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Abstract

This paper introduces a generic method for the ac-
curate analysis of junctions, relying on a statistical
modeling of normalized image gradients. We analyze
junctions as local visual events that do not happen by
chance under a background model derived from the a-
contrario methodology. The method not only provides
thresholds for the detection of junctions, but also en-
ables their accurate characterization, including a pre-
cise computation of their type, localization, scale and
geometrical configuration. The efficiency of the method
is evaluated through various experiments.

1. Introduction

Local geometrical structures of images, e.g. junc-
tions, play key roles in scene understanding. They have
been widely used for various computer vision tasks,
including stereo vision, figure/ground separation, seg-
mentation and object recognition. The automatic de-
tection of junctions has been a longstanding and ac-
tive research topic in image analysis and computer vi-
sion. Classical approaches include Harris detectors [1],
SUSAN detector [2] and their extensions [3, 4]. Such
methods usually neither distinguish different types of
junctions nor identify their local geometrical configura-
tions. Such detectors are therefore often used for com-
puting key points but they offer little geometrical infor-
mation for occlusion analysis or figure/ground separa-
tion. These detectors usually rely on the linear scale-
space [5] to compute the scale of a junction, imply-
ing a loss in precision. Alternatively, junctions can
also be detected by grouping edges or contours, see [6],
but boundaries are usually imprecise around junctions.
Among existing approaches, the most adapted for accu-
rate local junction analysis are template-based ones [7,
8, 9]. However they often heavily depend on the con-
trast of images, only detect junctions with fixed scale
and rely on many sensitive parameters.

This paper is along the axis of template-based mod-
els and takes interest in a junction detector meeting the

following requirements: (1) contrast invariant detec-
tion, meaning that the detection of junctions is indepen-
dent of changes of image contrast; (2) automatic setting
of detection parameters. (3) accurate detection, imply-
ing that the position and scale of the junctions should
be detected precisely and be clearly related to the lo-
cal image geometry, which is in strong contrast with
the classical detectors used for keypoint detection, such
as Harris [1]. We handle these problems by relying on
the a-contrario methodology [10], in which structures
are validated by controlling a number of false detec-
tions. A key advantage of this approach is the auto-
matic setting of detection parameters in a way that will
prevent excessive detection of junctions in textured ar-
eas. The accuracy of detection will be achieved thanks
to a competition between junctions using the number of
false alarms, a quality measure associated with a junc-
tion. An extended version of this work is presented in
the technical report [11].

2. Geometrical junction representation
This section first introduces a contrast invariant and

geometrical representation of a junction and then pro-
vides a naive detection algorithm. We consider gray-
scale images I on discrete image lattice Ω and denote
the gradient as ∇I = (Ix, Iy). We define the direc-
tion φ(q) of a pixel q as the direction perpendicular
to the gradient at q, i.e. φ(q) = (arctan

Iy(q)
Ix(q) +

π
2 )modulo(2π). In what follows, we define the geo-
metrical configuration of a junction in an image I and
precise its quantitative measure.
Geometrical junction template A junction  is rep-
resented by its center p, its scale r ∈ N and a set of
M branch directions {θ1, . . . θM} around p. M is the
order of the junction. We considerM = 2, 3 and 4, cor-
responding to corners, T-(or Y-) and X-junctions. An
example withM = 3 is shown in Figure 1. In a discrete
image, the set of directions D(r) at a given scale r is a
collection of K(r) directions, as detailed in Section 4.

For a given scale r, the branch of direction θ at lo-
cation p is described by a disk sector Sp(r, θ) with an
angular aperture of 2∆(r), inside which the length of



Figure 1: A junction with three branches.

the vector−→pq is not larger than r and the angle between
−→pq and the direction θ is less than ∆(r). It is natural to
require that two branches of a given junction do not in-
tersect. It follows that the angle between two directions
in a junction  must be larger than 2∆(r).

Contrast invariant junction strength We use the
image gradient to derive the strength of a junction. For
robustness to local contrast changes, we normalize each
gradient component Ix and Iy by dividing it by its aver-
age gradient magnitude in a small neighborhood of size
n×n (in this paper, n set to 5), and denote it as ∇̃I . We
define the strength of a branch Sp(r, θ) as

ωp(r, θ) =
∑

q∈Sp(r,θ) γp(q), (1)

where γp(q) = ‖∇̃I(q)‖ · (| cos(φ(q) − α(−→pq))| −
| sin(φ(q)−α(−→pq))|), if the difference between α and φ
is larger than π/4, and γp(q) = 0 otherwise. It measures
how well the corresponding angular sector agrees with
local orientations. The strength of a junction is defined
as the minimal strength of its branches

t() := minm=1...M ωp(r, θm). (2)

Junction proposals So far, for a fixed scale r, we can
derive a naive algorithm for junction detection by se-
lecting all the junctions in I with a strength greater than
a given threshold T . For a given location p, testing all
possible junctions is computationally too heavy, and we
only consider directions θ corresponding to local max-
ima over [θ−∆(r), θ+∆(r)]. These local maxima can
be efficiently computed through using a non-maximum
suppression procedure.

The limitation of this detection algorithm is that the
threshold T on the junction strength is fixed regardless
of the detection scale and order and of the image size.
Setting such a threshold globally is difficult and often
leads to over- or under-detections. We now provide a
criterion for automatically setting the threshold T , by
relying on an a-contrario methodology.

3. An a-contrario junction (ACJ) model
The a-contrario detection theory, introduced in [10],

yields a generic method for validating visual events in
images. This section applies this methodology to the
detection of junctions.

3.1. Null hypothesisH0

In the a-contrario methodology, meaningful events
are those whose probability of occurrence under some
null hypothesis H0 is small enough. In our context,
we define the null hypothesis as follows. Denoting I

a random image, ‖∇̃I(q)‖ and φI(q) the random vari-
ables corresponding to the contrast and orientation at
each pixel q, we say that these variables follow the
null hypothesis H0 if (1) ∀q ∈ Ω, ‖∇̃I(q)‖ follows
a Rayleigh distribution with parameter 1; (2) ∀q ∈ Ω,
φI(q) is uniformly distributed over [0, 2π] ; (3) the fam-
ily {‖∇̃I(q)‖, φI(q)}q∈Ω is made of independent ran-
dom variables.
Remark It is worth noticing that the first assumption
is based on the statistics of locally normalized gradi-
ent [12, 11]: except on a small neighborhood around 0,
the ‖∇̃I‖ in natural images closely follows a Rayleigh
distribution of parameter 1.

3.2. Distribution of junction strength
Let  be a junction in a random image I where nor-

malized gradients and directions are assumed to fol-
low H0. Since branches do not intersect, the strengths
ωp(r, θm) of the different branches are independent ran-
dom variables. According to Equation (1) and (2), if we
note t() the random variable measuring the strength
of , then PH0 [t() ≥ t] =

∏M
m=1 PH0

[ωp(r, θm) ≥ t].
Next, the strength of each branch, ωp(r, θm), is a sum of
i.i.d. random variables γp(q), the distribution of which
underH0 can be written (see [11]) as

µ(z) = 1
2δ0(z) +H(z) · 1√

π
e−

z2

4 · erfc( z2 )dz,

with δ0 a Dirac mass at 0, H(z) = 1, for z ≥ 0, and
H(z) = 0 otherwise, and erfc is defined as erfc(z) =

2√
π

∫∞
z
e−s

2

ds.
Finally, under the hypothesisH0, the probability that

the random variable t() is larger than a given threshold
t is

F(t) := PH0
[t() ≥ t] =

∏M
m=1

∫ +∞
t

?
J(r,θm)
j=1 µ(dz),

(3)
where J(r, θm) is the size of a sector of orientation θm
at scale r.

3.3. Meaningful junctions
Following the a-contrario methodology, the thresh-

olds are then set by bounding the average number of



false detections under H0. This number is obtained by
multiplying the probability (3) by the number of possi-
ble junctions in the image.

Number of tests Let J (M) be the set of all possible
junctions of order M in an image I with N pixels. At a
given location p, once the first branch is chosen among
the K(r) possible directions, only K(r)(1 − 2∆(r)

π )
possible directions remain for the second one, respect-
ing the rule of no branch intersection. It follows that the
size of J (M) is upper bounded by

#J (M) = N
M !

∑rmax

r=rmin

∏M−1
m=0 K(r)(1− 2m∆(r)

π ).

Number of false alarms (NFA) For a junction  of
order M and at scale r in a discrete image I , its number
of false alarms is defined as

NFA() := #J (M) · F(t()). (4)

The quantity NFA() is a quality measure of the junc-
tion: the smaller it is, the more meaningful the junction
. For a given ε > 0, we call a junction ε-meaningful,
if NFA() ≤ ε, which implies a detection threshold
t(r, ε) := min{t; F(t) ≤ ε

#J (M)}.
The value ε corresponds to an expected number of

false detections in I . For a fixed ε, this formula yields
a different threshold on t() for each value of the scale
r. It is important to observe that the expectation of the
number of ε-meaningful junctions of order M in a dis-
crete random image I is smaller than ε.

3.4. Maximality for junction characterization
In practice, a single junction can be detected at multi-

ple scales and multiple locations with slight differences.
Moreover, at the same location, the local geometrical
configurations can be interpreted by several junctions
with different orders. We remove these redundancies
by relying on an exclusion principle, called maximality.

We assign to each junction  a neighborhood N ′
around its center p. For a given order M , we only keep
the junctions not containing any more meaningful junc-
tion in N ′ . That is, we only keep junctions with mini-
mal NFA. Observe that the use of the NFA is a keypoint
for scale and location selection. In contrast, using the
strengths t() for the selection would require a well cho-
sen normalization depending on the scale. Observe also
that contrarily to classical approaches relying on the lin-
ear scale-space, no blur is introduced, which permits a
precise localization of junctions. Last, after scale and
location selection have been selected by maximality,
the classification of junction is achieved by only keep-
ing the locally more complex junction (the one with the
largest order).

4. Experimental results
The proposed ACJ junction detector is evaluated on

natural images and the performance are compared with
the classical Harris detector [1] and the recent “Pj on
gPb” method [6]. For Harris, the strength is defined as
det(H)− 0.04Tr(H)2, H being the Harris matrix. For
“Pj on gPb”, the code provided by M. Maire is used. In
order to speed up the detection, we use a fast segment
detector, the Line Segment Detector (LSD) [13], to pre-
select junction candidates. The detection threshold λ of
the LSD is set to 104 for all experiments. The num-
ber of possible directions K(r) for junction branches is
chosen as b2πrc, in order to have a precision of roughly
one pixel along the circle of radius r. The precision
∆(r) is set to 5

r relying on similar considerations. In
all the experiments, the maximum order of junctions is
M = 4 and the smallest possible radius is rmin = 3.
The maximal scale rmax is chosen as 5% of the diago-
nal of the image.

Figure 2: Examples of detected junctions along
scale space. Observe the accuracy on simultaneous
selection of the scale and location of junctions.

Figure 3: Repeatability rate of different approaches
regarding contrast changes.

First, in order to show the accuracy of scale char-
acterization, we run the detection on a sequence
of images with different resolutions. An original
image I is resized with 8 different zoom factors
{1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3}, using a bilinear in-
terpolation. In Figure 2 are some examples of junc-
tions detected by the proposed algorithm on the se-
quence. Their detected scales increase linearly with
the resolution. A numerical validation of this fact may
be found in [11]. To our knowledge, the only related
methods permitting such an accurate scale computa-



Figure 4: Junction detections on a natural image containing textures. Left: result of the “Pj on gPb” detector,
obtained by thresholding the detector with a value indicated in [6]; Right: result of the proposed ACJ detector.
The color of the junction indicates the significance (red for big significance and blue for small one). The results
as well as more examples can be found on a dedicated website [14].

tion rely on linear scale-spaces [5]. However, the lin-
ear scale-space leads to poor location precisions at large
scales. Next, to test the robustness to contrast changes
of the ACJ detector, we create sequences of images by
applying different gamma corrections (γ takes value
in {0.25, 0.33, 0.4, 0.5, 0.67, 1, 1.5, 2, 2.5, 3, 4}) to an
original image. We detect junctions by running the
ACJ detector with ε = 1, Harris corner detector with
a threshold 0.06 on local maxima and “Pj on gPb” [6].
The repeatability rate of each method on the image se-
quence is computed. The average curves of repeatabil-
ity rates on 9 image sequences for the different methods
are shown in Figure 3. We can see that ACJ has the
best performance. Harris detector known to be highly
contrast dependent has the worst performance.

Figure 4 displays the detection results on a natural
image with textures. The color of the junction indicates
the significance (red corresponds to big significance and
blue corresponds to small one). In contrast with “Pj on
gPb” on the left, ACJ detector has much less detections
in texture parts, thanks to the a-contrario model. Images
used in this section as well as more examples can be
found on a dedicated website [14].

5 Conclusion

As a conclusion, we proposed a junction detector
with automatic setting of the detection parameter. It
is able to control the rate of detection, which is espe-
cially visible in textured areas usually proned to yield
over-detections. Junctions are accurately characterized
through their type, localization and scale. In particu-
lar, the method does not rely on the linear scale-space
for scale computation, permitting geometric precision.
Such an accuracy for junction characterization is poten-
tially useful for depth recovery or motion interpretation.
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