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Resolution independent characteristic scale
dedicated to satellite images

Bin Luo,Jean-François Aujol,Yann Gousseau,Sa�̈d Ladjaland Henri Ma�̂treMember, IEEE.

Abstract—We study the problem of �nding the characteristic
scale of a given satellite image. This feature is de�ned so that
it does not depend on the spatial resolution of the image. This
is a different problem than achieving scale invariance, as often
studied in the literature. Our approach is based on the use of
a linear scale-space and the total variation. The critical scale is
de�ned as the one at which the normalized total variation reaches
its maximum. It is shown experimentally, both on synthetic and
real data, that the computed characteristic scale is resolution
independent.

I. I NTRODUCTION

Scale is usually regarded as one of the most signi�cant
features for image characterization. A wide body of literature
has been devoted to the examination of images at different
scales, giving birth to the popular scale-space theory. Several
mathematical tools have concurrently been used to perform
such an analysis: mathematical morphology, wavelet decom-
positions, differential equations, pyramid decompositions, etc.

While scale has a clear de�nition in several domains of
engineering (architecture, cartography, etc . . . ), it has amuch
fuzzier meaning in digital image processing. There, as in
Physics, it re�ects to some extent the level of re�nement of
the representation of the observed world [1]. In this rationale,
a scale-space representation offers a series of images where
details are progressively �ltered, from the thinnest to the
coarsest ones, each level providing an image where no detail
smaller than a given size is left. This leads to the concept
of characteristic scale. It is attached to a structure (object,
group of objects or texture) and denotes this precise scale,in
a scale-space representation, where this structure is the most
easily perceived.

For thinner scales than the characteristic scale, �ne details
may interfere with the structure making it less salient; for
coarser scales, the contrast of the structure is blurred by low
pass �ltering or the structure may even have disappeared. Lin-
deberg strongly defended this approach and, for an operational
implementation, proposed an ef�cient de�nition by relating the
characteristic scale to the scale where a suitable combination
of derivatives assumes a local maximum [2].

In the speci�c case of remote sensing imaging, the ratio
relating the true size of an object to its size in pixels is almost
constant for a given image and is given by the resolution.
In this paper, we assume that the resolution is known and
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Fig. 1. An image of SPOT5 (5m) taken on Los Angeles, typical example
of the homogeneous regions of remote sensing imaging. The oil tanks are
periodically distributed in this image. We have measured manually the distance
between the centers of two adjacent tanks, which is approximately 100m.

we address the problem of deriving a characteristic scale
that is related to the physical dimension of a scene contents.
Contrarily to classical approaches in Computer Vision where
characteristic scales are local measures associated to each
object or sub-object (see e.g. [3]), yielding a complete scale
spectrum, the scale measure considered in this paper is an
average measure associated to an image or a sub-image.
Indeed, satellite images present relatively large homogeneous
regions for which it is of strong interest to know the mean
characteristic size of objects, see Figure 1. Of course thisis a
simpli�cation since such images will sometimes contain two
or three predominant scales, each one visible in a certain range
of resolutions.

The derivation of such a resolution independent character-
istic scale was motivated by the need of the CNES (French
space agency) to index very large and diverse satellite image
databases. Such databases are among the fastest growing
image archives and space agencies are developing indexing
scheme to be able to handle them ef�ciently, for instance using
data mining techniques, see [4]. Now, these databases are often
composed of images taken at different resolutions, depending
on the acquisition satellite involved. To compare the physical
contents of different images, it is therefore needed to compute
resolution invariant indexes. This is in particular the case for
the characteristic scale, a very ef�cient image feature forthe
task of image discrimination, see [5], [6], [7]. Of course this
goal is not fully achievable. In particular, characteristic scales
that are small compared to the spatial resolution of the image
cannot be recovered. More generally, and as can be expected,
the proposed methodology will rely on some knowledge of the
acquisition system, a sensible hypothesis in the case of remote
sensing imaging.

Formally, the problem is as follows. There exists an underly-
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ing scenef of which we know a discrete version~f . Assuming
we have some characteristic scale de�nition (to be discussed
in details) S(f ), we wish to �nd an operator~S such that
~S( ~f ) = S(f ). We shall see that this is possible when making
the following assumptions. First, the resolution of~f must
not be too coarse compared to the “continuous” characteristic
scale S(f ). Second, it is assumed that~f is obtained from
f through convolution with a Gaussian kernel and regular
sampling. Last, the characteristic scaleS(f ) is de�ned by
looking at the maximum of some operator in a linear scale-
space, a classical method from Computer Vision. This last
assumption is of primary importance, since this speci�c type
of scale de�nition enables to recover the scale even though
some information has been lost in the acquisition of~f .

Let us underline that the problem of deriving a characteristic
scale independent of the spatial resolution is different from
the classical requirement that a characteristic scale should be
invariant under a change of scale. Namely, if the function
f (x; y) is transformed intof (kx; ky ), the characteristic scale
S(f ) should be transformed intok � 1S(f ). Some works report
experimental results showing that such an invariance should
be enough for the purpose of computing the scale of local
descriptors issued from images originating from two different
sensors (see for instance Figure 1 of [8]). However, as the
experiments of Section VI will show, it is our experience that
without taking into consideration the impact of the sensor res-
olution, the derived characteristic scale is biased. Our approach
therefore explicitly incorporates the sensor impulse response
in the characteristic scale estimation. The scale invariant and
resolution invariant approaches are compared in Section VI. In
particular, we will see that our approach yields accurate results
even when the convolution kernel of the imaging sensor is not
Gaussian. Some preliminary results of the proposed approach
were presented in [9].

The plan of the paper is the following. In Section II,
we recall the classical de�nitions of characteristic scales. In
Section III, a �rst de�nition of the characteristic scale isgiven,
based on the de�nition in [2] but differing by the mathematical
norm used. In Section IV, the main contribution of this paper
is presented: we adapt the de�nition of the characteristic scale
by taking into account the acquisition process in order to
achieve resolution invariance. In Section V, the behavior of the
proposed characteristic scale de�nition is studied on various
synthetic images. In Section VI we test our approach on real
data provided by the French space agency (CNES).

II. CLASSICAL DEFINITIONS OF CHARACTERISTIC SCALES

Many de�nitions of characteristic scales for images have
been proposed in the literature. The most popular one is
probably the aforementioned de�nition relying on linear scale-
space [2], [10]. Many alternatives also relying on the use
of the linear scale-space have been proposed in the �eld of
Computer Vision, see e.g. [8]. De�nitions relying on extrema
of wavelet decompositions, see e.g. [11], can be put in the
same category. Recently, it has been proposed to use non-
linear scale-spaces in a similar way, [7]. Several alternative
approaches rely on information theory: in [6] the maximum

entropy between consecutive wavelet subbands, in [12] the
maximum Kullback divergence after increasing �ltering by
diffusion equations, in [13] the maximum change of entropy,
in [14] the maximum change of generalized entropy, and in
[15] the maximum entropy of gray level differences are used
as de�nitions. A third kind of approach, popular in remote
sensing imaging, relies on the use of the variogram of images,
see [16]. However, most methods relying on the use of second
order statistics assume that images follow some speci�c model,
such as various point processes [17] or periodic functions
[18] and are not suited to complex images for which such
assumptions are not realistic.

In this paper, we choose to follow the approach proposed
by Lindeberg because the use of a linear scale-space naturally
allows us to take the acquisition process of the image into
account when computing a characteristic scale.

III. B ASIC TOOLS AND SCALE DEFINITION

In this section, we recall the models and mathematical tools
to be used in this work, and give a de�nition of the charac-
teristic scale of an image. Namely, we de�ne the simpli�ed
acquisition process assumed for images, we introduce the
classical linear scale-space to be used for scale characterization
and we de�ne the total variation of images. We then de�ne
the characteristic scale as the maximizer of a normalized total
variation in the linear scale-space.

a) Simpli�ed sampling scheme:We assume that the
scene under study is represented by a continuous function
f , and that the digital imagef r at resolutionr is obtained
by convolution and sampling. Moreover, it is assumed that
the convolution kernel is Gaussian, with a standard deviation
� = r=� proportional to the resolution. This can conveniently
be modeled as:

f r = � r : (f � k� ) ; (1)

where:

k� (x; y) =
1

2�� 2 exp
�

�
x2 + y2

2� 2

�
; (2)

and � r is the Dirac comb onZ2, that is,

� r =
X

i;j 2 Z

� ( ir;jr ) :

In this context, our goal is to extract fromf r a characteristic
scale related tof . Equation (1) is a rough approximation of
the real acquisition process, neglecting some important aspects
such as noise or contrast changes and assuming a simple
form for the modulation transfer function of the imaging
device. These limitations will be discussed in Sections IIIe)
and VI c). Moreover, it will also be shown experimentally
in Section VI c) that this model is accurate enough for our
purpose.

b) Linear scale-space:As previously explained, the ba-
sic idea to extract characteristic scales is to track structural
changes in scale spaces. In order to deal with images at various
resolution (as expressed by (1)) we are naturally led to use a
linear scale space [19]. For an imagef : R2 7! R, its linear
scale-space is a functionL : R2 � R+ ! R de�ned as:

L (x; y; t) = kt � f (x; y); (3)
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where kt is de�ned by Formula (2). It is easily seen that
L (:; :;

p
2t) is a solution of the heat equation@t L = � L ,

with initial conditionL (:; :; 0) = f and that, under reasonable
hypotheses, it is the only solution. For this reason,L (:; :;

p
2t)

is the classical de�nition of linear scale-space. However,we
prefer the de�nition given by Formula (3) that simpli�es
forthcoming computations and allows to directly de�ne a scale
that is homogeneous to a distance.

Various non-linear scale-spaces could also be considered,
[20], [21], [22], but we restrict ourselves to the linear oneto
be able to deal with resolution changes, as it will become clear
soon.

c) Total variation: The structural changes to be quanti-
�ed in the linear scale-space are due to the objects present
in the scene. These objects disappear as the scale increases.
The basic idea of the proposed approach is to quantify the
evolution of geometric structures of the image in the linear
scale-space. Therefore, we consider the total variation (TV)
[23] of images, de�ned (when the image is regular enough) as
T V(f ) =

R
jr f j. Indeed, the semi-norm TV is related to the

geometry of the image through the coarea formula. Writing
E � = f x : f (x) � � g for the upper level sets off , if f is
regular enough, one has

T V(f ) =
Z

R
per(E � )d�:

This implies that for a binary image,T V(f ) is equal to the
perimeter of the objects multiplied by their contrast.

d) Scale de�nition: Following the general approach of
[2], we de�ne the characteristic scale of an image as the max-
imizer of a suitably normalized differentiable operator. To deal
with the geometric contents of the image, we choose to use
a normalized total variation,NT V (f ; t) = � (t) T V (kt � f ).
The main idea is that the normalization term must compen-
sate the decrease of the total variation caused by Gaussian
smoothing. We denote bytmax the maximizer of the nor-
malized TV overt. A natural requirement ontmax is that
tmax (f ) = stmax (f s), where f s(x) = f (sx). In Appendix
C and D, we show that this implies� (t) = At B and that
� (t) = t is a good choice for numerical reasons. That is, we
de�ne

NT V (f ; t) = t T V (kt � f ) = t
Z

jr kt � f j; (4)

and
tmax = argmaxR�

+
NT V (f ; t): (5)

This is in fact a special case of the normalization proposed by
Lindeberg [2] for differential operators. In Appendix B, we
comment on the possibility of using other differential operators
than the total variation.

e) Robustness to noise and contrast change:Observe that
the characteristic scale de�nition (5) is invariant under linear
contrast changes. Indeed, iff ! af + b, with a > 0, then
NT V (f ; t) ! a:NT V (f ; t). This is very convenient when
dealing with satellite images, since contrast changes due to
atmospheric perturbations are often approximated by an af�ne
transform. This invariance is also suf�cient when computing
the scale of scenes made of objects with similar intensitieson

a homogeneous background. However, the method is of course
not fully contrast invariant, which could be a problem in the
case of objects with very different intensities.

Notice also that due to the use of the linear scale-space in the
computation oftmax , noise is not an issue. Indeed, the size of
objects contributing to the characteristic scale is much larger
than one pixel. Therefore, any reasonable noise is removed
from the scale-space image corresponding totmax .

Recall now that we are interested in discrete images ob-
tained fromf through Equation (1). In the next section, we
show how to adapt the de�nition of characteristic scale in this
context.

IV. RESOLUTION INVARIANCE

The purpose of this section is to derive a method to ensure
that the computed characteristic scale does not depend upon
the resolution of the image.

a) Taking the acquisition process into account:Recall
that f is a continuous function corresponding to a given
scene. Since we assume that the acquisition system performs
a convolution by a Gaussian kernelk� followed by a sampling
at rater = �� , we write:

f r = � r :(f � kr=� );

where f r is the sampled version off at resolutionr . The
parameter� is a characteristic of the acquisition process.

Denoting by~kt the discrete version of the Gaussian kernel
with standard deviationt (t expressed in pixels), we have~kt �
krt (up to some normalization constant which can be dropped).
Let us de�ne the discrete scale-space as:

f r;t = ~kt ~� f r = ~kt ~� (� r : (k� � f )) � � r : (krt � (k� � f )) :
(6)

where ~� is the discrete convolution. The last approximation
means that inverting convolution and sampling is possible,at
least for non-aliased images such ask� � f . In Figure 2, we test
the validity of this assumption on a real image. The result fully
supports the hypotheses. In addition we can assume (for well-
sampled images) that the total variation of the continuous and
discrete versions are the same up to a normalization due to the
zooming of factorr (this will be con�rmed by the numerical
experiments in the following sections). This leads to:

T V(f r;t ) �
1
r

T V(krt � k� � f ) =
1
r

T V
�
kp

r 2 t 2 + � 2 � f
�

:
(7)

b) Normalization choice:A normalization of the discrete
total variation is now needed in order to relate it to the con-
tinuous normalized total variationNT V (de�ned in Equation
(4)). Let us de�ne:

Gr (t) = h(t) T V (f r;t ) ; (8)

where the normalization factorh(t) is to be chosen. Similarly
to Equation (4), we may de�ne:

tmax r = argmaxR�
+

Gr (t): (9)

Proposition: If we choose in Equation (8):

h(t) =

r

t2 +
1

� 2 (10)
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Fig. 2. Validation test of Equations (6) and (7). Figure (a) shows the relative
difference between the total variation of the last two termsof Equation (6) as
a function of� , wheref is the image (b) of Figure 11. The relative difference
does not exceed10� 6 . In Figure (b) is shown the ratio between the two �rst
terms of Equality (7); this ratio varies between 0.98 and 1. This experiment
validates the assumption of Equation (7).

(with � = r=� characteristic of the acquisition process), then
the following relation holds (tmax being de�ned by (5)):

tmax �
q

r 2t2
max r

+ � 2 � r

r

t2
max r

+
1

� 2 : (11)

Proof:
Using Equation (7):

Gr (t) �
1
r

h(t) T V
�
kp

r 2 t 2 + � 2 � f
�

=
1
r

h(t)
p

r 2t2 + � 2
NT V

�
f ;

p
r 2t2 + � 2

�
:

Hence:

Gr (t) �
1
r 2

h(t)
q

t2 + 1
� 2

NT V
�

f ;
p

r 2t2 + � 2
�

: (12)

Sinceh(t) is given by (10), we then obtain:

Gr (t) �
1
r 2 NT V

�
f ;

p
r 2t2 + � 2

�
(13)

We thus deduce (11) from (5) and (9).

�

c) Practical considerations:For a discrete image at
resolutionr we measuretmax r and derive the value oftmax

using Equation (11). Notice that it is impossible to �nd a
characteristic scaletmax smaller than� (which is comparable
to r ). More generally, when the resolution of the image is
larger than the actual characteristic scaletmax the computation
becomes unreliable. Experiments show thattmax is retrievable
as long asr < t max .

Of course, a general image can contain several characteristic
scales. A scale can therefore be a characteristic of some
scene for a speci�c range of resolution. As will be seen
in the numerical experiments section, the characteristic scale
tmax that we compute with Equation (11) corresponds to the
smallest retrievable scale in the image. For instance, as shown
on Figure 14(d)), the characteristic scale of the image of
Roujan (see Figure 11(d)) is 0.4m (due to the details inside the
�elds) if the resolutionr of the image is smaller than 0.4m,
whereas when the resolution gets larger the characteristicscale
jumps to 30m (due to the size of the �elds itselves).

From now on, the values oftmax will be deduced from
Equation (11).

d) Difference with the “nä�ve” normalization choice:In
view of Equation (4), the intuitive normalization would not
take into account the �ltering process due to the change of
resolution and, therefore, involve a factort instead ofh(t):

A r (t) = t � T V (f r;t ) (14)

If, according to this intuition, we set tmax r as
argmaxR�

+
(A r (t)) and deducetmax = r � tmax r , then

we can check numerically that the obtained value oftmax will
depend much more on the resolution than with the de�nition
from Equation (11). This fact will be detailed in Section VI,
see Figure 18.

Notice also that whent � 1, then the de�nitions from
Equations (8) and (14) are equivalent. The choice of the correct
normalization given by Equation (10) is important whenr
approachestmax (that is tmax r approaches 1).

V. RELATING tmax TO THE GEOMETRY OF THE IMAGE

In this section, we investigate the link between the charac-
teristic scaletmax , as de�ned in Section III for a continuous
image, and the geometric contents of the image. For this
purpose, following the example in [2], we �rst consider various
simple one-dimensional functions, for which we perform com-
putations and numerical approximations. Then, we tackle the
two-dimensional case by performing numerical simulationson
discrete synthetic images. We experimentally show that, for a
periodic scene with spatial periodD , the critical scale de�ned
in Equation (5) is such thattmax � 0:15D. The purpose of
this section is to show that the constant linkingtmax to the
period is quite stable over a variety of periodic signals, for
which the notion of characteristic scale is clear. Of course,
real signals are much more complicated and Section VI will
deal with real satellite images.

A. Continuous one-dimensional examples

In order to consider cases with tractable computations,
we de�ne tmax for a one-dimensional functionf as in
Formula (5). For 1D signals the gradient is replaced by
the derivative andkt by a one-dimensional Gaussian in the
computation ofNT V (f ; t) .

a) Sinus function:Assuming thatf is a sinus of period
D, restricted to[� T; T] � R, it may be shown that ifT=D !
1 (so that boundary effects can be neglected) thentmax !
D=2� � 0:15D, as already mentioned in [24], [2].

b) Sum of Gaussians:Assume thatf is a function
de�ned on [� T; T] � R as:

f (x) =
K � 1X

k= � K

1
p

2�v 2
e

� ( x � (2 k +1) D= 2) 2

2v 2 ; (15)

ie., f is the restriction to[� T; T] of a sum of Gaussians, the
spatial period of this sum beingD. Assuming thatK � 1 (or
T � D ) in order to neglect boundary effects, we obtain:

NT V (f ; t) �
2t

Dq
p

2�

 

1 + e� K 2 D 2

4q2 + 2
2K � 1X

k=1

(� 1)k e� k 2 D 2

4q2

!

;

(16)
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whereq =
p

v2 + t2. This result is obtained by noticing that
the total variation may be computed on each monotonous part.
The graph ofNT V (f ; t) as a function oft is shown on
Figure 3. On Figure 4 (a), the graph oftmax is displayed
as a function ofD , v being constant. One observes that
tmax � 0:15D, a result very similar to the one for the
sinusoidal case. Figure 4 (b) showstmax =D as a function of
v, D being constant. One can check thattmax =D � 0:15. In
this case,tmax is related to the period of the signal but not to
the width of each Gaussian.

0 5 10 15 20 25 30 35 40
0

0.005

0.01

0.015

t

T
V

N

Fig. 3. Plot ofNT V (f ; t ) as a function oft , whenf is a sum of Gaussians
as in Equation (15),t 2 [0:1; 40] andK = 10 , D = 40 , v = 10 . NT V (f ; t )
reaches its maximum fortmax = 6 :4
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(a) tmax as function ofD
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(b) tmax =D as a function ofv

Fig. 4. Plot oftmax for a sum of Gaussian functions (see Equation (15));
(a):tmax as a function ofD , with v = 5 (we check numerically thattmax �
0:15D , D being the spatial period); (b):tmax as a function ofv, with D = 40 .

c) Sum of Heaviside functions:In order to investigate the
sensitivity of tmax to the shape of ”objects”, we consider the
following example, still in 1D to yield tractable computations:
f is de�ned on[� T; T] by

f (x) =
KX

i = � K

H (x � iD ) (17)

where

H (x) =
�

1; x 2 [0; v]
0; otherwise

(18)

with v 2 (0; D ). Assuming thatt << D and v � D=2, then
it may be shown using standard computations that:

NT V (f ; t) � Ct
�

2erf
�

D � v

2
p

2t

�
� erf

�
D � v
p

2t

��

+
�

2erf
�

v

2
p

2t

�
� erf

�
v

p
2t

��
(19)

where erf(x) = 2p
�

Rx
0 e� u2

and C is a constant.
Figure 5 (a) shows numerical computations oftmax , taken

as the zero of the derivative of Formula (19) as a function of

D and Figure 5 (b) shows the plot oftmax =D as a function
of v. Here again we obtaintmax � 0:15D and observe that
tmax =D depends very little onv.
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(a) tmax as function ofD
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(b) tmax =D as a function ofv

Fig. 5. tmax for a sum of Heaviside functions (see Equation (17)). We check
numerically thattmax � 0:15D whereD is the spatial period. In Figure (a)
v = 10 and in Figure (b)D = 40 .

To summarize, in cases a), b) and c), it may be computed
or observed thattmax � 0:15D, which indicates that neither
the shape nor the size of the pattern seem to in�uence much
tmax in the cases of1-D functions.

B. Discrete synthetic images

In order to experimentally con�rm the linear relation be-
tween tmax and the spatial period of signals (D in the pre-
ceding examples) in the case of images, we consider synthetic
discrete periodic images using various patterns. Two instances
of such images are displayed in Figure 6 (sum of Gaussians
with standard deviationv) and 7 (sum of squares with width
v), together with the associated graphs ofNT V as functions
of t. Figure 8 (a) shows the graph oftmax as a function ofD
and Figure 8 (b) shows the graph oftmax =D as a function of
v for sums of Gaussians. Figures 9 (a) and (b) show the same
quantity for sums of squares. Comparing these two �gures
respectively with Figure 4 and Figure 5, we conclude that the
shape of patterns as well as their size have little in�uence on
the measure. Moreover, we see thattmax � 0:15D still holds
in dimension 2.

(a) Periodic sum of Gaussians
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(b) Graph ofNT V

Fig. 6. A periodic Gaussian function withD = 40 and v = 10 (standard
deviation of each Gaussian) and the graph of the corresponding normalized
total variation. The maximum is reached fort = 6 :1.

Satellite images are of course not exactly periodic. In order
to check that the above empirical observation still holds in
the case of randomly pertubated images, we performed the
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(a) Periodic sum of squares
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(b) Graph ofNT V

Fig. 7. An image composed of squares with spatial periodD = 40 , and the
side of each square equal to10 pixels, and the graph of the corresponding
normalized total variation. The maximum is reached fort = 6 :1.
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(a) tmax as a function ofD
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(b) tmax =D as a function ofv

Fig. 8. (a) Graph oftmax as a function ofD (with v = 5 ) for sums of
Gaussians, we obtaintmax � 0:15D ; (b) Graph oftmax =D as a function of
v (with D = 40 ) for sums of Gaussians, we obtaintmax =D � 0:15.

following experiment. We start with periodic images of squares
with a periodicity ofD = 20. We perturbate the position of
each square with random horizontal and vertical translations,
the shifts being uniformly distributed between - 5 and 5
pixels. Moreover, the gray level of each square is random and
uniformly distributed between 64 and 255. An example of such
a synthetic image is shown in Figure 10(a). On Figure 10(b),
values of t max

D are displayed for20 different realizations.
The mean value oft max

D is 0:16, which con�rms the relation
obtained in the periodic case.

VI. A PPLICATION TO SATELLITE IMAGES

In this section several experiments are presented to demon-
strate the invariance oftmax with respect to resolution on real
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(a) tmax as a function ofD
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(b) tmax as a function ofD

Fig. 9. (a) Graph oftmax as a function ofD (with v = 10 ) for sums of
squares, showing thattmax � 0:15D ; (b) Graph oftmax =D as a function
of v (with D = 40 ) for sums of squares, showing thattmax =D � 0:15.
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Fig. 10. (a) An example of a quasi-periodic synthetic image in which the
position of each square is randomly perturbated. (b)t max

�D
for 20 realizations.

images in the domain of remote sensing.
At �rst, starting from several images with resolution equal

to 25 cm, we create a series of lower resolution images using
Formula (1), i.e. using a down-sampling scheme in which
�ltering is made using a Gaussian impulse response. We call
it the ideal down-sampling.

Then, we make use of series of images provided by the
CNES which precisely simulate the images which would
be obtained with different sensors operating with various
resolutions from a satellite, i.e. by taking into account the
different effects of sampling, integration, acquisition time, etc.
and therefore providing the actual impulse response of sensors.

Notice that in all the experiments presented in this section,
we have used� = 1 in Formula (11). This implicitly implies
the assumption that the acquisition process is modeled by
Equation (1) with� = 1 , although the real acquisition process
is unknown to us.

(a) Marseille (b) Toulouse

(c) Didrai (d) Roujan

Fig. 11. Aerial images with 25 cm resolutionc CNES: (a) and (b) 2 cities
with different urban tissues, (c) a forest, (d) agricultural �elds.
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a) Computation oftmax using Formula (11): On Fig-
ure 12, we display the graphs of the normalized total variation
for the 4 images shown in Figure 11 (at resolutionr = 25cm).
There is at least one local maximum in each case. In the case of
cities (Marseille or Toulouse), the characteristic scale is related
to the size of the buildings and streets. In the case of the Didrai
image (forest), the scale is related to the vegetation. Notethat
in the case of the Roujan image (�elds), there are two local
maxima, the narrow one (zoomed in Figure 12 (e)) is related
to the vineyards, and the large one to the �elds. Figure 13
displays a zoomed area of Figure 11 composed of vineyards.
The spatial period of the vineyardsD may be computed from
the characteristic scaletmax , using the relationtmax � 0:15D.
We �nd that the distance between two vineyard rows is roughly
2.7m, a result which we were able to check on the image for
such a regular and periodic structure.
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(d) Roujan
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(e) Roujan(zoomed)

Fig. 12. NTV as a function of
p

r 2 t2 + � 2 computed for the 4 images
of Figure 11 with resolutionr = 0 :25m. (a) Marseille:tmax = 4 :8m; (b)
Toulouse:tmax = 2 :4m; (c) Didrai: tmax = 1 :2m; (d) Roujan: there are
two local maxima. The �rst one at position0:4m, the second one at position
30m; (e) Zoom around the �rst local maximum at0:4m shown in (d).

b) Resolution invariance:In order to con�rm that the
characteristic scale extracted from the images is independent
from the resolution of the sensor (tmax does not depend on
r ), we made the following experiments. For a given scene,
an imagegr at resolutionr is generated (using Formula (1)
with � = 1 ), and the maximizertmax is computed. Figure 14
shows the graph oftmax as a function ofr . As expected, it
shows thattmax is almost constant (as long asr < t max ).

Remark that in the case of Roujan, where two different
characteristic scales are present, the plot oftmax is coherent

(a) Image of vineyards
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(b) NTV calculated on the vineyards

Fig. 13. Zoom on vineyards issued from the Roujan image displayed on
Figure 11 (d). The characteristic scale appears at resolution 0.4m. Using the
relation tmax � 0:15D , we see that the distanceD between 2 rows of
vineyards is roughly 2.7m.

with the result shown in Figure 12 (d). When the resolutionr
is �ne enough,tmax is the characteristic scale corresponding
to the vineyards. But whenr gets larger, then the vineyards
disappear (one no longer sees them in the images), andtmax

is then related to the size of the �elds.
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(b) Toulouse
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(d) Roujan

Fig. 14. Characteristic scalestmax as a function of the resolution, for the 4
scenes shown in Figure 11. The images at different resolutions are obtained by
down-sampling the 25 cm images using the ideal acquisition model presented
in Section IV (with � = 1 ), i.e. with a Gaussian convolution kernel. Notice
that the characteristic scale is almost independent from the resolution.

c) Validation of the simpli�ed acquisition model:In or-
der to examine the case where different sensors with different
resolutions and different impulse responses are used, we take
advantage of a series of images provided by the CNES,
including the four images of Figure 11. For each scene, 33
images are available at resolutions ranging from 25 cm to
10.08 m (see Table I), each one taken with the exact impulse
response of a real sensor. These images have been obtained
by numerical simulations performed by the CNES, using aerial
images and a realistic model of data acquisition. The impulse
response is resolution dependent, roughly isotropic, and non-
Gaussian. The use of a non-Gaussian impulse response in
place of a Gaussian one makes the derivation of a relation
similar to (11) dif�cult. However, we will see below that
approximating the impulse response with a Gaussian kernel,
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TABLE I
Available resolutions (meters)

0.250 0.281 0.315 0.354 0.397 0.445 0.500
0.561 0.630 0.707 0.794 0.891 1.00 1.12
1.26 1.41 1.59 1.78 2.00 2.25 2.52
2.83 3.17 3.56 4.00 4.49 5.04 5.66
6.35 7.13 8.00 8.98 10.08

that is using Equation (11), leads to good numerical results.
Due to the non-linearity of the total variation, we have no
theoretical explanation for this fact.

Figure 15 shows the graph oftmax as a function of the
resolution. Results are very similar to those of Figure 14. We
observe thattmax is almost constant (as long as the resolution
r < t max ). Figure 16 shows four other scenes taken from the
series of images provided by the CNES. The corresponding
graphs oftmax as a function of the resolution are displayed
on Figure 17; again,tmax is almost constant.

We conclude that even though the kernel is not Gaussian,
the approximations made in section IV are still valid.

If instead of using the original relation (11) introduced
in this paper, we make use of the intuitive normalization of
Equation (14), we obtain the plots of Figure 18. As expected,
in this case, the estimatedtmax is much more sensitive to the
resolution.
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(d) Roujan

Fig. 15. Characteristic scaletmax as a function of the resolution, on the
4 scenes shown in Figure 11. The images at different resolutions are issued
from the series of images provided by CNES. Even though the convolution
kernel is no longer Gaussian, the characteristic scales arealmost invariant
when the resolution changes.

d) Results on images taken with different captors:In
Figure 1 is displayed an image of periodically distributed oil
tanks. Figure 19(b) shows the graph ofNT V as a function
of the resolutionr . The value oftmax is then deduced to be
approximately16m. Recall that in Section V, we have found
experimentally thattmax � 0:15D, where D is the spatial
period. In this case we deduce thatD � t max

0:15 � 107m.
To further check the captor invariance oftmax , an image

of the same region has been found inc GoogleEarth (see
Figure 20(a)). The size of a pixel of this image is roughly

(a) Marseille 2 (b) Toulouse 2

(c) Toulouse 3 (d) Roujan 2

Fig. 16. Aerial images with 25 cm resolutionc CNES: (a), (b) (c) 3 cities
with different urban tissues, (d) agricultural �elds.
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Fig. 17. Same experiment as in Figure 15 for the 4 scenes of Figure 16. Again
the characteristic scales are almost invariant when the resolution changes.

8m (using the map scale shown on Figure 20(b)). Using
formula 11, and the same value� = 1 as before, the value of
tmax is deduced to be approximately14; 5m. HenceD � 98m.
This is consistent with the computation made with the CNES
image.

VII. C ONCLUSION AND FUTURE PROSPECTS

A new method to compute a characteristic scale for a given
image has been proposed, which does not depend on the
resolution (as long as the objects are larger than one pixel).
This method explicitly takes into account the role of the
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Fig. 18. Characteristic scaletmax as a function of the resolution, for the
Toulouse image, Figure 11(b). The scaletmax is computed with the naive
normalization given by Equation (14). Notice that the result is less invariant
to resolution changes than in the case of Figure 15(b). In therange[0:25; 2m],
the variation of the value is18% with the proposed method (Figure 15 (b))
and40% with the naive normalization.
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Fig. 19. (a) Image on Los Angeles with oil tanks taken by SPOT5(5m).
c CNES; (b) Graph of NTV as a function of the resolution. The characteristic

scaletmax is equal to 16m.

acquisition sensor. It has been shown to be robust and stable
on different images issued from the remote sensing domain.
We have also shown on various examples that the position of
the maximizer of the normalized TV does not depend on the
object shapes, but merely on the distances between structures.

This approach is foreseen to �nd applications for the prob-
lem of satellite image indexing. As explained in the introduc-
tion of the paper, it is indeed a major asset that features do
not depend on the resolution. In fact, the proposed resolution
independent approach can be extended to other linear features
such as wavelet coef�cients [25]. This is the subject of on-
going work. Moreover, we expect to �nd the texture/geometry
behavior of a scene, following ideas introduced in [26]. This
could be useful for feature selection. More precisely, it could
be decided in advance whether texture speci�c features should
be used or if object recognition tools should be preferred. From
a more theoretical point of view, the effect of sampling on total
variation could be understood more deeply, especially when
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Fig. 20. (a) Image on Los Angeles with oil tanks.c GoogleEarth; (b)
Legend of the image, the resolution is approximately8:06m; (c) NTV values
calculated as the function of resolution. The characteristic scaletmax 14.5m.

the resolution is close totmax .

APPENDIX

A. Localization issue

The scale measurement we have introduced can be localized
using a sliding window. The scale of a single pixel is then
computed as the scale on the window centered around this
pixel. To illustrate this approach, we have processed the
Marseille image (see Figure 21 a). We use the image at
resolution0:707m, with size 1440� 1440. The analysis is
made using a window with size256� 256, and the window is
moved by32 pixels at each step. On Figure 21 (b), we show
the computed values oftmax .

Notice in particular thattmax is larger in the top left corner.
Looking at Figure 21 (a), one sees that this corresponds to
larger buildings and structures in the original image.

(a) (b)

Fig. 21. (a) Image of Marseille (resolution0:707m, size1440� 1440); (b)
Image of the corresponding values oftmax (the largertmax , the whiter the
gray level value in (b)).

B. Alternative de�nitions oftmax

In this section, we discuss the possibility for measuring the
characteristic scale with other semi-norm than the total varia-
tion. As discussed by Lindeberg [2], any normalized Gaussian
derivative can be considered to achieve scale invariance. For
instance, instead of using Equation (11), we could de�ne the
characteristic scale as:

t l
max = arg max

t
NL (f ; t) (20)

where NL (f ; t) = t2
R

jr 2(f � kt )jdx. We have computed
t l
max both on synthetic images and remote sensing images.

The results are shown in Figure 22.
On Figure 22(a), we show the values oft l

max =D for
various periodic images of squares with periodD, as in
Section V-B. It can be seen thatt l

max � 0:20D. Recall that
we have experimentally shown thattmax de�ned with the
normalized total variation satis�estmax � 0:15D. We thus
have t l

max � 1:33tmax . This same relation can be observed
on Figure 22(b). Nevertheless, we have decided to use the
normalized total variation with Equation (11) for the two
following reasons:

1) This de�nition is directly related to the geometric con-
tents of a scene. Indeed, the coarea formula [23], as
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Fig. 22. (a) graph oft l
max =D for synthetic images (made of periodic squares

with spatial periodD ) as a function ofD whereD = 40 (see Section V-B);
(b) graph ofNL computed on the image of Marseille (see Figure 11) at
resolutionr = 0 :25m.

recalled in Section III, relates the total variation of an
image to the perimeter of objects. A sharp object in a
scene is blurred in the Gaussian scale-space. Neverthe-
less, the total variation of the blurred object can be seen
as an approximation of its perimeter thanks to the coarea
formula.

2) Using the total variation, only �rst order derivatives of
the image are involved: there is no need to increase the
complexity of the algorithm by computing higher order
derivatives.

C. Normalization issue revisited

The characteristic scale of a continuous imagef has been
de�ned as:

tmax = argmaxR�
+

� (t)
Z

jr (kt � f )j;

with � (t) = t. In this section, we show why it is reasonable to
choose� (t) = tB while the next section explains whyB = 1
has been chosen.

Since we wanttmax to be related to the size of objects in
the imagef , we naturally assume (scale-invariance) that:

tmax (f ) = stmax (f s); (21)

wheref s(x) = f (sx). For anyt0 > 0 ands > 0, let us de�ne

Fs(t0) = @t log
�

� (t)
Z

jr f s � kt j
�

(t0):

Equation (21) implies that

F1(t0) = 0 ) Fs

�
t0

s

�
= 0 : (22)

Now,

Fs

�
t0

s

�
= s@t log

�
� (t=s)

Z
jr f s � kt=s j

�
(t0)

= s@t log
�

� (t=s)s� 1
Z

jr f � kt j
�

(t0)

=
� 0

�
(t0=s) + s@t log

Z
jr f � kt j(t0)

=
� 0

�
(t0=s) + s

�
F1(t0) �

� 0

�
(t0)

�
:

Then Equation (22) implies that

� 0

�
(t0=s) = s

� 0

�
(t0);

and therefore� (t) = At B for two constantsA and B to be
chosen.

D. Power of normalization factor: why we setB = 1

The constantA does not affecttmax . The reason why we
choseB = 1 is essentially of a numerical nature. IfB is too
small, thenNT V decreases very fast, implying a very small
value oftmax . This becomes a severe drawback when comput-
ing the scale of low resolution images. On the other hand,B
cannot be too large. Indeed, we have checked experimentally
on the images provided by the CNES that in this case the graph
of NT V becomes �at and the relative error for the numerical
value oftmax gets larger. In such a case, the localization of the
extremum is not reliable. We found experimentally that setting
B = 1 is a good compromise between these two drawbacks.
Moreover, this choice is coherent with the one in [2]. As an
example, Figure 23 displays the graph of NTV withB = 1 :3
in the case of Didrai image. We may see that this value already
makes it dif�cult to computetmax , whereas it is easier from
Figure 12 (c).

2 4 6 8

14

16

18

20

22

24

Fig. 23. NTV calculated on the image of Didrai with normalization factor
� (t ) = t1:3 .

E. Numerical issues

Numerically, the total variationT V(I ) of an imageI is
classically computed with the following expression:

T V(I ) =
1
2

X

i;j

q
(I i � 1;j � I i +1 ;j )2 + ( I i;j � 1 � I i;j +1 )2

When computing the linear scale-space, we use a logarith-
mic scale step, i.e.
t 2 f 1:12n ; n = 0 ; 1; : : : g, in order to preserve the precision
at small scales and to speed up the computation at large scales.

In order to increase the speed of the Gaussian convolution,
the semi group property of the Gaussian kernel is used. The
complexity of the algorithm for computingtmax is O(N ) (N
is the number of pixels). On a PIV 3.2GHz machine with
1024M memory, the computation time oftmax for an image
with size of1024� 1024pixels is about25s (where maximal
scale is37).
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École Normale Supérieure. He received an engineer-
ing degree from the ENST and a PhD degree from
the ENS Cachan in 2005.

He is currently an associate Professor in the Signal
and Image Processing (TSI) Department, ENST.
His research intersets include image restoration and
blind deconvolution.

Henri Ma�̂tre Henri MAÎTRE received the engi-
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