that is ωp(r, θ) is greater
than ωp(r, θ ′) for θ − Δ(r) ≤ θ ′ ≤ θ + Δ(r). The
set of these local maxima can be computed quickly, for
instance by using a non-maximum suppression (NMS) pro-
cedure (see Kitchen and Rosenfeld 1982; Neubeck and Van
Gool 2006). In practice, if two local maxima are equal and
located at a distance smaller than Δ(r), one of them is
discarded.

The Case of L-junctions In order not to detect all edge
points as L-junctions, junctions for which M = 2 and whose
branches are opposite (that is, with two directions θ1 and θ2

such that d2π (θ1, θ2 + π) ≤ 2Δ(r)) are discarded.
The overall detection procedure is summarized in Algo-

rithm 1.

Algorithm 1 Junction detection in an image I at a given scale
r .
Input: A discrete image I , an order M , a positive scale r , a number K

of discrete directions, a precision Δ and a threshold t .
1: compute ˜∇ I at each pixel using Equation (1);
2: set D = { 2πk

K ; k = 1, . . . K
}

3: for each pixel p do
4: (1) compute ωp(r, θ) for each θ in D, using Equations (5) and (6);

5: (2) use a NMS procedure to only keep directions θ such that
ωp(r, θ) is locally maximum on [θ −Δ, θ +Δ]; callΘ the set of
these directions;

6: (3) find all the subsets Θ ′ of size M in Θ such that
minθ∈Θ ′ ωp(r, θ) ≥ t ; for each of these subsets, mark j :
{

p, r,Θ ′
}

as a junction if M 
= 2, or if M = 2 andΘ ′ = {θ1, θ2}
with d2π (θ1, θ2 + π) ≤ 2Δ.

7: end for
8: return The set of detected junctions.

The first parts of the procedure are illustrated in Fig. 3. In
this example, the pixel p is chosen as the center of Fig. 3a.
Figure 3d shows in blue the values ofωp(r, θ)when the angle
θ spans the periodic set D(r) and shows in red the semi-local
maxima kept after the NMS procedure (step (2) of the loop
in Algorithm 1). Figure. 3e represent respectively a candi-
date L-junction, a candidate Y -junction and a candidate X -
junction at p. The main drawback of this detection algorithm
is that the threshold t on the junction strength remains the
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Fig. 3 Computation of junction candidates at scale r = 12, when p is
the center of the original image (a). The blue curve in (d) shows the
strength ωp(r, θ) as a function of the direction θ along the circle. The
directions that remain after the NMS procedure are shown in red. For
r = 12, K (r) = 75, and 2Δ(r) = 0.289 (see Sect. 4.1) (Color figure
online)

same whatever the junction scale and order and whatever the
image size. Setting such a threshold globally is not easy and
can lead to over-detect at some scales and under-detect at
others. The goal of the next section is to provide detection
thresholds that adapt to the junction scale and order, as well as
to the image size. For this purpose, we resort to an a contrario
methodology.

3 An a contrario Approach for Junction Detection

The a contrario detection theory has been primarily pro-
posed by (Desolneux et al. 2000). This methodology is
inspired by geometric grouping laws governing low-level
human vision, known as Gestalt laws (Kanizsa 1979), and
states that meaningful structures in images are structures
which are very unlikely under some hypothesis of ran-

domness. The method has been extensively tested and suc-
cessfully applied to various problems in image process-
ing and computer vision, see e.g. (Cao 2003; Moisan and
Stival 2004; Musé et al. 2006; von Gioi et al. 2010).
A complete overview of these methods can be found in
(Desolneux et al. 2008). In this section, this methodol-
ogy is adapted to the detection of meaningful junctions in
images.

3.1 Null Hypothesis

The goal of the following sections is to set detection thresh-
olds on junction strengths in such a way that no junction will
be detected under a given null hypothesis H0. Let us pre-
cise what “null hypothesis” stands for here. For each pixel
q of Ω , write ‖˜∇I(q)‖ and φI(q) the random variables cor-
responding to the value and orientation at this pixel. We say
that these variables follow the null hypothesis H0 if

1. ∀q ∈ Ω, ‖˜∇I(q)‖ follows a Rayleigh distribution with
parameter 1 ;

2. ∀q ∈ Ω,φI(q) is uniformly distributed over [0, 2π ] ;
3. The family {‖˜∇I(q)‖, φI(q)}q∈Ω is made of independent

random variables.

Let us comment on the first assumption. In Ruderman and
Bialek (1994), observe that if we normalize the logarithm
of the intensity of an arbitrary natural image by its local
mean and standard deviation in a neighborhood Np around
each pixel, “the histogram of pixel values has Gaussian tails,
and the distribution of gradients in the‘variance-normalized’
image is almost exactly the Rayleigh distribution”. A sim-
ilar behavior may be observed on our case on the mod-
ified derivatives ̂Ix and ̂Iy : except on a small neighbor-
hood around 0, their distribution is well approximated by
a Gaussian distribution. This is illustrated for a particular
image I in Fig. 4. In this figure, the empirical distribu-
tions of ̂Ix and ̂Iy are drawn in blue, and the best Gaussian
fits are drawn in red. If we except a peak around 0, the
fit is very good (the poor approximation for large values
is a numerical effect: probabilities smaller than 1

|Ω| are
not attainable empirically). It follows from this observa-
tion that ˜Ix and ˜Iy are well approximated by the standard
normal distribution (that is, a Gaussian distribution with
zero mean and unit variance) and the norm ‖˜∇ I‖ in nat-
ural images approximately follows a central chi-distribution
with 2 degrees of freedom (also known as the Rayleigh dis-
tribution of parameter 1). This is confirmed experimentally
by the example shown in Fig. 4. Moreover, we performed a
small scale experiment whose results are shown on Fig. 5a.
In blue are displayed the empirical distributions of ‖˜∇ I‖
for 50 different natural images, as well as the density of the
Rayleigh distribution of parameter 1 (in red). Again, proba-
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Fig. 4 Approximations of the distributions of ˜Ix , ˜Iy and ‖˜∇ I‖ (given
by Eqs. (1) and (2)). The blue curves represent the empirical histograms
and the red curves are the corresponding Gaussian and Rayleigh distrib-
utions. Plots are displayed in a semi-log scale. The poor approximation

for large gradient values is due to a numerical effect: small probabili-
ties cannot be reached with the available number of observations (Color
figure online)

bilities smaller than 1
|Ω| cannot be reached empirically, which

explains the poor fit for large values. Eventually, observe
that the Gaussian approximation used for the normalized
gradients ̂Ix and ̂Iy would not be adequate for the classi-
cal gradients Ix and Iy , whose distributions are highly non-
Gaussian and accurately modeled by generalized Gaussian
distributions.

3.2 Distribution of t(j) Under H0

Let j :
{

p, r, {θm}Mm=1

}

be a junction in I and assume that

the normalized gradients and directions of I follow the null
hypothesis H0. Then the strengths ωp(r, θm) of the different
branches Sp(r, θm) are independent random variables (since
branches do not intersect). Recall also that the strength of
a junction is the minimum of the strengths of its branches.
Thus, if we note t(j) the random variable measuring the
strength of j ,

PH0 [t(j) ≥ t] = PH0 [∀m, ωp(r, θm) ≥ t]

=
M
∏

m=1

PH0 [ωp(r, θm) ≥ t]. (8)

Now, the strength of each branch, ωp(r, θm), is itself a sum
(over the angular sector Sp(r, θm)) of i.i.d. random variables
γp(q). For two given points p and q inΩ , the direction α(−→pq)
is a constant in [0, 2π ]. This implies that under the hypoth-

esis H0, the random angle φI(q) − α(−→pq) is still uniformly
distributed on [0, 2π ]. As a consequence, each γp(q) can be
written as a product X ·max(| cos θ | − | sin θ |, 0), where X
and θ are independent, X follows a Rayleigh distribution and
θ is uniformly distributed on [0, π ]. Finally, it can be shown
that under the hypothesis H0, each random variable γp(q)
follows the distribution (see Appendix 2 for a proof)

μ = 1

2
(δ0 + R.L) , (9)

where δ0 is a Dirac measure centered at 0 and L is the
Lebesgue measure on the real line. The function R can be
written

R(z) = 2√
π

e−
z2
4 · erfc

( z

2

)

1z≥0, (10)

with erfc the complementary error function, erfc(z) =
2√
π

∫∞
z e−s2

ds.

The empirical distribution of γp(q) on 50 natural images is
displayed in Fig. 5b, along with its theoretical distributionμ,
showing very good fit to the model. It remains to compute the
distribution (under H0) of the strength of a branch. Recall that
under H0, branches are mutually independent. Therefore,
the law of the strength of a branch ωp(r, θm) (that is, of the
sum of pixel contributions given by Formula (5)) is obtained
by convolving J (r, θm) copies of the distribution μ, where
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Fig. 5 Distributions of ‖˜∇ I‖
(blue curves in (a)) and γp(q)
(blue curvesin (b)) for 50
different natural images.
Rayleigh(1) density (red curve
in (a)) and density of the
corresponding strength
distribution μ (red curve in (b))
are displayed for comparison
(Color figure online)

J (r, θm) is the size of a sector of orientation θm at scale r .
Finally,

Proposition 1 Let j :
{

p, r, {θm}Mm=1

}

be a junction and

suppose that the hypothesis H0 is satisfied, then the proba-
bility that the random variable t(j) is larger than a given
threshold t is

Fj (t) := PH0 [t(j) ≥ t] =
M
∏

m=1

+∞
∫

t

d

(

J (r,θm )
�

j=1
μ

)

, (11)

where J (r, θm) is the size of a sector of orientation θm at
scale r and where � denotes the convolution operator.

3.3 Meaningful Junctions

Thanks to the previous computations, we are now in a posi-
tion to automatically fix detection thresholds on junction
strengths. Indeed, thresholds are set so that the average num-
ber of false detections under the null hypothesis is controlled.
This is obtained by thresholding the probability (11) and by
taking into account the number of possible discrete junctions
in the image.

3.3.1 Number of Tests

In this paragraph, we assume that the order M is fixed, and we
call J (M) the set of all possible (possibly overlapping) junc-
tions of order M in the discrete image I . The size of J (M)
depends on several parameters: the minimum and maximum
authorized scales rmin and rmax , the size N (number of pix-
els) of I and the precision Δ(r) of branches at each scale r .
The practical setting of these parameters will be discussed in
Sect. 4.1.

At a given location p, once the first branch is chosen among
the K (r) possible directions, the second direction must be
chosen in such a way that the two branches of width 2Δ(r)
do not intersect (in the sense that their sectors do not over-
lap), which means that only K (r)(1− 2Δ(r)

π
) directions are

authorized. Therefore, at each location p ∈ Ω , and for a
given scale r , the number of possible junctions of order M
is always smaller than

1

M !
M
∏

m=1

K (r)

(

1− 2(m − 1)
Δ(r)

π

)

.

It follows that the size of the set J (M) is upper bounded by

#J (M) = N

M ! ·
rmax
∑

r=rmin

M
∏

m=1

K (r)

(

1− 2(m − 1)
Δ(r)

π

)

.

(12)

3.3.2 ε-meaningful Junctions

The next definition and the following proposition explain
how to fix thresholds on junctions strengths in order to control
the average number of false detections.

Definition 3 (ε-meaningful junction) Let I be a discrete
image. For ε > 0, a junction j of order M and at scale r
is said to be ε-meaningful if its number of false alarm (NFA)
under the hypothesis H0 satisfies

NFA(j) := #J (M) · Fj (t (j)) ≤ ε, (13)

The quantity NFA(j) is a measure of the meaningfulness
of the junction: the smaller it is, the more meaningful the
junction j . A junction of order M and scale r is detected
as ε-meaningful in I if its strength t (j) is larger than the
threshold

t (r, ε) := min
{

t; Fj (t) ≤ ε

#J (M)
}

. (14)

Notice that for a fixed ε, this formula yields a different thresh-
old on t (j) for each value of the scale r . The value ε is easy
to interpret: it corresponds to an expected number of false
detections under the hypothesis H0. Indeed,
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Proposition 2 Assume that the null hypothesis H0 is satis-
fied in image I. Let M be a positive integer. The expectation
of the number of ε-meaningful junctions of order M in I is
smaller than ε.

This proposition is an obvious consequence of the fact that
if X is a random variable and if we define F(t) = P[X ≥ t],
then for all β in [0, 1],P[F(X) ≤ β] ≤ β.

Observe that in the definition of the NFA, the correcting
factor #J (M) is independent of the scale r . We could have
used different correcting factors, depending on the junction
scale r , in order to favor some particular scales in the detec-
tion, and still have a result similar to Proposition 2.

As can be seen from Formula (13), the quantity NFA(j)
is computed from the number of tests (12) and the probabil-
ity (11). Its practical computation is detailed in Appendix 1.

3.4 Junctions or Nearby Edges?

In images, some structures may appear as junctions at large
scales without being detected as such when the scale is small.
For instance, when three straight edges have close endpoints
and are supported by concurring lines, a Y -junction may be
detected even if the actual edges do not physically meet,
when the possible junction contains a gap at its center. Decid-
ing between a real junction and interacting edges is actually
far from trivial. Psychophysical experiments (Rubin 2001)
suggest that human may find junctions although there is a
small gap at the center. In practice, we got qualitatively bet-
ter results when removing junctions with large gaps at their
center. This restriction is imposed by computing for each
ε-meaningful junction j : {p, r, {θm}m∈{1,...,M}} a minimum
scale of detection rd [j ] and by removing all ε-meaningful
junctions such that rd [j ] is strictly larger than a fixed thresh-
old rgap. This minimum scale of detection is defined as the
smallest scale rd such that there exists ε-meaningful junc-
tions of order M centered at p for all scales between rd and
r (see Fig. 6),

rd [j ] = min
{

r ′ ≤ r; ∀s ∈ [r ′, r ], ∃j ′ : {p, s, {θ ′m}Mm=1}
s.t. j ′ is ε-meaningful.

}

. (15)

In practice and for all experiments in this paper, the threshold
rgap is chosen as rgap = 12. In order to be fully scale invari-
ant, this threshold could be replaced by a value proportional
to the junction scale r .

3.5 Redundant Detections and Maximality

3.5.1 Redundancy: Scale and Location

As it is common when analyzing geometrical structures in
images, junctions are usually detected in a redundant way.

A single structure in the image may yield many detections.
First, junctions are detected over a range of scale. For a sin-
gle ideal junction in the image, meaningful junctions will be
detected for scales both smaller and larger than the one of
the underlying structure, see Fig. 7, middle, where several
junctions having the same center but different scales, and
corresponding to the same ideal Y -junctions, are displayed.
Second, several junctions with slightly different locations are
detected for a single underlying structure. This is all the more
strong as there is blur in the image. An example of such redun-
dant detections is displayed in Fig. 7, right. Moreover, both
type of over-detections (multiple scales and multiple loca-
tions) are usually combined in images. These redundancies
are addressed in the next paragraph thanks to an exclusion
principle.

3.5.2 Maximal Junctions

In order to choose the right representative among all redun-
dant detections, we use an exclusion principle, called maxi-
mality. We assign to each junction j a neighborhood N ′j . For
a given order M , we only keep the junctions not containing
any more meaningful junction in its neighborhood. That is,
we only keep junctions that are maximal in the following
sense.

Definition 4 (Maximal ε-meaningful junction of order M)
A junction j : {p, r, {θm}Mm=1} is said to be a maximal
ε-meaningful junction of order M if j is ε-meaningful and if
NFA(j) ≤ NFA(j ′) for any junction j ′ : {p′, r ′, {θ ′m}Mm=1},
with p′ ∈ N ′j .

Observe that in this definition the use of the NFA is the
keypoint. Indeed, it permits to compare structures at different
scales. Using the strengths t (j) to carry out this comparison
would require a well chosen normalization depending on the
scale.

In order to select maximal meaningful junctions, the most
meaningful junction is first considered. All junctions having
it as a neighbor are then removed. Then we proceed to the
next most meaningful junction and iterate the same procedure
until all junctions have been treated.

A result of these selection rules is illustrated in Fig. 8 for
M = 3. In practice, the spatial neighborhood N ′p used for
maximality is chosen as a disk centered at p, with a radius
rd [j ], the minimum scale of detection of j as defined by
Formula (15).

3.5.3 Masking and Junction Order

When a Y -junction is perceived in a image, the underlying
L-junctions are usually not perceived and we decided not to
detect them. This masking phenomenon (for a given junc-
tion, no junction made of a subset of its branches should
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Fig. 6 Scale of a junction. Left image I . The point p is chosen as the
center of I . Middle for each scale r (in abscissa) is displayed the small-
est NFA(j) observed for a junction j of order 3 centered at p. Right the

smallest scale of detection rd = 8 in magenta and the scale correspond-
ing to the smallest NFA in red (found for r = 13), represented on top
of the strength γp(q) (Color figure online)

Fig. 7 Redundancy of junction detection. For the sake of clarity, each
junction is represented by a circle and its center, the radius of the circle
is equal to the scale of the junction, and the color of the circle depends
on the NFA value (red corresponds to small values, i.e. very mean-
ingful junctions and blue corresponds to high values). Left a junction

j : {p, r, {θm}m∈{1,...,3}}, with r = 20. Mid all junctions detected at the
same point p, with different scales. Right all Y -junctions detected in
the neighborhood of p, with the same directions and scale (Color figure
online)

Fig. 8 Maximal meaningful junctions of order 3. Each Y -junction is
represented by a circle and its center. The radius of the circle indi-
cates the junction scale r , and the color of the circle corresponds to the
NFA of the junction (the cooler the color, the larger the NFA). Left all

ε-meaningful Y -junctions, with ε = 1. Mid the maximal meaningful
Y -junctions. Right the maximal meaningful Y -junctions displayed over
the image (Color figure online)

be detected) is easily implemented by the following second
exclusion principle: locally, only the more complex junction
(the one with the largest order) is kept.

Definition 5 (Maximal ε-meaningful junction) A junction
j : {p, r, {θm}Mm=1} is said to be a maximal ε-meaningful
junction if j is a maximal ε-meaningful junction of order M
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and if there is no maximal ε-meaningful junction of order
M ′ located at p′ with M ′ > M and p′ ∈ N ′j .

3.6 The Three Algorithmic Steps for Junction Detection

The different steps of the junction detection procedure are
summarized in Algorithms 2 (the a contrario detection), 3
(maximality of order M) and 4 (maximality). The complete
algorithm pipeline includes a speed-up step and an optional
precision refinement and will be described in Sect. 4 and
summarized in Algorithm 7.

Algorithm 2 A contrario junction detection
Input: An image I , a maximal order M ′ and parameters
ε, rmin, rmax , rgap .

Output: A list of junctions Jlist and the corresponding list of mini-
mum detection scales rd [Jlist].

1: Compute ˜∇ I at each pixel using Equation (1);
2: For each value of M between 2 and M ′, compute #J (M) by using

Equation (12);
3: for each pixel p do
4: Let ρ be a M ′ × rmax matrix (used to record the values rd ), and

fill it with zeros.
5: for r = 1 to rmax do
6: Compute the branch strength ωp(r, θ) for each direction θ in

D(r), using Equations (5) and (6).
7: Use a NMS procedure to only keep semi-local maxima of

ωp(r, .); call Θ = {θm}#Θm=1 the set of these directions.
8: Sort the vector ωp(r,Θ) in a descending order

(index , υ)← sort(ωp(r,Θ)).
9: Suppression of alignments:

if M = 2 and d2π (θindex(1), θindex(2) + π) ≤ 2Δ(r)
θindex(2) = θindex(3)

end if
10: for M = 2 to M ′ do
11: Define the junction j : {p, r, {θm}index(M)

m=index(1)}, with strength
t (j) = υ(index(M))

12: Compute log NFA(j) by using Equation (13)
13: if log NFA(j) ≤ log ε then
14: if r ≥ 2 and ρ(M, r − 1) 
= 0 then
15: ρ(M, r) = ρ(M, r − 1) and rd [j ] = ρ(M, r − 1)
16: else
17: ρ(M, r) = r and rd [j ] = r
18: end if
19: if rd [j ] < rgap then
20: Accept the junction proposal j : Jlist ← j

21: end if
22: end if
23: end for
24: end for
25: end for

Algorithm 2 does not include the two maximality steps
(described in Algorithms 3 and 4). Notice however that line
11 of Algorithm 2 is a first step towards maximality, since
only the best junction of a given order M is tested at each
point. This permits to speed-up the algorithm by excluding
junctions that will obviously not be maximal. If we wish

to compute all ε-meaningful junctions in an image, and not
only maximal junctions, lines 11 to 22 should be replaced by
Algorithm 5.

Algorithm 3 Maximality for junctions of order M
Input: Jlist : the list of L ε-meaningful junctions of order M detected

in I and the list rd [Jlist].
1: Sort Jlist in a descending order according to the NFA of junctions:

Jlist ← Sort(Jlist , NFA)
2: Remove non-maximal meaningful junctions
3: for j = 1 to L do
4: j1 ← location of junction Jlist[ j];
5: for k = j + 1 to L do
6: j2 ← location of junction Jlist[k]
7: if ‖pj1 − pj2‖2 ≤ rd [j1] then
8: remove Jlist[ j], then break;
9: end if

10: end for
11: end for

Algorithm 4 Maximality
Input: A maximum order M ′. The list Jlist of maximal ε-meaningful

junctions of all orders smaller than M ′ in I and the list rd [Jlist]. L
is the size of Jlist .

1: for j = 1 to L do
2: j1 ← location of junction Jlist[ j];
3: for k = 1 to L do
4: j2 ← location of junction Jlist[k]
5: if ‖pj1 − pj2‖2 ≤ rd [j1] and Mj1 < Mj2 then
6: remove Jlist[ j], then break;
7: end if
8: end for
9: end for

Algorithm 5 Computing all ε-meaningful junctions

for each junction j : {p, r, {θmk }Mk=1}, with index(m1) < · · · <
index(mM ) and t (j) = υ(index(mM )) do

Compute log NFA(j) by using Equation (13);
if log NFA(j) ≤ log ε then

Accept the junction proposal j : Jlist ← j .
end if

end for

4 Implementation

The goal of this section is to provide all necessary infor-
mation for the practical implementation of junction detec-
tion. First, the setting of parameters is addressed in Sect. 4.1.
An optional refinement step to improve the accuracy of the
detected branch directions is described in Sect. 4.2. A pre-
selection of the junction candidates for speeding up the
method is detailed in Sect. 4.3. Eventually, the complete
detection algorithm pipeline is given in Sect. 4.4. A prac-
tical issue regarding the numerical computation of the NFA
is also given in Appendix 1.
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Fig. 9 Δ(r) = ω/r for two distinct r values. Observe that the length
of the arc defined by a sector,w, is a constant and does not depend on r

4.1 Parameter Choices

Recall that in the definition of discrete junctions, K (r),
the number of possible directions for junction branches as
defined by Formula (3), was chosen as K (r) = �2πr	, in
order to have a precision of roughly one pixel along the circle
of radius r . The choice of the precisionΔ(r) relies on similar
considerations. Visual experiments show that the perceived
precision of an angle between two crossing segments in an
image is better for long segments than short ones. Now, recall
that 2Δ(r) is the angle of a branch (or sector) in a junction
at scale r . We consider that the length of the arc defined by
this sector should be a constant w and should not depend on
r . This length is exactly 2Δ(r)× r , which implies thatΔ(r)
should be chosen as inversely proportional to r . In practice,
we choose w = 5. Thus

2Δ(r) = w

r
= 5

r
. (16)

Figure 9 illustrates the corresponding angular sectors for two
different scales.

It follows that for a given order M , the number of tests
#J (M) can be computed as

#J (M) = N

M !
rmax
∑

r=rmin

M
∏

m=1

�2πr	
(

1− 5(m − 1)

rπ

)

, (17)

where N is the total number of pixels in the image. In the
experimental section, the maximum order of junctions will
be M = 4 and the smallest possible radius is rmin = 1 for
all experiments. The maximal scale rmax is chosen as 5% of
the diagonal of the natural image. For synthetic images, rmax

can be set with a prior. The threshold on the minimum scale
of detection is set to rgap = 12 for all experiments in this
paper.

4.2 Optional Direction Refinement

Since directions in a junction are bisectors of angular sectors
(see Eq. (4) for the definition of Sp(r, θ)) and since the set of
possible directions is discrete, it may happen that the direc-
tions of some branches in a detected junction remain slightly
imprecise. In the following, we describe a simple refinement
in the computation of junction directions.

For a branch of direction θ centered at p, a refined direction
̂θ is computed as follows

̂θ = arctan
Oy

Ox
, (18)

with Ox =
∑

q∈Sp(r,θ)

γp(q) cosψq;

Oy =
∑

q∈Sp(r,θ)

γp(q) sinψq;

and ψq =
{

φq if d2π (φq, θ) <
π
2

φq + π otherwise.
(19)

Notice that after this refinement, two sectors of a given
junction may overlap. If this happens, the detected junction is
removed. The refinement process is described in Algorithm 6.

Algorithm 6 Direction refinement
Input: A junction j : (p, r , {θk}Mk=1)

1: (1) Refinement of junction branches:
2: for k = 1 to M do
3: Ox = 0,Oy = 0;
4: for q ∈ Sp(r, θk) do
5: Compute γp(q) using Equation (6);
6: Compute ψq using Equation (19);
7: end for
8: Ox ← Ox +∑

q∈SBk
γp(q) cosψq;

9: Oy ← Oy +∑

q∈SBk
γp(q) sinψq;

10: Update the branch direction θk = arctan Oy
Ox

.
11: end for
12: (2) Check that branches are still disjoint.
13: for m = 1 to M do
14: for k = m + 1 to M do
15: if d2π (θm , θk) < Δ(r) then
16: Remove j , then break;
17: end if
18: end for
19: end for

Let us stress that an extra refinement on the spatial posi-
tion of the junction could be added to the algorithm. However
we decided not to make any specific assumptions about the
image structure. Therefore, our method does not yield sub-
pixel positions, as may be achieved by e.g. the detector from
(Deschenes et al. 2004) or the SFOP detector from (Förstner
et al. 2009).
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Fig. 10 Junction candidates
using LSD. Left the input
image; mid all line segments
detected with λ = 104; right all
junction candidates

Table 2 Number of detections and running time when using or not the LSD pre-selection

Image Using LSD candidates Using all candidates

Class Name Size Num (L/T/X) Time (s) Num (L/T/X) Time (s)

Geometry+texture House 256× 256 28/21/3 2.17 29/21/3 8.16

Lena 256× 256 79/44/12 3.90 81/44/12 9.77

Window 768× 576 120/224/51 10.36 122/230/52 64.72

Texture Autumn 576× 768 52/25/8 38.52 54/27/8 62.07

Park 576× 768 97/98/15 37.20 100/100/15 62.18

Branches 536× 819 78/100/18 35.97 80/101/19 62.08

Geometry Geometric 655× 518 27/17/2 1.48 28/17/2 44.19

Composition 413× 300 3/60/36 1.94 3/62/37 17.46

Suprematism 400× 640 40/33/5 1.57 42/34/5 34.66

The comparisons are implemented on three types of images: images with a strong geometrical content, images containing mostly textures and
photographs of abstract paintings. Num (L/T/X) stands for the numbers of detected L/T/X junctions respectively. The experiments are implemented
on a computer with a 2.0 GHz Intel Core 2 Duo Processor and 2 GB RAM. The maximum scale in this testing is set to 15

4.3 Speed Up

In order to speed-up the algorithm, and following (Parida et
al. 1998; Cazorla et al. 2002; Cazorla and Escolano 2003;
Sinzinger 2008), we propose to apply a pre-processing step
to select potential junction candidates.

We take advantage of a fast segment detector, the Line
Segment Detector (LSD) as introduced in (von Gioi et al.
2010),3 whose complexity is linear in the size of the image.
In order to make sure that we won’t miss some junction can-
didates, the detection threshold λ of the LSD is set to a large
value. The valueλ = 104 has been used for all experiments in
this paper. Once all possible line segments have been found,
potential junction locations are restricted to a small neighbor-
hood around each endpoint of those line segments. Figure 10
displays all line segments detected with λ = 104 for a given
image and shows the corresponding junction candidates in
red.

Table 2 shows the number of detections and the running
time of the complete junction detection procedure, with and
without use of the LSD preprocessing. The comparisons are

3 The code of LSD can be downloaded from the IPOL website: http://
www.ipol.im/pub/algo/gjmr_line_segment_detector/.

implemented on three types of images: images containing
both geometry and texture, images containing mostly tex-
tures and photographs of abstract paintings (see Fig. 11).
Using candidates from LSD clearly reduces the computing
time, while the quantity of detections is not affected. Notice
that this reduction strongly depends on image structures. The
simpler the structures contained within the images, the larger
the achieved reduction.

4.4 Algorithm Pipeline

The pipeline of the whole a contrario junction detection algo-
rithm is summarized in Algorithm 7. Remark that the para-
meters to be set in this algorithm are: the detection thresh-
old ε, the maximum order of junctions M ′ and the radiuses
rmin, rmax , rgap (see Sect. 4.1).

In the rest of the paper, we refer to this algorithm by the
acronym ACJ (for A Contrario Junction detection).

5 Experimental Analysis

This section gathers experiments illustrating the perfor-
mances of the a contrario junction detection (ACJ). When
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Fig. 11 Test images for the
speed up evaluation. Top house,
Lena and window; mid autumn,
park and branches; bottom:
images of geometric paintings:
Geometric by John Cooper,
Composition by Charmion von
Wiegand, and Suprematism by
Kazimir Malevich

Algorithm 7 Complete junction detection procedure
Input: Image I , threshold ε, maximal order M ′, parameters rmin , rmax ,

rgap .
(1) Use LSD to preselect junction candidates C;
(2) Detect ε-meaningful junctions for all orders smaller than M ′ and
for all scales between rmin and rmax by using Algorithm 2. Store
junctions of order M in a list Jlist (M).
(3) For each M ≤ M ′, refine all junctions in Jlist (M) by using
Algorithm 6.
(4) Keep only maximal junctions in the lists Jlist (M) by using Algo-
rithm 3 and 4.

possible, performances will be compared with the classical
Harris detector (Harris and Stephens 1988) and the recent
“Pj on gPb” method (Maire et al. 2008) and “SFOP” method
(Förstner et al. 2009). For the Harris detector, the “corner-
ness” is defined as det (H)−k·T r(H)2, where H is the Harris
matrix and the default value k = 0.06 is chosen. For Pj on
gPb and SFOP, the codes kindly provided by the authors are
used.

Section 5.1 illustrates the stability of the detection for dif-
ferent images and the control of the number of false detec-
tions in a random noise image. We then investigate the invari-
ance properties of the method: scale and contrast changes are
respectively studied in Sects. 5.2 and 5.3. In particular, we

show the ability of the method to accurately detect both the
scale and the position of a junction. Evaluation on a bench-
mark is given and discussed in Sect. 5.4 and some more
results are displayed in Sect. 5.5.

5.1 Stability and Control of the Number of False Detections

One great quality of a contrario detection methods relies in
the fact that the threshold ε has an intuitive meaning: it is
an upper bound of the average number of false detections in
an image following H0. In this section, we first check that
the average number of false detections in Gaussian noise
images is less than ε (Proposition 2). We then illustrate how
the threshold ε controls the number of detections in natural
images.

5.1.1 False Alarms Under Hypothesis H0

In order to test the a contrario model, we first consider 1000
large Gaussian noise images J (pixel values are i.i.d. random
variables following a standard normal distribution). Each of
these images has a size 700 × 700. The gradient of these
images is then normalized locally (on 5 × 5 windows) and
globally, as described in Sect. 2.1. In such images, the norm of
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Table 3 Average numbers of
ε-meaningful junctions when
H0 is satisfied

ε 10−3 10−2 10−1 100 101 102 103

L-junctions 0 0.008 0.078 0.778 7.150 71.006 678.463

Y -junctions 0 0.005 0.045 0.539 5.106 42.207 332.966

X -junctions 0.001 0.004 0.026 0.216 1.805 13.708 103.531

Fig. 12 Junctions obtained by ACJ (top row), Harris (mid row) and
“Pj on gPb” (bottom row). Parameters are fixed for the three images,
yielding the same number of detections on the house image (this cor-
respond to ε = 1). Observe that only ACJ prevent from over-detection

in textured areas. The color of the junction depends on the NFA value
(red corresponds to small values, i.e. very meaningful junctions and
blue corresponds to high values) (Color figure online)

the gradient at each pixel follows approximately a Rayleigh
distribution and the orientation of the gradient is uniformly
distributed. However, the values of the gradient norms and
directions at neighboring pixels are not independent. We thus
downsample each∇ J by a factor of 7 to obtain a new gradient
image∇ I . This ensures that the values of ‖∇ I‖ are indepen-
dent and follow approximately a Rayleigh distribution. The
gradient orientations are also independent and follow a uni-
form distribution on [0, 2π [.

On each of these gradient images, the validation experi-
ment consists of the following procedure: for different val-
ues of the detection threshold ε and for all images, all
ε-meaningful L-, Y- and X-junctions are detected. This is
done thanks to a slight modification of Algorithm 2 : in the

algorithm, all possible junctions of order M are tested, and
not only the best one at each point, since we wish to count all
ε-meaningful junctions and not only maximal ones. Table 3
illustrates the results of this experiment, averaged over the
1,000 images, with ε changing from 10−3 to 103. Observe
that the average number of detections is always smaller
than ε.

Observe that the previous experiment is actually indepen-
dent of the noise level, since we globally normalize gradi-
ents in the algorithm. Invariance to the noise level is actually
stronger. Indeed, the local normalization of gradients makes
the detection invariant to local affine contrast transforms,
thus to local variations in noise level, as may for instance be
observed with Poisson photon noise. A similar property may
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Fig. 13 Illustration of the scale invariance along the scale space. The
first row shows the tested images. The second row shows the scales of
junctions detected by ACJ along all the trajectories (curves in red) as
a function of the zoom factor si (the abscissa is si/0.3). The baselines

{y = r · si }, where r changes from 1 to 90, are displayed in blue. The
bottom row presents the repeatability rate of the junctions as a function
of the zoom factor

be obtained by locally estimating the noise variance, as in
(Förstner 1994).

5.1.2 Stability and Choice of ε

The control of the number of false alarms makes the setting
of ε quite easy in practice: by default, and unless otherwise
indicated, ε is set to 1 in all experiments.

The real strength of the ACJ approach comes from the
fact that the value ε = 1 yields very satisfying detections in
natural images, whatever their content, size or resolution. In
contrast, other approaches such as Harris or “Pj on gPb” tend
to strongly over-detect in textured areas when using a fixed

parameter, see Fig. 12. This stability property is all the more
interesting as it remains valid through scales. For a given
choice of ε, Formula (14) yields different thresholds t (r, ε)
that adapt to the scales of the junctions. As a consequence,
by choosing ε = 1, results are simultaneously satisfying at
all scales. This would not be possible with a fixed threshold
on junction strengths.

5.2 Scale Invariance

This section focus on the behavior of our approach with
respect to scale changes. Recall that the scale of a junction is
defined as the scale at which the junction is most meaning-
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Fig. 14 Examples of detected junctions along several junction trajec-
tories: each row shows a list of junctions detected at the same relative
locations in images, from the coarsest to the finest resolution. (a) In
these examples, junctions can be followed along complete trajectories,

and their scales remain roughly proportional to the image resolution.
(b) These two examples illustrate the difficulty of junction detection in
the presence of nearby edges. Observe that as shown in (b), a T-junction
might be split into two L-junctions with the increasing of scale

ful and therefore strongly differs from classical approaches
relying on the linear scale space. In Sect. 5.2.1, we show that
such scales change linearly with the resolution of images,
a clearly desirable property. In Sect. 5.2.2, we discuss the
interpretation of these scales in images.

5.2.1 Scale and Resolution

In order to investigate the coherence of detections through
scale changes,we apply the proposed junction detection algo-
rithm to a sequence of images with different resolutions. An
original image I is resized with eight different zoom factors
s0 > · · · > s7, using a bilinear interpolation. The set of fac-
tors is chosen as {1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3}. Algo-

rithm 7 is then applied to each image si I of the sequence and
yields a junction list Jsi . Then, each junction j0 of Js0 is
tracked through resolutions. For this purpose, we define an
angular distance between two junctions:

S(j, j0) = max
θ∈{θm }Mm=1

min
θ ′∈{θ0

m }M0
m=1

d2π (θ, θ
′). (20)

A junction j0 in Js0 is then matched with ji in Jsi if they have
the same order M0, if their centers are close enough, in the
sense that ‖p− si · p0‖2 < 3, and if their angular distance
S(j0, j) is smaller than π

20 . If several junctions in Jsi satisfy
these properties, j0 is matched with the one minimizing the
angular distance S(j0, j). If there is no junction in Jsi satis-
fying these properties, no junction in Jsi is matched with j0.
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(a) (b) (c)

(d) (e) (f)

Fig. 15 Scale selection. (a) shows the characteristic scale of L-, Y- and
X-junctions given by the proposed approach, and (b), c show the charac-
teristic scale of junctions given by Harris-Laplace and SFOP (Förstner
et al. 2009) on a synthetic image, respectively. (d), (f) show the same

comparison on the house image. The location of each junctions is indi-
cated by a red cross and circles have a radius equal to the corresponding
scale. Refer to the text for more explanations (Color figure online)

For each junction j0 in the original image, we call trajectory
the list of its corresponding junctions through the different
resolutions.

Several such trajectories are shown on Fig. 13b. In this
experiment, we only consider junctions potentially having
complete trajectories in the scale space. Therefore, the max-
imal scale considered in the coarsest image is rmax × 0.3 =
30 × 0.3 = 9. The red curves show the scales of junctions
along all the trajectories as functions of si/0.3. The base-
lines {y = r · si }, where r changes from 1 to 90, are dis-
played in blue. These correspond to an ideal behavior with
respect to resolution changes. Notice that the red curves
remain close to the baselines: this implies that the scales
of maximal meaningful junctions are quite robust to resolu-
tion changes. Figure 14a gives some concrete examples of
junctions detected by the ACJ algorithm along their trajec-
tories. Once more, their scales increase linearly with reso-
lution. To the best of our knowledge, the only approaches
which permit to obtain a similar coherence between scale
detection and resolution are those which rely on linear scale-
spaces (Lindeberg 1998; Luo et al. 2007). However, it should
be underlined that the use of linear scale-spaces inevitably
leads to poor location precisions at large scales. Figure 14b
illustrates the aforementioned dilemma (see Sect. 3.4) to
detect or not a junction in the presence of nearby edges.
In these examples, junctions are not detected at large scale
because of the constraint rgap (see Sect. 3.5). This behav-
ior seems consistent with human perception: when several

edges meet around a large gap, we probably disregard it as a
junction.

In a second experiment, shown on Fig. 13c, we compute
the repeatability rate of detections with respect to image res-
olution. More precisely, if we note Js0(s0 I → si I ) the list
of junctions that are matched for all intermediate resolutions
between s0 I and si I , the repeatability rate is defined as

R(si ) = #Js0(s0 I → si I )

#Js0

. (21)

Observe that, for the three images, the repeatability rate
always remains above 60 %.

5.2.2 How to Interpret the Detected Scales ?

Most of the junction detection approaches in the literature
do not provide characteristic scales for their junctions. One
notable exception is the Harris-Laplace interest point detec-
tor, which makes use of a linear scale space in order to detect
keypoints at different scales. Detected points are those which
maximize the Laplacian of Gaussian (LoG) in the scale-space
and the Harris corner measure in a local space neighbor-
hood. Some results of this detector on a synthetic and a real
image are given in Fig. 15b, e. Observe that the scales of
junctions do not have a clear interpretation in these images.
Another recent approach addressing the scales of junctions
is the SFOP detector (Förstner et al. 2009). This method,
which draws on a junction model, extends the detector of
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(Förstner 1994) in a scale-space framework. Results of this
detector are shown on Fig. 15c, f. Although the junctions
obtained are less redundant and far easier to interpret than
with Harris-Laplace, the detected scales are still difficult to
link with the underlying geometry of images. In contrast,
the scales detected by ACJ (see Fig. 15a, d) arguably corre-
spond to the optimal size at which one can observe the junc-
tion in the image. For instance, the scale of the L-junctions
located at the corner of a rectangle is generally chosen as
the length of the smaller side of the rectangle, see Fig. 15a.
More generally, we observed that the scale of a junction usu-
ally corresponds to the length of its shortest branch. The
fact that the use of the N F A as a tool to select the most
prominent scale yields such simple geometric behavior is
a strong asset of the proposed approach. The same coher-
ence between the characteristic scales of junctions and the
sizes of local structures can be observed in the examples of
Fig. 14.

5.3 Contrast Invariance

The goal of this section is to evaluate the robustness to con-
trast changes of different junction detection approaches. To
this aim, we create a sequence of images by applying dif-
ferent gamma corrections to an original image I , with γ
in

{ 1
4 ,

1
3 ,

2
5 ,

1
2 ,

2
3 , 1, 1.5, 2, 2.5, 3, 4

}

. For each image in the
sequence, we detect junctions with

– our ACJ approach, with ε = 1,
– Harris corner detector, with a threshold 0.06 on local

maxima,
– Maire’s approach using “Pj on gPb” (Maire et al. 2008),
– the SFOP detector from (Förstner et al. 2009)
– a totally contrast invariant version of ACJ (denoted

TACJ), obtained by removing the normalized gradi-
ent amplitudes in the definitions (5),(6) of the branch
strength.4

For both “Pj on gPb” and the SFOP detector, we use the
default values of the codes provided by the authors.5 In order
to evaluate the different results, we compute the repeatability
rate of each method on the image sequence. More specif-
ically, if J0 is the list of junctions in the original image
(γ = 1), and Ji the list of junctions in the i-th image, we
note J0 ∩ Ji the set of junctions in Ji that can be matched
with junctions in J0, where the matching criterion is the

4 This boils down to replace the distribution of the strength at a pixel

with μ = 1

2
δ0 + 2

π
1√

2−z2 1z≥0.L in Eq. (11). The resulting junction

detection algorithm is similar to Algorithm 7.
5 We use the codes kindly provided by the authors: http://vision.caltech.
edu/~mmaire/software/gpb_src.tar.gz and http://www.ipb.uni-bonn.
de/sfop/

Fig. 16 Repeatability rate of different approaches regarding contrast
changes. The curves are averaged over 100 image sequences. Each
sequence is obtained by applying different gamma corrections (as spec-
ified in the text) to a test image. Each position on the x-axis corresponds
to a given gamma correction

Fig. 17 The precision-recall curves of different methods on the BSDS-
based junction benchmark

one defined in Sect. 5.2.1. Following the same protocol as in
(Schmid et al. 2000), the repeatability rate of the i-th image
is then calculated as

Repeat (i) = #{J0 ∩ Ji }
#J0

. (22)

The curves of repeatability rates for the different methods
are shown on Fig. 16. Results are averaged on the 100 first
images from the natural image database provided by (Rabin
et al. 2009).6 We can see that the Harris detector has the worst

6 This natural images database is available at http://perso.
telecom-paristech.fr/~gousseau/db/imageDB.zip
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Fig. 18 Some results of the proposed ACJ approach, with ε = 1.
From left to right L-, Y- and X- junctions. On this simple synthetic
image (from E. H. Adelson), junctions are well detected and classified.

The color of the junction depends on the NFA value (red corresponds
to small values, i.e. very meaningful junctions and blue corresponds to
high values) (Color figure online)

(a) original image (b) L-junctions

(c) Y-junctions (d) X-junctions

Fig. 19 Specific junction detections on a natural image. The color of the junction depends on the NFA value (red corresponds to small values, i.e.
very meaningful junctions and blue corresponds to high values) (Color figure online)

performance with respect to contrast changes, which could
be expected since it is the most contrast dependent. Maire’s
approach (Maire et al. 2008) gives better results, possibly
because it relies on an edge detector that is tuned to match
boundaries annotated by humans, which may somehow elim-
inate contrast variations. The three other approaches perform
better, SFOP and TACJ providing slightly better results than
ACJ. This could advocate for the choice of TACJ in prac-
tice. The good performances of the SFOP detector are inher-
ited from a local estimation of the noise variance, used to

set the detection parameter. The good performances of the
ACJ and TACJ detectors are obtained by design and inher-
ited from invariance property of the gradient orientation. In
practice, the totally contrast invariant approach appears to be
less robust than ACJ to small image modifications, such as
those created by JPEG compression. A more in depth study
of the specific impact of compression procedures on contrast
invariant detection would be of interest. The choice of ACJ
results in a compromise between contrast invariance require-
ments and robustness.
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(a) original image (b) all junctions

(c) L-junctions (d) Y-junctions

(e) X-junctions (f) Detailed junctions ranked according to their NFA

Fig. 20 Specific junction detections on a natural image. The color of the junction depends on the NFA value (red corresponds to small values, i.e.
very meaningful junctions and blue corresponds to high values) (Color figure online)

5.4 Junction Benchmark

A practical way to evaluate the consistency of our approach
with human perception would be to rely on a human anno-
tated junction database. To the best of our knowledge, such a
database does not exist. Nevertheless, the well known Berke-

ley segmentation dataset7 has been used by the authors of
(Maire et al. 2008) in order to evaluate different junction
detectors. In their paper, Maire et al. use the human anno-

7 The Berkeley dataset can be downloaded from www.eecs.berkeley.
edu/Research/Projects/CS/vision/bsds/.
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tated boundaries to create a ground truth of junctions in the
following way: L-junctions are locations of high curvature
along these boundaries and Y -junction are locations where
more than three regions intersect.

As mentioned before, these authors also propose a proce-
dure called Pj to detect junctions from any given set of bound-
aries. This procedure is applied to the results of different edge
detectors, including their detectors Pb and gPb. The quality
of the resulting junctions is assessed by comparing them to
the previously created ground truth. We applied the same
protocol to the ACJ method proposed in this paper. In order
to overcome the strong compression artifacts of the Berkeley
database, to which we are sensitive because of strong con-
trast robustness, we apply a small amount of blur and noise to
images before proceeding. Figure 17 presents the results for
several junction detection algorithms on the benchmark. The
ACJ approach yields a performance of F = 0.38,8 which
is better than the baseline Harris detector (F = 0.28), the
SFOP detector (F = 0.29) and Pj on Canny (F = 0.35),
but remains below the performance of Pj on Pb (F = 0.38)
and Pj on gPb (F = 0.41). The human agreement on the
database yields F = 0.47. The performance of our approach
in comparison to Pj on gPb has to be tempered by two facts.
First the junctions of the ground truth stem from a set of
human annotated boundary, and the junctions detected by
Pj stem from a computer segmentation. Therefore, both are
boundary-based. It is likely that any detector using a more
local junction definition (including ACJ or even Harris) will
be penalized in the benchmark. As explained in the intro-
duction and shown by psychophysical studies Rubin (2001),
both local and global cues are at play for the perception of
junctions. Second, and most important, the parameters of Pb
and gPb are optimized in order to match human detected
edges on the same database, which introduces a bias in favor
of these methods.

5.5 More Results

This last section aims at illustrating the proposed approach
with several more visual experiments. Figure 18 presents
all the junction detected on a synthetic image. We can
observe that the junctions are found with high accuracy and
are mostly correctly classified. Figures 19 and 20 present
the results on two natural images. Observe that junctions
are accurately characterized through their type, localiza-
tion and scale. Again, we emphasize that the proposed ACJ
algorithm yields very few detections in texture areas, see
Fig. 20.

8 F is defined as the highest value of the quantity 2 Precision·Recall
Precision+Recall

along the curve.

6 Conclusion and Perspectives

In this work, we have introduced a generic and principled
approach for the detection and characterization of junctions
in digital images. The proposed procedure is able to inhibit
junction detection in textured areas, in contrast with classical
approaches. Junctions are accurately characterized through
their type, localization and scale. In particular, the method
does not rely on the linear scale-space for scale computation,
permitting geometric precision.

This work opens several perspectives. First, the accuracy
of junction characterization is of importance for depth recov-
ery or motion interpretation. The characterization of junc-
tion’s type, the difference between T- and Y- junctions or
their precise localization claim to be tested in the frame-
work of such applications. Second, and as advocated in the
introduction, several psychophysical studies show that the
perception of junctions relies on both local and global cues.
Therefore the proposed, local, procedure for junction detec-
tion could benefit from more global image analysis schemes.
The modeling of interactions between junction detection and
segmentation procedures is far from trivial, but similar prin-
cipled approaches could be applied to junction definitions
building from color and textured-based region analysis. In the
opposite direction, segmentation methods can benefit from
meaningful junction detections. Preliminary tests show that
the boundary saliency, as for instance defined in (Golubchyck
and Lindenbaum 2006), can benefit from a meaningful detec-
tion of junctions, in particular by solving ambiguities in
boundary connections near these junctions. The character-
ization of junctions also shows potentials in the automatic
interpretation of high-resolution remote sensing images, for
instance, in the analysis of built-up areas (Liu et al. 2013).
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Appendix 1: Computing NFA in Practice

The NFA of a junction j :
{

p, r, {θm}Mm=1

}

has been defined

as NFA(j) := #J (M) · Fj (t (j)), where

Fj (t) =
M
∏

m=1

+∞
∫

t

d

(

J (r,θm )
�

j=1
μ

)

,

with

μ = 1

2
δ0 + 1

2
R.L,
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where L is the Lebesgue measure and where R is the function

R(z) = 2√
π

e−
z2
4 · erfc

( z

2

)

1z≥0.

In practice, the numerical values taken by Fj (t (j)), as
a product of M possibly small values, can become smaller
than the precision of the computer when the strength t (j)
is too high. In order to overcome this limitation, we com-
pute instead log(#J (M))+ log(Fj (t (j))) and compare this
expression to log(ε). The quantity log(Fj (t (j))) can indeed
be rewritten

log(Fj (t (j))) =
M

∑

m=1

log

⎛

⎝

+∞
∫

t

d

(

J (r,θm )
�

j=1
μ

)

⎞

⎠ .

In order to compute these terms, we discretizeμ on the inter-
val [0, 6] (the weight of the distribution μ above 6 being
negligible), with a precision of 120 bins. Each term of the
sum is then computed thanks to a discrete convolution of the
distribution μ, followed by a discrete integration.

Appendix 2: Distribution of γp(q) Under the Null
Hypothesis H0

The goal of this appendix is to compute the distribution of
the random variable γp(q) under the hypothesis H0. Recall
that

γp(q) = ‖˜∇ I (q)‖ ·max
(

| cos(φ(q)− α(−→pq)|
−| sin(φ(q)− α(−→pq))|, 0

)

. (23)

In the following, we first derive the distribution of max(| cos θ
| − | sin θ |, 0) when θ is a random variable following a uni-
form distribution on [0, 2π [, then the full distribution of
γp(q).

Distribution of max(| cos θ | − | sin θ |, 0)

Assume that θ is a random variable following a uniform dis-
tribution on [0, 2π [. If Y = max(| cos θ | − | sin θ |, 0), we
have Y ∈ [0, 1] with probability 1 and

Y =
{ | cos θ | − | sin θ | if θ ∈[0, π4 ] ∪ [ 3π4 , 5π

4 ] ∪ [ 7π4 , 2π],
0 otherwise.

(24)

Note Θ = [0, π4 ] ∪ [ 3π4 , 5π
4 ] ∪ [ 7π4 , 2π ], then (| cos θ | −

| sin θ |)2 = 1− | sin 2θ | for θ ∈ Θ . The cumulative distrib-
ution function FY of Y can then be computed as follows.

For y < 0, FY (y) = 0 , for y > 1, FY (y) = 1.

For 0 ≤ y ≤ 1, FY (y) = P

(

max(| cos θ | − | sin θ |, 0) ≤ y
)

= 1
2 + P

(

0 < | cos θ | − | sin θ | ≤ y
)

= 1
2 + P

(

θ ∈ Θ and | sin 2θ | ≥ 1− y2
)

= 1
2 + 4 · 1

2π ·
(

π
4 − 1

2 arcsin(1− y2)
)

= 1+ 1
π arcsin(y2 − 1).

(25)

Finally,

FY (y) =
(

1+ 1

π
arcsin(y2 − 1)

)

10≤y≤1. (26)

The distribution of the random variable Y is obtained by differenti-
ating this expression, which gives

μY = 1

2
δ0 + 2

π

1
√

2− y2
10≤y≤1L, (27)

where δ0 is the Dirac mass centered at 0 and where L is the Lebesgue
measure on R.

Distribution of |˜∇ I | ·max(| cos θ | − | sin θ |, 0)

We compute in this section the distribution of the product Z = XY
when X and Y are two independent random variables, X following
a Rayleigh distribution of parameter 1 and Y following the distri-
bution (27). We recall that the density of the Rayleigh distribution
is

fX (x) = χ(x, 2) = xe−x2/2, x ∈ [0,∞). (28)

Now, notice that if Z = XY , then Z ∈ [0,+∞) with probability 1
and the cumulative distribution function FZ (z) can be computed as
follows,

For z < 0, FZ (z) = 0.
For z = 0, FZ (z) = 1

2 .

For z > 0, FZ (z) = P(0 ≤ XY ≤ z)

=
1
∫

0

z/y
∫

0
fX (x)dxμY (dy)

= 1
2 + 2

π

1
∫

0
(1− e

− z2

2y2 ) 1√
2−y2

dy.

We differentiate this expression with respect to z to obtain the dis-
tribution of the random variable Z :

μZ = 1

2
δ0 + 1z≥0 · 2z

π

⎛

⎝

1
∫

0

e
− 1

2 (
z
y )

2 1

y2
√

2− y2
dy

⎞

⎠ L. (29)

In addition,

1
∫

0

1
y2 e−

1
2 (

z
y )

2 1√
2−y2

dy

=
∞
∫

1
e− z2x2

2 x√
2x2−1

dx, with x = 1
y ,

= 1
2

∞
∫

1
e− z2

4 ·(t2+1) dt, with t =
√

2x2 − 1,

=
√
π

2z e− z2
4 ·

(

1− erf( z
2 )

)

=
√
π

2z e− z2
4 · erfc( z

2 ),

(30)
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where erf(z) = 2√
π

z
∫

0
e−t2

dt is the error function and where

erfc(z) = 1− er f (z) is the complementary error function. Finally,

μZ = 1

2
δ0 + 1

2
R.L, (31)

where L is the Lebesgue measure and where R is the function

R(z) = 2√
π

e− z2
4 · erfc

( z

2

)

1z≥0.

Observe that the measure μZ is a mixture between a Dirac mass
function and an absolutely continuous distribution.
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