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Abstract—We study the problem of nding the characteristic
scale of a given satellite image. This feature is de ned so &t
it does not depend on the spatial resolution of the image. Thi
is a different problem than achieving scale invariance, as ften
studied in the literature. Our approach is based on the use of
a linear scale-space and the total variation. The critical cale is
de ned as the one at which the normalized total variation reahes
its maximum. It is shown experimentally, both on synthetic ad
real data, that the computed characteristic scale is resotion
independent.

Fig. 1. An image of SPOT55(n) taken on Los Angeles, typical example
. INTRODUCTION of the homogeneous regions of remote sensing imaging. Theudis are

Scale is usually regarded as one of the most signi capgriodically distributed in this image. We have measuredumdy the distance
features for image characterization. A wide body of literat Petween the centers of two adjacent tanks, which is apprati;n100m.
has been devoted to the examination of images at different

scales, giving birth to the popular scale-space theoryefaéy we address the problem of deriving a characteristic scale

mathematical tools have concurrently been used to perfo : . . ’
such an analvsis: mathematical moryholo wavelet F():ieco[ﬁl‘-’:lt is related to the physical dimension of a scene contents
ysIS. P 9y, (U:]ontrarily to classical approaches in Computer Vision eher

positions, differential equations, pyramid decompoaiicetc. L :
) o . haracteristic scales are local measures associated to eac
While scale has a clear de nition in several domains of, . . o
; ; ; ; object or sub-object (see e.g. [3]), yielding a completdesca
engineering (architecture, cartography, etc ...), it hasuah 4 . . )
. oo ; spectrum, the scale measure considered in this paper is an
fuzzier meaning in digital image processing. There, as i . . .
ogverage measure associated to an image or a sub-image.

Physics, it re ects to some extent the level of re nement o .
X . Indeed, satellite images present relatively large homeges
the representation of the observed world [1]. In this radlen . o :
regions for which it is of strong interest to know the mean

le- representation offer ri fim wh . . L
a scale-space representation offers a series of imagess c%aracterlstlc size of objects, see Figure 1. Of courseighis

details are progressively Itered, from the thinnest to thé. — .=~ . ) : . . .
i~ . §|mpll cation since such images will sometimes contain two
coarsest ones, each level providing an image where no de a|t . L .
hree predominant scales, each one visible in a certagera

smaller than a given size is left. This leads to the conce%{t resolutions
of characteristic scale. It is attached to a structure (bje o L
. : ; . The derivation of such a resolution independent character-
group of objects or texture) and denotes this precise Sml?{llstic scale was motivated by the need of tr;\e CNES (French
a scale-space representation, where this structure is tis¢ X . L
P P space agency) to index very large and diverse satellite @mag
atabases. Such databases are among the fastest growing

easily perceived.
For thinner scales than the characteristic scale, ne t:izataﬁj . . L ;

page archives and space agencies are developing indexing

scheme to be able to handle them ef ciently, for instancegisi

may interfere with the structure making it less salient; fd
coarser scales, the contrast of the structure is blurreably | . i
oy data mining techniques, see [4]. Now, these databasestare of

pass ltering or the structure may even have disappeared. LI

deberg strongly defended this approach and, for an opeaitiocomposed of images taken at different resolutions, depgndi

implementation, proposed an ef cient de nition by relagithe on the acquisition satellite involved. To compare the ptsisi

characteristic scale to the scale where a suitable conintminatcomenf[S OT d|ﬁgrent_|mages, It '? therefore neede"d to ad=p
resolution invariant indexes. This is in particular theecéar

of derivatives assumes a local maximum [2]. i h teristi | foient i featuretiar
In the specic case of remote sensing imaging, the ratlg'e characteristic scalé, a very et cient image teature

relating the true size of an object to its size in pixels is@din task f)f Image dlscr|_m|nat|on, see [5]' [61, [7]. Of cpu_rsesth
constant for a given image and is given by the resolutio oal is not fully achievable. In particular, charactedstcales
In this paper, we assume that the resolution is known a t are small compared to the spatial resolution of the anag
' cannot be recovered. More generally, and as can be expected,
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ing scend of which we know a discrete versidn Assuming entropy between consecutive wavelet subbands, in [12] the
we have some characteristic scale de nition (to be disalissmaximum Kullback divergence after increasing ltering by
in details) S(f), we wish to nd an operatolS such that diffusion equations, in [13] the maximum change of entropy,
S(f) = S(f). We shall see that this is possible when making [14] the maximum change of generalized entropy, and in
the following assumptions. First, the resolution ©fmust [15] the maximum entropy of gray level differences are used
not be too coarse compared to the “continuous” charadterisas de nitions. A third kind of approach, popular in remote
scale S(f). Second, it is assumed théitis obtained from sensing imaging, relies on the use of the variogram of images
f through convolution with a Gaussian kernel and regulaee [16]. However, most methods relying on the use of second
sampling. Last, the characteristic scé&¢f ) is de ned by order statistics assume that images follow some speci cehod
looking at the maximum of some operator in a linear scalsuch as various point processes [17] or periodic functions
space, a classical method from Computer Vision. This 1g4dt8] and are not suited to complex images for which such
assumption is of primary importance, since this speci cetypassumptions are not realistic.
of scale de nition enables to recover the scale even thoughin this paper, we choose to follow the approach proposed
some information has been lost in the acquisitiorfof by Lindeberg because the use of a linear scale-space ratural
Let us underline that the problem of deriving a characterist@llows us to take the acquisition process of the image into
scale independent of the spatial resolution is differeamfr account when computing a characteristic scale.
the classical requirement that a characteristic scaleldHm
invariant under a change of scale. Namely, if the function Ill. BASIC TOOLS AND SCALE DEFINITION
f (x;y) is transformed intd (kx; ky), the characteristic scale In this section, we recall the models and mathematical tools
S(f ) should be transformed into 1S(f ). Some works report to be used in this work, and give a de nition of the charac-
experimental results showing that such an invariance shotgristic scale of an image. Namely, we de ne the simpli ed
be enough for the purpose of computing the scale of locatquisition process assumed for images, we introduce the
descriptors issued from images originating from two difer classical linear scale-space to be used for scale chaegatien
sensors (see for instance Figure 1 of [8]). However, as thad we de ne the total variation of images. We then de ne
experiments of Section VI will show, it is our experiencetthahe characteristic scale as the maximizer of a normalized to
without taking into consideration the impact of the senss+r variation in the linear scale-space.
olution, the derived characteristic scale is biased. Opragch a) Simplied sampling schemeWe assume that the
therefore explicitly incorporates the sensor impulse sesp scene under study is represented by a continuous function
in the characteristic scale estimation. The scale invadad f, and that the digital imagé, at resolutionr is obtained
resolution invariant approaches are compared in SectiomVI by convolution and sampling. Moreover, it is assumed that
particular, we will see that our approach yields accuratalte the convolution kernel is Gaussian, with a standard denati
even when the convolution kernel of the imaging sensor is not= r= proportional to the resolution. This can conveniently
Gaussian. Some preliminary results of the proposed apbro&e modeled as:

were presented in [9]. fr= o:(f k); (1)
The plan of the paper is the following. In Section Il .
. o - Wwhere:
we recall the classical de nitions of characteristic scaltn 1 x2 + y2
Section llI, a rst de nition of the characteristic scale ggven, k (xy)= 5 2 &XP 52 2

based on the de nition in [2] but differing by the mathematic ) ) ]
norm used. In Section IV, the main contribution of this pap&nd r is the Dirac comb )0('7-2’ that is,
is presented: we adapt the de nition of the characteristaies ;= (it )
by taking into account the acquisition process in order to i 2z

achieve resolution invariance. In Section V, the behavithe
proposed characteristic scale de nition is studied on oasi
synthetic images. In Section VI we test our approach on r
data provided by the French space agency (CNES).

In this context, our goal is to extract frofp a characteristic
sciale related tdé . Equation (1) is a rough approximation of
Sfe real acquisition process, neglecting some importapeas
such as noise or contrast changes and assuming a simple
form for the modulation transfer function of the imaging
Il. CLASSICAL DEFINITIONS OF CHARACTERISTIC SCALES device. These limitations will be discussed in Sectionse)ll
Many de nitions of characteristic scales for images hav%nd VI.C)' Moreover, 't. will also_be shown experimentally
been proposed in the literature. The most popular one |ri\SSect|on VI ¢) that this model is accurate enough for our
. " . } purpose.
probably the aforementioned de nition relying on lineaake b) Linear scale-spaceAs previously explained, the ba-
space [2], [10]. Many alternatives also relying on the use '

: . Sic idea to extract characteristic scales is to track airatt
of the linear scale-space have been proposed in the eld ; o .
- . ) changes in scale spaces. In order to deal with images ausgario
Computer Vision, see e.g. [8]. De nitions relying on extram

. . resolution (as expressed by (1)) we are naturally led to use a
of wavelet decompositions, see e.g. [11], can be put in the . 2 T

; Inear scale space [19]. For an imafe R- 7! R, its linear
same category. Recently, it has been proposed to use non-

i . i : Scale-space is a functidn: R> R, ! R dened as:
linear scale-spaces in a similar way, [7]. Several altéraat
approaches rely on information theory: in [6] the maximum L(x;y;t)= k¢ f(xy); 3)



wherek; is de ned by Formula (2). It is easily seen thaia homogeneous background. However, the method is of course

L(;:; 2t) is a solution of the heat equatio@L = L, not fully contrast invariant, which could be a problem in the
with initial conditionL(:;:;0) = f and that, under reaﬁoQablecase of objects with very different intensities.
hypotheses, it is the only solution. For this readof;:;  2t) Notice also that due to the use of the linear scale-spacein th

is the classical de nition of linear scale-space. Howeweg, computation oft,,ax, Noise is not an issue. Indeed, the size of
prefer the de nition given by Formula (3) that simpli esobjects contributing to the characteristic scale is mucea
forthcoming computations and allows to directly de ne alscathan one pixel. Therefore, any reasonable noise is removed
that is homogeneous to a distance. from the scale-space image correspondingjts -

Various non-linear scale-spaces could also be consideredRecall now that we are interested in discrete images ob-
[20], [21], [22], but we restrict ourselves to the linear de tained fromf through Equation (1). In the next section, we
be able to deal with resolution changes, as it will becomarcleshow how to adapt the de nition of characteristic scale iis th

soon. context.
c) Total variation: The structural changes to be quanti-
ed in the linear scale-space are due to the objects present IV. RESOLUTION INVARIANCE

in the scene. These objects disappear as the scale increaseshe purpose of this section is to derive a method to ensure
The basic idea of the proposed approach is to quantify theat the computed characteristic scale does not depend upon
evolution of geometric structures of the image in the lineake resolution of the image.
scale-space. Therefore, we consider the total variatior) (T a) Taking the acquisition process into accourRecall
[23] of images, de ned (when the image is regular enough) &sat f is a continuous function corresponding to a given
TV(f)= |r f]. Indeed, the semi-norm TV is related to thgcene. Since we assume that the acquisition system performs
geometry of the image through the coarea formula. Writing convolution by a Gaussian kerrel followed by a sampling
E =1fx:f(x) g for the upper level sets df, if f is atrater = , we write:
regular enough, one has

fr= :i(f k= );

TV(f)= pe(E )d: wheref, is the sampled version df at resolutionr. The
L . R . ) parameter is a characteristic of the acquisition process.
This implies that for a binary imagd,V(f) is equal to the * pengting byk, the discrete version of the Gaussian kernel
perimeter of the objects multiplied by their contrast. with standard deviation (t expressed in pixels), we haWe

d) Scale de nition: Following the general approach ofy . (p to some normalization constant which can be dropped).
[2], we de ne the characteristic scale of an image as the mMaxs¢ s de ne the discrete scale-space as:

imizer of a suitably normalized differentiable operatar.deal

with the geometric contents of the image, we choose to usdért = Ke~fr = Ke~( (k. f)) (ke (k F)):

a normalized total variatioM\ TV (f ;t) = (1) TV (k¢ f). (6)
The main idea is that the normalization term must compewhere~ is the discrete convolution. The last approximation
sate the decrease of the total variation caused by Gausdi#ans that inverting convolution and sampling is possie,
Smoothing_ We denote meax the maximizer of the nor- least for non-aliased images suchkasf . In Figure 2, we test

malized TV overt. A natural requirement OMmax is that the Valldlty of this aSSUmption on areal image. The reSlmny
tmax (F) = Stmax (f ), wheref S(x) = f(sx). In Appendix Supports the hypotheses. In addition we can assume (for well

C and D, we show that this implies(t) = At and that sampled images) that the total variation of the continuous a
(t) = t is a good choice for numerical reasons. That is, wéiscrete versions are the same up to a normalization dueto th

de ne zooming of factorr (this will be con rmed by the numerical
z experiments in the following sections). This leads to:
NTV(F;t)=tTV (ke f)=1t jrk fj; 4) 1 1
TV(fr) -TV(ke k )= =TV KPzm—= f
and r r (7)
tmax = argmay NTV(f;t): ®) b) Normalization choice A normalization of the discrete

This is in fact a special case of the normalization proposed E)otal variation is now needed in order to relate it to the con-

Lindeberg [2] for differential operators. In Appendix B, welinuous normallze.d total variatioN TV (de ned in Equation
comment on the possibility of using other differential cgters (4)). Let us de ne:
than the total variation. Gt)=h(t)TV (frt); (8)
e) Robustness to noise and contrast char@bserve that
the characteristic scale de nition (5) is invariant undierehr
contrast changes. Indeed,fif! af + b, with a > 0, then
NTV(f;t) I aNTV(f;t). This is very convenient when tmax, = argmax Gy (t): 9)
dealing with satellite images, since contrast changes due t
atmospheric perturbations are often approximated by ameaf
transform. This invariance is also suf cient when compagtin
the scale of scenes made of objects with similar intensities

where the normalization factdi(t) is to be chosen. Similarly
to Equation (4), we may de ne:

Proposition: If we choose in Equation (8):
r

h(t)= 2+ iz (10)
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“ From now on, the values dfnhax Will be deduced from

g Equation (11).
d) Difference with the “n&e” normalization choice:ln
Sl view of Equation (4), the intuitive normalization would not

take into account the ltering process due to the change of
resolution and, therefore, involve a factoinstead ofh(t):

ice between the last two terms of Eq
w »

N

N

relative differen

o

o
2 4 6 8 10 1z s 4 s 6 1 8 9w

Ar(t)=t TV (frr) (14)
@) (®) If, according to this intuition, we sSettmax, as
argmax (Ar(t)) and deducetmax = r tmax, ,» then

Fig. 2. Validation test of Equations (6) and (7). Figure (adws the relative ; ; ;
difference between the total variation of the last two teogh&quation (6) as we can check numerically that the Pbtamed V{ilud&,@i will .
a function of , wheref is the image (b) of Figure 11. The relative differencedepend much more on the resolution than with the de nition
does not exceed0 6. In Figure (b) is shown the ratio between the two rstfrom Equation (11). This fact will be detailed in Section VI,
terms of Equality (7); this ratio varies between 0.98 and HisExperiment see Figure 18
validates the assumption of Equation (7). . ! ..

Notice also that when 1, then the de nitions from

Equations (8) and (14) are equivalent. The choice of theecorr

(with = r= characteristic of the acquisition process), thefiormalization given by Equation (10) is important when
the following relation holdst(ax being de ned by (5)): approachesmax (that istmax, approaches 1).
r—
q —— — 1 V. RELATING tmax TO THE GEOMETRY OF THE IMAGE
tmax MPtdax, ¥ 2 1 taa, + ¢ (11)

In this section, we investigate the link between the charac-
teristic scaletmax, as de ned in Section Il for a continuous
image, and the geometric contents of the image. For this
purpose, following the example in [2], we rst consider \@ars

Proof:
Using Equation (7):

G (t) }h(t) TV kP simple one-dimensional functions, for which we perform eom
r P putations and numerical approximations. Then, we tackde th
= }p& NTV f: r2t2+ 2 : two-dimensional case by performing numerical simulations
reriz+ 2 discrete synthetic images. We experimentally show thatafo
Hence: periodic scene with spatial perid?l, the critical scale de ned
1 h() p in Equation (5) is such that,,x ~ 0:15D. The purpose of
Gr(t) S&===NTV f; r2t2+ 2 : (12) this section is to show that the constant linkitghx to the
e+ 4 period is quite stable over a variety of periodic signals, fo

which the notion of characteristic scale is clear. Of course

Sinceh(t) is given by (10), we then obtain: real signals are much more complicated and Section VI will

G: (1) iz NTV ;p s 2 (13) deal with real satellite images.
r
We thus deduce (11) from (5) and (9). A. Continuous one-dimensional examples

In order to consider cases with tractable computations,
we dene tmax for a one-dimensional functiod as in
c) Practical considerations:For a discrete image atFormula (5). For 1D signals the gradient is replaced by
resolutionr we measuréma, and derive the value df.x the derivative anck; by a one-dimensional Gaussian in the
using Equation (11). Notice that it is impossible to nd acomputation ofNTV (f ;t) .
characteristic scalgna smaller than (which is comparable a) Sinus function:Assuming thaf is a sinus of period
to r). More generally, when the resolution of the image i®., restrictedtd T;T] R, it may be shown that iT=D !
larger than the actual characteristic sdglg, the computation 1 (so that boundary effects can be neglected) then !
becomes unreliable. Experiments show tha is retrievable D=2  0:15D, as already mentioned in [24], [2].

as long ag <t max. b) Sum of GaussiansAssume thatf is a function
Of course, a general image can contain several charaaterige ned on[ T;T] R as:

scales. A scale can therefore be a characteristic of some K14 o @keD) - 22

scene for a specic range of resolution. As will be seen f(x)= p=—=¢ vz (15)

in the numerical experiments section, the characteristides k= k 2V

tmax that we compute with Equation (11) corresponds to the, f is the restriction td T;T] of a sum of Gaussians, the
smallest retrievable scale in the image. For instance, @8rsh spatial period of this sum being. Assuming thak 1 (or

on Figure 14(d)), the characteristic scale of the image ¢f D) in order to neglect boundary effects, we obtain:
Roujan (see Figure 11(d)) is 0.4m (due to the details inside t 2% 1 !
K 2p2 «2p 2

elds) if the resolutionr of the image is smaller than 0'4m=NTV(f 1) Zpt_ 1+e @2 +2 ( e i
whereas when the resolution gets larger the charactesistie ' Dg 2 k=1
jumps to 30m (due to the size of the elds itselves). (16)



whereq = P v2 + t2, This result is obtained by noticing thatD and Figure 5 (b) shows the plot ¢f,.x=D as a function
the total variation may be computed on each monotonous paft.v. Here again we obtaityn,x  0:15D and observe that
The graph ofNTV (f;t) as a function oft is shown on tnax=D depends very little ow.

Figure 3. On Figure 4 (a), the graph tfax is displayed

as a function ofD, v being constant. One observes thai - o
tmax 0:15D, a result very similar to the one for the s =
sinusoidal case. Figure 4 (b) shotysx =D as a function of .\ I o )
v, D being constant. One can check thgtx=D 0:15. In I oasf TRt
this casefmax is related to the period of the signal but not to  ** i
the width of each Gaussian. gt

(8) tmax as function ofD (b) tmax =D as a function ofv

Fig. 5. tmax for a sum of Heaviside functions (see Equation (17)). We khec
numerically thatt max 0:15D whereD is the spatial period. In Figure (a)
v =10 and in Figure (b)D =40.

To summarize, in cases a), b) and c), it may be computed
or observed thatnax  0:15D, which indicates that neither

Fig. 3. Plot ofz\ng/ (f[; t) asiafugction ot, whenf is a sum of Gal(stsiiims the shape nor the size of the pattern seem to in uence much
as in Equation (15), 2 [0:1;40]andK =10,D =40,v=10.NTV (f;t ; _ :
reaches its maximum fdimax = 6 :4 tmax in the cases oi-D functions.

B. Discrete synthetic images

o . In order to experimentally con rm the linear relation be-

5 ' ‘ tweentmax and the spatial period of signal® (in the pre-

as ,,,,, ceding examples) in the case of images, we consider syotheti
discrete periodic images using various patterns. Two Mt&s

of such images are displayed in Figure 6 (sum of Gaussians

0.3
6| G

4

.
0 0.1
35 o

8
.
3 o 0.05

with standard deviation) and 7 (sum of squares with width
V), together with the associated graphshNof V as functions
() tmax as function ofD (b) tmax =D as a function ol of t. Figure 8 (a) shows the graph tf.x as a function oD

and Figure 8 (b) shows the graphtgf,x=D as a function of
Fig. 4. Plot oftmax for a sum of Gaussian functions (see Equation (15))Y for S_ums of Gaussians. Figures 9 (a) and (b) show the same
(@)tmax as a function oD, with v =5 (we check numerically thatinax qguantity for sums of squares. Comparing these two gures
0:15D, D being the spatial period); (h}:ax as a function of7, with D = 40. respectively with Figure 4 and Figure 5, we conclude that the
o . _ . shape of patterns as well as their size have little in uengce o

c) Sum of Heaviside functiongn order to investigate the the measure. Moreover, we see tha,  0:15D still holds
sensitivity oftnax to the shape of "objects”, we consider then dimension 2.
following example, still in 1D to yield tractable computats:
f isdenedon[ T;T]by

X
f(x)= H(x 1iD) a7)
i= K

where

1 X 2 [O; V]
0; otherwise
with v 2 (0; D). Assuming that << D andv D=2, then
it may be shown using standard computations that:

H(x) = (18)

-
-
»
»
»
»
»
»
»
»
»
»

b b (a) Periodic sum of Gaussians (b) Graph ofNTV
\' \'%
NTV(f;t) Ct 2erf —p— erf p—
2 2 2t Fig. 6. A periodic Gaussian function with = 40 andv = 10 (standard
vV Vv deviation of each Gaussian) and the graph of the correspgnurmalized
+  2erf Ep?t erf p?t (19)  total variation. The maximum is reached for 6 :1.
R
where erfx) = p= ; e " and C is a constant. Satellite images are of course not exactly periodic. In pbrde

Figure 5 (a) shows numerical computationstgfx, taken to check that the above empirical observation still holds in
as the zero of the derivative of Formula (19) as a function tfie case of randomly pertubated images, we performed the
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(@) (b)

(@) Periodic sum of squares (b) Graph ofNTV Fig. 10. (a) An example of a quasi-periodic synthetic imagevhich the
position of each square is randomly perturbated.t{gaL for 20 realizations.

Fig. 7. An image composed of squares with spatial pebod 40, and the
side of each square equal 10 pixels, and the graph of the corresponding

normalized total variation. The maximum is reached tfer 6 :1. . . . .
images in the domain of remote sensing.

L o D8 Rreten T O At rst, starting from several images with resolution equal

5 to 25 cm, we create a series of lower resolution images using

E 02 Formula (1), i.e. using a down-sampling scheme in which
B A Itering is made using a Gaussian impulse response. We call

o 01 it the ideal down-sampling.

° Then, we make use of series of images provided by the

e m W = 5w, ® = CNES which precisely simulate the images which would

be obtained with different sensors operating with various
resolutions from a satellite, i.e. by taking into accoung th

) , , different effects of sampling, integration, acquisitiame, etc.
E‘gufs'ian(;)w(;rﬁg?agfa";” %s:lzg“;”(%t)'ogrgﬁ é‘f’tvgzx"zls o) fot sums of - and therefore providing the actual impulse response oksens
v (with D =40) for sums of Gaussians, we obtdifax =D 0:15. Notice that in all the experiments presented in this section
we have used =1 in Formula (11). This implicitly implies
the assumption that the acquisition process is modeled by

following experiment. We start with periodic images of sl Equation (1) with = 1, although the real acquisition process
with a periodicity ofD = 20. We perturbate the position ofjs ynknown to us.

each square with random horizontal and vertical transiatio
the shifts being uniformly distributed between - 5 and Sgs
pixels. Moreover, the gray level of each square is random arg
uniformly distributed between 64 and 255. An example of suc s
a synthetic image is shown in Figure 10(a). On Figure 10(bj
values oft"’% are displayed for20 different realizations.
The mean value of"‘Di is 0:16, which con rms the relation
obtained in the periodic case.

() tmax as a function oD (b) tmax =D as a function ofs

VI. APPLICATION TO SATELLITE IMAGES

In this section several experiments are presented to demcFa
strate the invariance df,ax With respect to resolution on real (a) Marseille

t__JD as function of D (v=10) t__ /D as function of v (D=40)
masd o

20 25 30 35 40 10 12 14 16 18 20 22

() tmax as a function oD (b) tmax as a function oD

(c) Didrai (d) Roujan

Fig. 9. (a) Graph otmax as a function oD (with v = 10) for sums of
squares, showing thadax 0:15D; (b) Graph oftmax =D as a function Fig. 11. Aerial images with 25 cm resolution CNES: (a) and (b) 2 cities
of v (with D = 40) for sums of squares, showing thafax =D  0:15. with different urban tissues, (c) a forest, (d) agricultusdds.



a) Computation oftmax using Formula (11): On Fig-

ure 12, we display the graphs of the normalized total vanmati % “
==————

for the 4 images shown in Figure 11 (at resolutioh 25cm).

There is at least one local maximum in each case. In the case of

cities (Marseille or Toulouse), the characteristic scalelated

to the size of the buildings and streets. In the case of theaDid

image (forest), the scale is related to the vegetation. Nt e

in the case of the Roujan image ( elds), there are two local (@) image of vineyards (b) NTV calculated on the vineyards

maxima, the narrow one (zoomed in Figure 12 (e)) is related

to the vineyards, and the large one to the elds. Figure 13 13 700m on vineyards issued from the Roujan image ajsal on

displays a zoomed area of Figure 11 composed of vineyardgure 11 (d). The characteristic scale appears at resol@i4m. Using the

The spatial period of the vineyards may be computed from relation tmax 0:15D, we see that the distand@ between 2 rows of
L. h . . vineyards is roughly 2.7m.

the characteristic scatgax , using the relatiotn,x ~ 0:15D.

We nd that the distance between two vineyard rows is roughly

2.7m, a result which we were able to check on the image f\(/)vrith the result shown in Figure 12 (d). When the resolution
such a regular and periodic structure.

is ne enough,tnax is the characteristic scale corresponding
to the vineyards. But when gets larger, then the vineyards
disappear (one no longer sees them in the images)tand

is then related to the size of the elds.
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Eu Fig. 14. Characteristic scal¢gax as a function of the resolution, for the 4
2, scenes shown in Figure 11. The images at different resokitioe obtained by
down-sampling the 25 cm images using the ideal acquisitiodehpresented

0s B e 2 in Section IV (with =1), i.e. with a Gaussian convolution kernel. Notice

. that the characteristic scale is almost independent frarelolution.
(e) Roujan(zoomed)

Fig. 12. NTV as a function oP r2t2+ 2 computed for the 4 images €) Va“d_ation of the simpli ed. acquisition mOde_In O.I‘-
of Figure 11 with resolutior = 0:25m. (a) Marseille:tmax = 4:8m; (b) der to examine the case where different sensors with differe
twulfus?:tmax_ =2 T:ﬁm: (tC) Didr?ir tm:?oﬁ':4l :Ztrr?: (d) R%Ujan: tfgere _?_re resolutions and different impulse responses are used, kee ta
o loel . Tne 1ok one st sttt e second one & 09SK9N avantage of a series of images provided by the CNES,
including the four images of Figure 11. For each scene, 33
b) Resolution invariance:ln order to conrm that the images are available at resolutions ranging from 25 cm to
characteristic scale extracted from the images is indep®nd10.08 m (see Table I), each one taken with the exact impulse
from the resolution of the sensorfx does not depend onresponse of a real sensor. These images have been obtained
r), we made the following experiments. For a given scenby numerical simulations performed by the CNES, using &eria
an imageg, at resolutionr is generated (using Formula (1)images and a realistic model of data acquisition. The inguls
with  =1), and the maximizetnax is computed. Figure 14 response is resolution dependent, roughly isotropic, amd n
shows the graph of,ax as a function ofr. As expected, it Gaussian. The use of a non-Gaussian impulse response in
shows that .« is almost constant (as long as t max ). place of a Gaussian one makes the derivation of a relation
Remark that in the case of Roujan, where two differesimilar to (11) dif cult. However, we will see below that
characteristic scales are present, the plot,@k is coherent approximating the impulse response with a Gaussian kernel,



TABLE |
Available resolutions (meters)

0.250 | 0.281 | 0.315 | 0.354 | 0.397 | 0.445 | 0.500
0.561 | 0.630 | 0.707 | 0.794 | 0.891 | 1.00 1.12
1.26 1.41 1.59 1.78 2.00 2.25 2.52
2.83 | 3.17 3.56 | 4.00 | 4.49 5.04 | 5.66
6.35 7.13 8.00 | 8.98 | 10.08

that is using Equation (11), leads to good numerical results
Due to the non-linearity of the total variation, we have no
theoretical explanation for this fact. (a) Marseille 2 (b) Toulouse 2

Figure 15 shows the graph df,..x as a function of the
resolution. Results are very similar to those of Figure 14. W
observe thatmax is almost constant (as long as the resolution
r <t max). Figure 16 shows four other scenes taken from the
series of images provided by the CNES. The corresponding
graphs oftmax as a function of the resolution are displayed
on Figure 17; againtmhax is almost constant.

We conclude that even though the kernel is not Gaussian,
the approximations made in section IV are still valid.

If instead of using the original relation (11) introduced
in this paper, we make use of the intuitive normalization of
Equation (14), we obtain the plots of Figure 18. As expected,
in this case, the estimatdga, iSs much more sensitive to the

(c) Toulouse 3 (d) Roujan 2

Fig. 16. Aerial images with 25 cm resolution CNES: (a), (b) (c) 3 cities

resolution. with different urban tissues, (d) agricultural elds.
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Fig. 15. Characteristic scalgmax as a function of the resolution, on the Fig. 17. Same experiment as in Figure 15 for the 4 scenes aféip. Again

4 scenes shown in Figure 11. The images at different resolutare issued he characteristic scales are almost invariant when thautimn changes.
from the series of images provided by CNES. Even though tmeatotion

kernel is no longer Gaussian, the characteristic scalesalarest invariant
when the resolution changes.

8m (using the map scale shown on Figure 20(b)). Using
d) Results on images taken with different captots: formula 11, and the same value= 1 as before, the value of
Figure 1 is displayed an image of periodically distributéld olmax iS deduced to be approximately; Sm. HenceD ~ 98m.
tanks. Figure 19(b) shows the graphNTV as a function This is consistent with the computation made with the CNES
of the resolutiorr. The value oftmay is then deduced to be 'Mage.
approximatelyl6m. Recall that in Section V, we have found

experimentally that,.,  0:15D, whereD is the spatial VII. CONCLUSION AND FUTURE PROSPECTS
period. In this case we deduce tat @& 107m. A new method to compute a characteristic scale for a given

To further check the captor invariance tf.x, an image image has been proposed, which does not depend on the
of the same region has been found mGoogleEarth (see resolution (as long as the objects are larger than one pixel)
Figure 20(a)). The size of a pixel of this image is roughlyhis method explicitly takes into account the role of the



y the resolution is close tonax .

25/ APPENDIX

i A. Localization issue

0s The scale measurement we have introduced can be localized
s 2 using a sliding window. The scale of a single pixel is then
computed as the scale on the window centered around this

: - _ _ pixel. To illustrate this approach, we have processed the
Fig. 18. Characteristic scalgax as a function of the resolution, for the ile i . he i

Toulouse image, Figure 11(b). The scalgyx is computed with the naive Marse'_e Image (Se_e Flgure 21 a). We use the image at
normalization given by Equation (14). Notice that the regailless invariant resolution 0:707m, with size 1440 144Q The analysis is

to resolution changes than in the case of Figure 15(b). Incthge[0:25;2m], made using a window with siZ256 256, and the window is
the variation of the value i48% with the proposed method (Figure 15 (b)) . .
and 40% with the naive normalization. moved by32 pixels at each step. On Figure 21 (b), we show

the computed values dfax -
Notice in particular thatmax is larger in the top left corner.
" Looking at Figure 21 (a), one sees that this corresponds to

. larger buildings and structures in the original image.
Lo

1
resolution of image (m)

65

5.5

20 40 60 80 100 120 140
resolution (m)

Fig. 19. (a) Image on Los Angeles with oil tanks taken by SPCHS).
¢ CNES; (b) Graph of NTV as a function of the resolution. Therahteristic
scaletmax is equal to 16m.

acquisition sensor. It has been shown to be robust and stable (@) (b)
on different images issued from the remote sensing domain.
we have. a.lso shown on vanpus examples that the pOSItlonF?f. 21. (a) Image of Marseille (resolutidn707m, size1440 1440); (b)
the maximizer of the normalized TV does not depend on tiigage of the corresponding values tgfax (the largertmax , the whiter the
object shapes, but merely on the distances between stesctugray level value in (b)).

This approach is foreseen to nd applications for the prob-
lem of satellite image indexing. As explained in the introdu

tion of the paper, it is indeed a major asset that features Bo Alternative de nitions oftax
,n%t depeczjnd on the reﬁolutlot?. In fac;, tge prorp])oslt?d re‘::;t' In this section, we discuss the possibility for measurirg th
Independent approach can be extended to other linear ésatyl, , .- -teristic scale with other semi-norm than the toteva

Sth as VFSIEI coef cients [25] Thiz ish the subj/ect of Oion. As discussed by Lindeberg [2], any normalized Gaussia
going work. Moreover, we expectto nd the texiure geometr?ﬂerivative can be considered to achieve scale invarianme. F

behlrzljvg)r of afslcfenef, followmg: |d§as ||\n/|troduced.|n I[Zﬁ]ijrh'instance, instead of using Equation (11), we could de ne the
could be useful for feature selection. More precisely, itldo ., - - aristic scale as:

be decided in advance whether texture speci c featuresldhou
be used or if object recognition tools should be preferrednt t'max = arg max NL(f;t) (20)
a more theoretical point of view, the effect of sampling aiato

R .
variation could be understood more deeply, especially whifiereNL (f;t) = t* jr 2(f  ky)jdx. We have computed

t . both on synthetic images and remote sensing images.

The results are shown in Figure 22.
On Figure 22(a), we show the values df,, =D for
» various periodic images of squares with peri®d as in
5 Section V-B. It can be seen thg,,  0:20D. Recall that
© we have experimentally shown thét.x de ned with the
: normalized total variation satis €$max 0:15D. We thus
i havet'max 1:33tmax. This same relation can be observed
S on Figure 22(b). Nevertheless, we have decided to use the
() (b) (c) normalized total variation with Equation (11) for the two

. o following reasons:
Fig. 20. (a) Image on Los Angeles with oil tanks: GoogleEarth; (b)

Legend of the image, the resolution is approxima®&§6ém: (c) NTV values 1) This de nition is directly related to the geometric con-
calculated as the function of resolution. The characterstaletmax 14.5m. tents of a scene. Indeed, the coarea formula [23], as
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and therefore (t) = At® for two constantsA andB to be
o chosen.

oooooooooooo

D. Power of normalization factor: why we sBt=1

The constanfA does not affectox. The reason why we
choseB =1 is essentially of a numerical nature.Bf is too
@ (b) small, thenNTV decreases very fast, implying a very small
Fig. 22. (a) graph of},,, =D for synthetic images (made of periodic squares/alue oftmax . This becomes a severe drawback when comput-
with spatial periodD ) as a function oD whereD =40 (see Section V-B); ing the scale of low resolution images. On the other h&hd,
(b) graph ofNL computed on the image of Marseille (see Figure 11) at .
resolutionr = 0 :25m. cannot be too large. Indeed, we have checked experimentally
on the images provided by the CNES that in this case the graph
of NTV becomes at and the relative error for the numerical
recalled in Section I, relates the total variation of agalue oftnax gets larger. In such a case, the localization of the
image to the perimeter of objects. A sharp object in @tremum is not reliable. We found experimentally thatisgtt
scene is blurred in the Gaussian scale-space. NevertBe= 1 is a good compromise between these two drawbacks.
less, the total variation of the blurred object can be se®foreover, this choice is coherent with the one in [2]. As an
as an approximation of its perimeter thanks to the coargRample, Figure 23 displays the graph of NTV wigh= 1:3
formula. in the case of Didrai image. We may see that this value already

2) Using the total variation, only rst order derivatives ofmakes it dif cult to computetmay, Whereas it is easier from
the image are involved: there is no need to increase thRyure 12 (c).

complexity of the algorithm by computing higher order
derivatives.

C. Normalization issue revisited

The characteristic scale of a continuous imégkas been .

de ned as: 7 ©

tmax = argmay, ) jr (ke )j; P

with (t) = t. In this section, we show why it is reasonable to. ] S )
choose (t) = tB while the next section explains Wiy = 1 F|(gz) i3.tl:3NTV calculated on the image of Didrai with normafiea factor
has been chosen. '

Since we wantnax to be related to the size of objects in

the imagef , we naturally assume (scale-invariance) that:

t f)= stmax (f°); 21
max (f) max () (21) Numerically, the total variatioim V(I) of an imagel is
wheref *(x) = f (sx). For anyt% > 0ands > 0, letus de ne classically computed with the following expression:
. . X g
Fs(tO) = @lOg (t) Jr fe kt] (tO): TV(| ) = % (Ii 1; lis1 i )2 + ( Ii;j 1 Ii;j +1 )2
iij

E. Numerical issues

Equation (21) implies that . i )
When computing the linear scale-space, we use a logarith-

Fi(tg) =0 ) Fs o _ 0: (22) mic scale step, i.e.
S t2f1:12"; n=0;1;:::qg, inorder to preserve the precision
Now, at small scales and to speed up the computation at largesscale
z In order to increase the speed of the Gaussian convolution
to . . , b ; : '
Fs 5 = s@log (t=s) jr fs kisj (to) the semi group property of the Gaussian kernel is used. The
y4 complexity of the algorithm for computingnax is O(N) (N
= s@log (t=s)s ! jrf ki (to) is the number of pixels). On a PIV 3.2GHz machine with
o 7 1024M memory, the computation time tf.x for an image
= —(to=9)+ s@log jr f kij(to) with size 0f1024 1024pixels is abou®5s (where maximal
scale is37).
0 0
= —(to=9+ s Fi(to) —(to)
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