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Abstract. The dead leaves model, introduced by the Mathematical Morphology school, con-
sists of the superposition of random closed sets (the objects), and enables to model the occlusion
phenomena. When combined with specific size distributions for objects, one obtains random fields
providing adequate models for natural images. However, this framework imposes bounds on the
sizes of objects. We consider the limits of these random fields when letting the cutoff sizes tend to
zero and infinity. As a result we obtain a random field that contains homogeneous regions, satisfies
scaling properties and is statistically relevant for modeling natural images. We then investigate the
combined effect of these features on the regularity of images in the framework of Besov spaces.
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1. Introduction and motivations. Spatial statistics of natural images exhibit
non-gaussianity, as well as scaling properties. These two phenomena may for instance
be easily observed on the distribution of the gradient of images gray levels. Other
quantities bearing these properties include the power spectrum (see [33] and the ref-
erences therein), wavelet coefficients ([38], [20]) and morphological quantities ([2]).
Classical mathematical models usually fail short of accounting for all these obser-
vations. For instance, Markov Random Fields (see [16, 43]) do not handle scaling
properties properly and scale invariant Gaussian models fail to capture the structure
of natural images, see [28]. Additive models (random wavelet expansions or template
based models, see e.g. [39]) enable to simultaneously capture scaling properties and
non-Gaussianity but imply intricate modelings in order to handle geometric struc-
tures, see e.g. [7, 31]. Indeed, the motivation behind this class of models is mainly of
an algorithmic nature, and is not driven by the mechanisms of natural images forma-
tion. In this paper, we choose to start from a simplified modeling of the formation of
natural images and investigate the effect of scaling behaviors in this context.

Non-gaussianity is strongly related to the occlusion phenomenon. Indeed, in the
process of image formation, objects hide themselves depending on where they lie
with respect to the camera, which differs totally from an additive generation. This
phenomenon leads to peculiar geometrical structures such as homogeneous regions,
borders and T-junctions. G. Matheron has proposed a framework to study this aspect
of image formation, the dead leaves model, [24], consisting in the sequential superpo-
sition of random objects on the plane. Despite some limitations (objects are assumed
independent, their size does not depend on the distance to the observer), it provides
a simple model for the formation of a natural scene made of opaque objects. Let us
mention at this point that the mere nature of the model enables the reproduction
of characteristic structures of natural images such as one-dimensional discontinuities
and homogeneous regions. Next, we take interest in the implications of the simulta-
neous modeling of occlusion and scaling properties on the regularity of images. It is
therefore quite natural to impose a power law x−α for the distribution of the size x
of objects in a dead leaves model (note that such a distribution of object sizes was
also considered in [9], but without occlusion). In fact, several studies ([34], [2], [22])
show that meaningful natural images statistics (linear or not) may be reproduced by
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such a model. In [22], a version of the model corresponding to strict scale invariance
is considered (that is α = 3) whereas [34] and [2] consider α as a parameter of the
model. In both cases, a crucial assumption is that sizes of objects stay between two
positive cutoff scales. Our goal is to investigate the small scale regularity of images
when one extends the model to allow for the presence of details at arbitrary small
scales.

In this paper, we define a new model for natural images, obtained by letting the
lower cutoff scale of a dead leaves model tend to zero while keeping scaling properties.
By doing this, we model the small scales properties of natural images in a non-trivial
way. We are then in a position to study the regularity of images from a functional
analysis point of view.

2. Detailed outline. In this section, we summarize the construction and main
properties of the random field that we suggest for image modeling.
Basic definitions (Section 3). We recall some definitions and results on random
closed sets, random tessellations and colored (or textured) tessellations. We also recall
the definition of the dead leaves model, a tessellation obtained by superimposing “ran-
dom objects” (see Figure 3.1). Formally, these objects are independent and identically
distributed (i.i.d.) random closed sets {Xi}, satisfying mild geometric assumptions.
The elements of the corresponding partition of the plane (uniform regions in Figure
3.1) are called the visible parts, {Vi}.
A dead leaves model with scaling properties (Section 4). As explained in
the introduction, motivated by empirical observations on natural images, we choose
objects sizes distributed according to a power law r−α with exponent α > 1. In order
for this model to be well defined, one has to impose minimum and maximum sizes r0

and r1 for the objects, such that 0 < r0 < r1 < ∞ if α ∈ (1, 3] and 0 < r0 < r1 ≤ ∞ if
α > 3. The obtained tessellation is denoted by M(r0, r1). The main question we will
address in this paper is what happens when we let the small cutoff scale, r0, tends to
zero ? A first result (Proposition 4.2) is that, whatever α may be, the boundary of
M(r0, r1) tends to R2, in the sense of the weak convergence of closed sets. Intuitively,
this means that there are small objects everywhere on the plane. The limit boundary
set is not the right way to describe a potential limit model.
The limit SDL model (Section 5). We then consider the random field I, a colored
random tessellation that is obtained by independently and identically coloring each
visible part Vi. Such a random field will be studied trough its finite-dimensional
distributions. We consider limits of I as r0 tends to 0, and also as r1 tends to
infinity. Under mild regularity assumptions on the objects Xi, and writing fidi−→ for the
convergence in the sense of finite-dimensional distributions, we get (Propositions 5.1
and 5.6, Theorem 5.4 and Remark 2) that

(1) If α > 3, then I
fidi−→W as r0 → 0 for all r1 ∈ (0,∞], where W is white noise,

(2) if α < 3, then I
fidi−→ C as r1 →∞ for all r0 > 0, where C is a constant field,

(3) If α < 3, then I
fidi−→ Ĩ as r0 → 0 for all r1 > 0, where Ĩ is a measurable and

stochastically continuous random field.
Cases (1) and (2) are degenerate (the case α = 3 is degenerate too), and the case of
most interest is case (3). We call Ĩ a scaling dead leaves model (SDL). An interesting
property of the SDL is that its finite-dimensional distributions may be expressed
as mixtures (Corollary 5.5), whose weights are given by geometrical properties of
the objects Xi’s. Despite the presence of small objects everywhere, the bivariate
distributions is coherent with the presence of homogeneous regions and discontinuities
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observed in natural images (see Figure 5.2).
Smoothness properties of the limit model (Section 6). Eventually we take
interest in the small scales structure of the SDL Ĩ, in the framework of Besov spaces.
Assuming that 2 < α < 3, a range of values that corresponds to observations on
natural images, we show (Proposition 6.2) that

E
[
|Ĩ|p

Bs,p
p

]
< ∞⇔ s <

3− α

p
.

This results gives a quantitative measure of natural images irregularity (sometimes
called clutter) from a functional analysis point of view. In particular, writing |.|BV

for the bounded variation norm, it is easily derived that E|Ĩ|BV = ∞, which is
in agreement with experimental observations. We conclude by discussing the links
between the regularity of the SDL and classical u + v models (Section 7), as well as
its potential use as a Bayesian prior (Section 8).

3. Basic definitions.

3.1. Closed sets. Let F and K be respectively the sets of all closed and compact
sets of R2, endowed with the “hit or miss” topology, see [25]. We write BF for the
associated Borel σ-field. An interesting fact is that BF is generated by the family
{FK ,K ∈ K}, where

FK = {F ∈ F : F ∩K 6= ∅}.

A random closed set (RACS) of Rd is defined as a measurable function from a prob-
ability space to (F , BF ).

Classical operations of Mathematical Morphology are measurable functions in this
setting. For any sets A and B, we will denote

Ǎ = {−x, x ∈ A},
A	B = {x ∈ Rd, x + B̌ ⊂ A},
A⊕B = {x + y, x ∈ A, y ∈ B},

A	 B̌ is called the erosion of A by B and A⊕ B̌ the dilation of A by B.

3.2. σ-finite and counting measures on F ′. Following [25] we define a σ-
finite measure on F ′ := F\{∅} as a measure which is finite on FK for all K ∈ K. We
denote by NF ′ the set of σ-finite counting measures on (F ′,BF ′). For all µ ∈ NF ′ , we
write µ =

∑
i δFi , where δFi denotes the unit mass measure at point Fi. We further

denote by BNF′ its usual σ-field (that is, the smallest one such that, for all compact
set A ∈ BF ′ , the NF ′ → N function µ 7→ µ(A) is measurable). A point process on F ′
is then defined as a measurable function from a probability space to (NF ′ ,BNF′ ).

3.3. Tessellations. Intuitively, a tessellation is a collection of cells which parti-
tion the plane. It is in fact convenient to define a tessellation as a point process on
closed sets along the same lines as the so called generalized tessellations introduced
in [40] (see also [6]).

Definition 3.1. Let T =
∑

i δFi
∈ NF ′ . We say that T is a tessellation if

(i)
⋃

i Fi = Rd.

(ii) for all i 6= j,
◦
F i ∩ Fj = ∅, where

◦
F denotes the interior of F .
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The sets Fis are called the cells of the tessellation T . We also define the boundary
set of T by ∂T := ∪i∂Fi.

In fact, (i) and (ii) are equivalent to saying that {∂T, (
◦
F i)i} is a partition of R2.

Classical examples of random tessellations (see the references in [41, Chapter 10])
include Poisson hyperplanes processes, Delaunay, Voronoi and Johnson-Mehl tessel-
lations, and the dead leaves model that we consider below.

By analogy with Definition 2-5-2 in [25], we will say that a random tessellation
T defined on a probability space (Ω,S, P) is a.s. continuous if

P(x ∈ ∂T ) = 0 for all x ∈ R2. (3.1)

This property holds under minimal assumptions on the Fi’s. For instance, it is au-
tomatically satisfied if T is stationary and if, for all i, ν(∂Fi) = 0, where ν is the
2-dimensional Lebesgue measure.

3.4. Colored tessellations. From a tessellation one may define a random field
by independently “coloring” (or texturing) each cell of a random tessellation.

Definition 3.2. Let T =
∑

i δFi and C = {C(x) : x ∈ Rd} be a random
tessellation and a real valued random field, respectively. Let {Ci} be a collection of
i.i.d. random fields with same distribution as C and independent of T . The random
field I defined by

I(x) =
∑

i

11(x ∈
◦
F i) Ci(x), x ∈ Rd ,

is called the colored tessellation field associated to T and C.
Since T is a tessellation, I satisfies{

I(x) = Ci(x)(x) for all x ∈
⋃

i

◦
F i,

I(x) = 0 for all x ∈ ∂T ,

where, for all x ∈
⋃

i

◦
F i, i(x) denotes the unique index such that x ∈

◦
F i(x). If T

is a.s. continuous, x has probability zero to fall on ∂T so that I(x) has the same
marginal distribution as C(x).

Remark 1. The simplest way of coloring a tessellation is to take a constant field
for C, that is to attach i.i.d. random colors Ci ∈ R to the Fi’s. Images displayed in
the present paper have been simulated this way. In this simple case, it is easily seen
that in order to recover T from I a different color should be assigned to each Fi, that
is, the distribution of C should not have point masses.

We now introduce Bernoulli processes that will be used for computing the finite-
dimensional distributions of I.

Definition 3.3. Let T =
∑

i δFi be a random tessellation. For all x,y ∈ Rd, let
R(x,y) denote the (Bernoulli) random variable which takes value one if there exists

i such that the points x and y are in
◦
Fi and takes value zero otherwise, that is

R(x,y) :=
∑

i

11({x,y} ⊂
◦
Fi), x,y ∈ Rd. (3.2)

We will call {R(x,y) : (x,y) ∈ Rd × Rd} the partition process.
Clearly the finite dimensional distributions of the partition process R and of the

random field C are sufficient to determine the finite dimensional distributions of I. For
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instance, a direct computation shows that, for all x,y ∈ Rd, the bivariate distribution
(I(x), I(y)) has the same distribution as the mixture

R(x,y) (C(x), C(y)) + (1−R(x,y)) (C(x), C′(y)) (3.3)

where C′ is a copy of C and C, C′ and R are mutually independent. It turns out
that all finite-dimensional distributions have similar mixture structures as described
in Appendix A. In this appendix we also give simple criteria for the finite-dimensional
convergence of such fields.

3.5. The dead leaves model. The dead leaves model (see [24], [37], [10], [21],
[6]) is a particular instance of a random tessellation of the plane, obtained through
sequential superposition of random objects falling on the plane. As explained in
the introduction, it is a simplified model for the formation of images, accounting for
occlusion. More formally, let X be a random closed set. Let Φ :=

∑
i δxi,ti,Xi

be a
point process on a probability space (Ω,S, P), such that

∑
i δxi,ti

is a homogeneous
Poisson point process on R2 × (−∞, 0] with intensity one, and {Xi} are i.i.d. closed
sets with the same distribution as X, independent of

∑
i δxi,ti

.
Definition 3.4. The random closed set xi + Xi is called a leaf and

Vi := (xi + Xi) \

 ⋃
tj∈(ti,0)

(
xj +

◦
Xj

) (3.4)

is called a visible part.
Vi is what remains visible from the object Xi once it has been covered by objects

falling at times larger than ti.
In the sequel, we let ν denote the Lebesgue measure on R2, E the integration

with respect to the distribution of X (in contrast, E will denote the expectation with
respect to P) and we assume that,
(C-1) for all K ∈ K, Eν(X ⊕K) < ∞,
(C-2) X is a regular closed set, that is, X is the closure of its interior a.s.,
(C-3) there exists a > 0 such that Eν(X 	D(a)) > 0,
where D(a) is the disk of radius a centered at the origin. Under these assumptions, it

can be shown (see [6]) that M :=
∑

i 11(
◦
V i 6= ∅)δVi

is a stationary random tessellation
of R2. Hence the following definition.

Definition 3.5. The tessellation M =
∑

i 11(
◦
V i 6= ∅)δVi

is the dead leaves model
associated with the distribution of X.

The main practical result from [24] concerns a functional defined on the set of
compact sets of the plane, equal to the probability that a given compact is included
in the interior of a visible part of the model:

Q(K) := P(∃ti ≤ 0 : K ⊂
◦
V i), K ∈ K.

Q(K) =
Eν(

◦
X	Ǩ)

Eν(X⊕Ǩ)
. (3.5)

In Appendix B, we give a generalization of this result, proved in [6], which allows
to compute the finite dimensional distributions of a colored dead leaves model.
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Figure 3.1. Two examples of dead leaves models. Left, random objects are disks with a de-
terministic radius. Right, objects are homothetics of a reference shape, with uniformly distributed
ratio.

4. A dead leaves model with scaling properties. We now take interest in
a dead leaves model defined by using a specific object distribution for X. Namely we
choose for X the homothetic of a random compact set Y , that is X = RY , where R is
a positive random variable independent of Y . Hence E now denotes integration with
respect to the joint distribution of (R, Y ). We will consider in details the case where
R has probability density defined by

fr0,r1(r) = η(r0, r1) r−α 11(r0 < r < r1), (4.1)

where 0 < r0 < r1, α > 1 and where the normalizing constant reads

η(r0, r1) = (1− α)−1(r1−α
0 − r1−α

1 ). (4.2)

For convenience, our notations do not refer to the scaling parameter α. However, it
must be kept in mind that these definitions highly depend on this parameter. For R
to correspond to a meaningful scale of X, we want to keep Y within fixed proportions.
Hence the assumption
(A-1) there exist a2 > a1 > 0 such that, a.s, D(a1) ⊂ Y ⊂ D(a2).

The density chosen above for R indicates that the size distribution of objects satisfies
some scaling properties within a given range imposed by r0 and r1. This choice for
fr0,r1 is motivated by natural images modeling, see [34], [2], [22]. Since α > 1 we
cannot take r0 = 0 for fr0,r1 to be a density. Now, taking r0 > 0 is not satisfying
as well. From a theoretical point of view, this reduces the model to only very simple
smoothness classes (namely, piecewise constant images). From a practical point of
view, it means that there exists a minimal size for the objects in the image. It is
not clear at all what physical meaning to give to this minimum objects size, and
how to deal with this supplementary parameter of the model. It is also unclear
how to relate this minimum size to the resolution of a digital image, e.g. obtained
by filtering and subsampling a realization of the model. Moreover, this contradicts
empirical experiments (see [17]) which conclude to the presence of small objects up to
the smallest observable scales in digital images. Therefore it is worthwhile to wonder
about the limit of the model as r0 tends to zero. The parameter r1 is not crucial
for modeling smoothness properties because it does not influence the small scales
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behavior, except perhaps when r1 = ∞ or r1 tends to infinity, in which case the
model may degenerate.

For X to satisfy (C-2), we will impose the same condition on Y , namely
(A-2) Y is a regular closed set a.s.

We further consider the following assumption which holds in standard cases.
(A-3) ν(∂Y ) = 0 a.s.

Observe that none of these last two assumptions implies the other one, see [6].
Applying [6], we have the following:

Proposition 4.1. Let r0 > 0 and assume either r1 ∈ (r0,∞) and α ∈ (1, 3],
or r1 ∈ (r0,∞] and α > 3. Under (A-1) and (A-2), X = RY satisfies (C-1), (C-2)
and (C-3). We denote by M(r0, r1) the corresponding dead leaves model. Moreover,
under (A-3), M(r0, r1) is a.s. continuous.

From now on, we always assume that Y satisfies (A-1), (A-2) and (A-3).
At fixed α and at fixed distribution for Y , Proposition 4.1 then provides a range

of values for (r0, r1) defining a.s. continuous random tessellations M(r0, r1).
We now come to the convergence of M(r0, r1). In this section we take the classical

point of view of random closed sets and we consider the distribution of the (random)
boundary set ∂M(r0, r1) (see Definition 3.1). It turns out that it has a degenerate
limit as r0 decreases to zero. Intuitively, this means that there are small objects
everywhere on the plane.

Proposition 4.2. Take M(r0, r1) as defined in Proposition 4.1. Then

lim
r0→0

∂M(r0, r1) = R2,

where the limit is meant in the sense of the weak convergence of random closed sets.
This convergence result follows from the next lemma which investigates the pres-

ence of constant areas as r0 tends to zero, at fixed α and r1.
Lemma 4.3. Let Q(r0, r1, r) denote the probability for a disk of radius r to

be included in the interior of a visible part of M(r0, r1). Then, for any r > 0,
lim

r0→0
Q(r0, r1, r) = 0.

Proof. According to formula (3.5) and then to (A-1), we have, for all sufficiently
small r0 > 0,

Q(r0, r1, r) =
Eν(

◦
X 	D(r))

Eν(X ⊕D(r))
≤

Eν(RD(a2)	D(r))
Eν(RD(a1)⊕D(r))

=

∫ r1

a−1
2 r

π(ua2 − r)2+ u−α du∫ r1

r0
π(ua1 + r)2 u−α du

.

The limit is now obvious.
Proof of Proposition 4.2. Let P (r0, r1, ·) denote the probability law of ∂M(r0, r1)

in the probability space (F , BF ). We recall that a sequence Pn weakly converges to P

in (F , BF ) if for all E ∈ BF such that P (E) = P (
◦
E), Pn(E) converges to P (E) (see

[5]). Moreover, in the case of the probability space (F , BF ), this amounts to check
that for all K ∈ K such that P (FK) = P (F ◦

K
), Pn(FK) converges to P (FK) (see [23],

[27]). Here the limit distribution P associated with the deterministic set R2 satisfies
P (FK) = 1 for all compact set K 6= ∅ and P (F∅) = 0. Take a compact set K such

that
◦
K 6= ∅. Then there exists a disk with positive radius r included in K so that

P (r0, r1,FK) ≥ P (r0, r1,FD(r)) = 1−Q(r0, r1, r).
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The result then follows from Lemma 4.3.

5. The colored dead leaves process and its limit. We saw above that,
from the point of view of random closed sets, the limit of ∂M(r0, r1) as r0 → 0
degenerates. We thus take interest in the limit of a colored dead leaves model in the
sense of finite-dimensional distributions. In this context, we will also investigate the
limit as r1 →∞.

We proceed in two steps. First, we investigate the limits of the marginal dis-
tribution of Rr0,r1 , defined as the partition process (see Definition 3.3) of Mr0,r1 .
Depending on the value of α, these limits will degenerate as r0 → 0 or r1 → ∞.
Second, we focus on the interesting cases and derive the limits of the colored field.

5.1. Basic convergence results. Let p(r0, r1,x) denote the probability that
the origin and x ∈ R2 are in the same visible part of the dead leaves model M(r0, r1).
By stationarity of M(r0, r1), its partition process satisfies

P{Rr0,r1(x,y) = 1} = p(r0, r1,y − x), x,y ∈ R2. (5.1)

Let us now compute this probability. According to (3.5) and since, by (A-3), ν(∂X) =
0 a.s., for all x ∈ R2,

p(r0, r1,x) =
Eν (X 	 {0,x})
Eν (X ⊕ {0,x})

=
Eν (X ∩ (x + X))
Eν (X ∪ (x + X))

.

Fubini’s Theorem and the homogeneity of ν give

Eν (X ∩ x + X) =
∫ r1

r0

Eν (uY ∩ (x + uY )) fr0,r1(u) du

= η(r0, r1)
∫ r1

r0

γ
(x

u

)
u2−α du,

where γ denotes the geometric covariogram of Y , see [25], that is, for all y ∈ R2,

γ(y) := Eν (Y ∩ (y + Y )) .

Since

ν (X ∪ (x + X)) = ν (X ∪ (x + X)) = 2ν (X)− ν (X ∩ x + X) ,

we finally obtain, for all x ∈ R2,

p(r0, r1,x) =

∫ r1

r0
[γ(0) + (γ(x/u)− γ(0))]u2−α du∫ r1

r0
[γ(0)− (γ(x/u)− γ(0))]u2−α du

. (5.2)

From (5.1) and (5.2), we see that the marginals of the partition process may be
expressed using r0, r1, α and the functional γ which only depends on the distribution
of Y . We apply (5.2) and investigate the limits of p(r0, r1, ·) as one pushes the model
towards the values of r0 and r1 which are not allowed, that is, for all 1 < α ≤ 3,
r1 → ∞, in which case Condition (C-1) does not hold, and, for all α > 1, r0 → 0 in
which case f0,r1(·) is not a density. The proof of the following result is postponed to
Appendix D.1.

Proposition 5.1. We have the following limits for p(r0, r1, x).
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(i) for all 1 < α < 3 and x ∈ R2, lim
r1→∞

inf
r0∈(0,r1)

p(r0, r1,x) = 1,

(ii) for all α > 3 and x 6= 0, lim
r0→0

sup
r1∈(r0,∞]

p(r0, r1,x) = 0,

(iii) for all α = 3 and x 6= 0, lim
r0→0

r1→∞

[
p(r0, r1,x)

(
1− 2

log(r0)
log(r1)

)]
= 1.

(iv) for all α ∈ (1, 3), r1 ∈ (0,∞) and x ∈ R2, lim
r0→0

p(r0, r1,x) = p(0, r1,x), where

p(0, r1,x) :=

∫ r1

0

γ(x/u) u2−α du∫ r1

0

(2γ(0)− γ(x/u))u2−α du

(5.3)

is a continuous function of x ∈ R2.
It is worth elaborating on these simple convergence results. In case (i), as r1 →∞,

however r0 < r1 may behave, any two points end up in the same visible part; the big
objects predominate at the limit. In case (ii), the result is the exact opposite. As
r0 → 0, however r1 ∈ (r0,∞] may behave, any two distinct points never belong to the
same object; the small objects predominate. See Figure 5.1 for an illustration of these
cases. In case (iii), the limit depends on the behavior of log(r0)/ log(r1). Convergence
to 1 or 0 as in cases (i) and (ii) are observed if only one of the limit r0 → 0 or r1 →∞
is taken. Now, if for instance we take r0 = r−s

1 for a fixed s, and let r1 tend to ∞, we
obtain a limit which depends on s but does not depend on x.

Remark 2. Using Corollary A.3 in Appendix A, one shows that in cases (i) and
(ii) of Proposition 5.1 the colored dead leaves model converges to a constant field and
a white noise, respectively. Case (iii) is more involved but can be shown to converge
to a mixture of a constant field and a white noise with weights depending on the limit
of log(r0)/ log(r1).

We will avoid cases (i), (ii) and (iii) in the sequel as they give uninteresting limits.
In contrast, case (iv) defines a non-degenerate prolongation of p(r0, r1, ·) at r0 = 0.
In the following result, by assuming sufficient smoothness on the boundary of Y , we
provide simple approximations as |x| → 0 in which the geometry of the model only
appears in multiplicative constants, while the qualitative behavior is a power law of
|x| with exponent only depending on α. For the sake of completeness we also study
p(r0,∞,x) when x → ∞. In order to simplify these results, we temporarily assume
that the distribution of Y is isotropic. However, in the case of non-isotropic Y , the
various quantities under study can be adapted by introducing a directional parameter.
In the isotropic case, we let γ and p(r0, r1, ·) be functions of the real variable x = |x|.
The proof of the following result is postponed to Appendix D.2.

Proposition 5.2. We have the following asymptotic equivalences.
(i) For all α > 3, p(r0,∞, x) ∼ g1(α) (x/r0)3−α(1 + o(1)) as x/r0 →∞, where

g1(α) :=
α− 3
2γ(0)

∫ ∞

0

γ(1/v) v2−α dv < ∞.

(ii) For all α ∈ (2, 3), if

g2(α) :=
2(3− α)

γ(0)

∫ ∞

0

(γ(0)− γ(1/v)) v2−α dv < ∞ , (5.4)

then 1− p(0, r1, x) ∼ g2(α) (x/r1)3−α as x/r1 → 0.
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The condition on g2 in (5.4) depends on the behavior of γ at the origin. For
instance, it is satisfied for any α > 2 if
(A-4) For any δ > 0, we have γ(x) = γ(0) + o(|x|1−δ) when x → 0.

The scope of validity of this assumption and how it relates to geometric properties
of Y is investigated in Appendix C.

Remark 3. If α ∈ (1, 2] it is easily seen that the behavior of 1 − p(0, r1, x) as
x/r1 → 0 depends on the derivative of γ at the origin. If the right-sided derivative
of x 7→ γ(x) exists, then 1− p(0, r1, x) behaves as (x/r1) log(x/r1) for α = 2, and as
(x/r1) for α ∈ (1, 2).

Case (i) and (ii) exhibit power laws at small and large scales, that is when x is
much smaller than the cutoff scale r1, and much larger than r0, respectively. We will
see in the end of Section 5.2 how these power laws relate to second order properties
of natural images.

5.2. Limit field at small scales. From now on we assume that

either 1 < α ≤ 3 and r1 > 0, or α > 3 and r1 ∈ (0,∞].

Definition 5.3. Let C := {C(x), x ∈ R2} be a random field. We denote by ICr0

the colored dead leaves model obtained from the random tessellation M(r0, r1) (see
Definition 3.2).

If C is the constant random field with uniform marginals, that is, for all x1, . . . ,xn,
C(x1) = · · · = C(xn) is uniformly distributed on [0, 1], we simply denote the colored
dead leaves model by Ir0 . In other words Ir0 is obtained from the dead leaves model
by independently coloring each leaf with a uniform distribution.

Remark 4. Observe that, if C is a stationary field, then the same is true for ICr0
.

For instance, Ir0 is stationary.
We now investigate the existence of a continuous prolongation of ICr0

at r0 = 0.
Simple conditions for the convergence of colored tessellations are given in Appendix A,
see Proposition A.1. These conditions involve the partition process of ICr0

(see Defini-
tion 3.3), which we now denote by {Rr0(x,y) : x,y ∈ R2}.

Let us recall that, for a sequence of random fields {Ij}, we say that Ij converges to

a random field I∞ in the sense of finite-dimensional distributions, Ij
fidi−→ I∞, if, for all

n ≥ 1 and for all x1, . . .xn ∈ Rd, (Ij(x1), . . . , Ij(xn)) converges to (I∞(x1), . . . , I∞(xn))
in distribution.

Theorem 5.4. There exists a random field IC0 such that

ICr0

fidi−→ IC0 as r0 → 0.

Proof. Let r1 > 0. In this proof, for all r0 ∈ (0, r1), we denote by Pr0 the
distribution of M(r0, r1). Using Proposition A.1 in Appendix A, it is enough to
prove that there exists a random process R0 such that, as r0 → 0, Rr0

fidi−→R0. Since
Rr0 is a field valued in {0, 1}, it is sufficient to show that, for all n ≥ 1 and all
x1, y1, . . . , xn, yn in the plan, P(Rr0(x1, y1) = 1, . . . , Rr0(xn, yn) = 1) converges as
r0 → 0. Recall that, for all x and y in the plane, Rr0(x, y) = 1 is equivalent to say

that {x, y} ⊂
◦
V i for some visible part Vi of M(r0, r1); thus, we now consider the

probability Pr0(∃i1, . . . , in : K1 ⊂
◦
V i1 , . . . ,Kn ⊂

◦
V in

) for fixed n ≥ 1 and compact
sets K1, . . . ,Kn and show that it converges in [0, 1] as r0 tends to 0. We may also
assume without loss of generality that each Kj contains at least two distinct points.
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Otherwise, since M(r0, r1) is a.s. continuous, Kj is included in the interior of a visible
part with probability one.

Finally, we claim that it is now enough to prove the convergence of

Q(n)
r0

(K1, . . . ,Kn) := Pr0(∃ti1 < · · · < tin
: K1 ⊂

◦
V i1 , . . . ,Kn ⊂

◦
V in

).

This follows from the fact that the union of two compact sets is a compact set, so
that we may restrict ourselves to disjoint visible parts, by an elementary induction.
Following Proposition B.1 in Appendix B, we get that

Q(n)
r0

(K1, . . . ,Kn) = F (n)
r0

(K1, . . . ,Kn)/G(n)
r0

(K1, . . . ,Kn), (5.5)

where F
(n)
r0 and G

(n)
r0 are defined as in (B.1) and (B.2). Pick a Kj and let δ denote its

diameter. Recall that we have assumed that it contains at least two distinct points so
that δ > 0. From (A-1), we have ν(RY 	 Ǩj) = 0 for all R such that 2Ra2 is smaller
than δ. This implies that

η(r0, r1)Eν

(
(
◦
X 	 Ǩj) ∩ (X ⊕ Ǩj−1)

c
)

=∫ r1

r0

Eν

(
(r
◦
Y 	 Ǩj) ∩ (rY ⊕ Ǩj−1)

c
)

r−α dr

stays constant as soon as r0 goes below δ/(2a2). Here, for j ≥ 1, Ǩj−1 is de-
fined in (B.3), the case j = 1 being obtained with the convention Ǩ0 = ∅. Hence,
from (B.1), it is clear that F

(n)
r0 (K1, . . . ,Kn)η(r0, r1)−n does not depend on r0 for r0

small enough. On the other hand, for all j = 1, . . . , n, we have

Eν(X̌ ⊕ Ǩj) = η(r0, r1)
∫ r1

r0

r−αEν
(
rY ⊕ Ǩj

)
dr.

Since the integrand is positive, η(r0, r1)−nG
(n)
r0 (K1, . . . ,Kn) has a limit in (0,∞] (it

is non zero since the Ki’s are non empty). Simplifying by η(r0, r1)−n in (5.5), we
obtain that it has a limit as r0 tend to the origin, which, as we claimed, is sufficient
for showing Theorem 5.4.

Note that in this result we did not separate the cases α < 3 and α ≥ 3. However,
in the latter case, the limit field is white noise (see Remark 2). In contrast, for
1 < α < 3, we will see in Proposition 5.6 that there exists a measurable version of the
limit field allowing its functional analysis.

We conclude this section by a simple corollary of Theorem 5.4, where we compute
the bivariate distributions of ICr0

for all r0 ∈ [0, r1).
Corollary 5.5. For all x,y ∈ R2 and for all r0 ∈ [0, r1), (ICr0

(x), ICr0
(y)) is

a mixture of the two (bivariate) random variables (C(x), C(y)) and (C(x), C′(y)) with
respective weights p(r0, r1,y− x) and 1− p(r0, r1,y− x), where C′ is an independent
copy of C.

Proof. The case r0 > 0 is given by (3.3) and (5.1). The case r0 = 0 is obtained
by applying Proposition 5.1 and Theorem 5.4.

In particular, the covariance of a colored dead leaves model ICr0
is given by

cov(ICr0
(0), ICr0

(x)) = p(r0, r1,x) var(C).
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We have seen that, under minimal assumptions on Y and depending on the values of
α, p(r0, r1,x) exhibits power laws at large and small scales, see cases (i) and (ii) of
Proposition 5.2 respectively. This kind of asymptotic results were already observed
in [34] and served as a justification for introducing the distribution of objects given
by (4.1). Indeed, experimental studies claim that the power spectrum of natural
images is well approximated by a power function S(f) ∼ |f |−2+η, see [33]. It is known
that, by using Tauberian results, such power law behavior, at low or high frequencies,
relates to a power law behavior in the covariance function of the form |x|−η at large
scales or |x|−η at small scales, respectively. Observe that a parallel can be drawn
between conditions for S to be integrable (η > 0 at low frequencies and η < 0 at high
frequencies), and conditions for p(r0, r1,x) to be non-degenerate (see Section 5.1,
α > 3 for r1 = ∞ and α < 3 for r0 = 0).

5.3. Simulations. The above convergence results are illustrated by some sim-
ulations. In Figure 5.1, we show two examples illustrating Proposition 5.1. Images
are simulated using a perfect simulation method, see [42]. Gray levels are uniformly
and independently drawn between 0 and 255 for each object. In the first example
(left) we illustrate point (i); α = 2.5, and r1 → ∞. The image is of size 103 × 103,
r0 = 1, r1 = 105; the process converges to a constant field. In the second example
(right), we illustrate point (ii); α = 3.5, and r0 → 0. The image is of size 104 × 104,
r0 = 1, r1 = 104; the process converges to white noise. In Figure 5.2 we illustrate the
convergence of Ir0 when r0 → 0 and α = 2.9. The first image is of size 104 × 104,
r0 = 1, r1 = 104. The next three images are zooms on the same realization of the
model (the zoom factor is two from one image to the next).

Figure 5.1. Illustration of the degenerate cases of Proposition 5.1. Left: case (i), α < 3 and
r1 → ∞, the process converges to a constant (random) field. Right: case (ii), α > 3 and r0 → 0,
the process converges to a white noise.

5.4. Preliminary properties of the limit field. For α ∈ (2, 3), Proposi-
tion 5.2(ii) shows that the bivariate distributions of I0 given in Corollary 5.5 (taking
the constant field for C) exhibit interesting scaling properties. We have so far only
been interested in finite-dimensional distributions of the colored dead leaves model.
Let us now investigate how the scaling properties of the bivariate distributions influ-
ence the sample paths properties of the model. The first properties of the limit field
that we may check are its stochastic continuity and the existence of a measurable ver-
sion, whose definitions are recalled thereafter. A random field {Z(x), x ∈ R2} is said
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Figure 5.2. Illustration of the convergence of the model when α = 2.9 and r0 → 0. The first
image (up left) is a realization when r0 = 1, r1 = 104, on a window of size 104 × 104. The next
three images are zooms on this realization, the zoom factor being two from one image to the next.

to be stochastically continuous if, for all x ∈ R2, Z(y) P−→ Z(x) (Z(y) converges to
Z(x) in probability) as y → x. A random field {Z̃(x) : x ∈ R2} defined on (Ω,S, P)
is said to be a measurable version of Z if Z and Z̃ have same finite-dimensional
distributions and (ω,x) 7→ Z̃(ω,x) is a (Ω × R2,S ⊗ B(R2)) → (R,B(R)) (jointly)
measurable function (see e.g. [36, Section 9.4]).

Proposition 5.6. Take α ∈ (1, 3) and r1 < ∞. Assume that C is stochastically
continuous. Then IC0 is stochastically continuous. If moreover C has a measurable
version, then there exists a measurable version of IC0 .

Proof. For convenience we write I for IC0 in this proof. The bivariate distributions
of I are given in Corollary 5.5. We have seen that x 7→ p(0, r1,x) defined by (5.3) is
a continuous function. We obtain, for all x,y ∈ R2 and for all ε > 0,

P(|I(x)− I(y)| > ε) ≤ P(|C(x)− C(y)| > ε) + (1− p(0, r1,y − x)),

which tends to zero as y → x for C stochastically continuous and since p(0, r1, 0) = 1.
Hence the first part of the proposition. For the second part, we apply [36, Theorem
9.4.2]. We have to check two conditions on I, namely
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(i) There exists a countable set S ⊂ R2 such that for all x ∈ R2, there exists a
sequence (xk) such that I(xk) P−→ I(x) as k →∞ and xk ∈ S for all k.

(ii) For all G, H ∈ B(R) and for all x ∈ R2, y 7→ P(I(x) ∈ G, I(y) ∈ H) is a
(R2,B(R2)) → ([0, 1],B([0, 1])) measurable function.

Condition (i) is a consequence of stochastic continuity. Moreover, since C has a mea-
surable version, it satisfies Condition (ii). This condition is then easily checked on I
by using the bivariate distributions given in Corollary 5.5.

As in the case r0 > 0, we denote by I0 the limit field in the case where C is the
constant field with uniform marginals.

Corollary 5.7. The colored dead leaves model I0 is stationary, stochastically
continuous and it admits a measurable version if and only if α ∈ (1, 3).

Proof. Stationarity follows from Remark 4. For α ≥ 3, I0 is a white noise and
thus does not have a measurable version (see [36, Example 9.4.3]) and neither is
stochastically continuous. For α ∈ (1, 3) the constant random field trivially satisfies
the assumptions of Proposition 5.6.

From now on, when 1 < α < 3, we will identify I0 with its measurable version,
and call it the Scaling Dead Leaves (SDL) model associated with the random set Y .
Natural images modeling. As explained in the introduction, the SDL enables
to reproduce the scaling behaviors that are observed on natural images. Based on
experiments reported in [34], [2] and [22], as well as experiments we performed us-
ing a statistical estimator introduced in [18] and relying on the variance of wavelet
coefficients, most images can be modeled by a SDL with a value of α in (2, 3).

Next, we underline some qualitative properties of the stationary random field IC0
that make it suitable for image modeling. First we emphasize that although this field
is obtained as a limit it still enjoys a complicate “macro-structure” in its distributions,
as suggested by Figure 5.2. This macro-structure is described in the context of colored
tessellations in Appendix A, where the finite-dimensional distributions are computed
by introducing a complex mixture structure (see (A.1)). This structure is preserved
for IC0 as shown by Corollary 5.5 in the particular case of bivariate distributions. For
instance, if C is a constant field, any two distinct points x and y have the same color
with probability p(0, r1,y − x) ∈ (0, 1). Thus IC0 has homogeneous regions in a weak
sense (that is, despite the presence of small objects everywhere, see Lemma 4.3). Also
recall that IC0 has the same marginal distribution as C. In particular, IC0 may have
Gaussian marginals with exactly the same geometrical structure. This would not be
possible for a Gaussian field (that is a field not only with Gaussian marginals, but
also with Gaussian finite-dimensional distributions) having the same covariance as IC0 .
Note also that if h is an increasing function from R to R (a contrast change), then the
field h ◦ IC0 has the same distribution as Ih◦C

0 . In other words, the model IC0 enables
to independently control the contrast (through C), and the geometry (through Y ).
This feature is inherited from the dead leaves model and is in agreement with the well
known fact that the main visual information of a natural image is preserved under
such a contrast change.
Convergence of digital images. We now briefly address the issue of the conver-
gence of a sampled version of Ir. For all r ∈ [0, r1], we let Jr denote the random field
defined on [0, 1]2 by integrating Ir, that is, for all x = (x1, x2) ∈ [0, 1]2,

Jr(x) =
∫∫

y∈[0,x1]×[0,x2]

Ir(y) dy .

Because Ir takes its values in [0, 1], it follows from Theorem 5.4 that
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Corollary 5.8. As r goes to 0 from above, Jr weakly converges to J0 in the
Banach space C([0, 1]2) of continuous functions on [0, 1]2 endowed with the uniform
norm. That is, for any real-valued, bounded and continuous function g defined on this
space, g(Jr)

d−→ g(J0).
Proof. First, using Theorem 5.4 and the fact that Ir is bounded independently

of r, one easily gets that E[Jp1
r (x1) . . . Jpn

r (xn)] → E[Jp1
0 (x1) . . . Jpn

0 (xn)] for any
n ≥ 1, any x1, . . . ,xn ∈ [0, 1]2 and any positive integers p1, . . . , pn, which implies that
Jr

fidi−→ J0. Second, using again that Ir is bounded, Jr is a 1-Lipschitz function taking
its values in [0, 1] and hence lies in a fixed compact subset of C([0, 1]2). This provides
a tightness condition ensuring the claimed functional weak convergence.

Corollary (5.8) implies in particular that

< φ, Ir >:=
∫

φ(t)Ir(t) dt
d−→
∫

φ(t)I0(t) dt as r → 0 ,

for any compactly supported functions φ such that, say by an integration by parts,
< φ, Ir >= g(Jr) with g continuous and bounded on C([0, 1]2) (e.g. if φ is the indicator
function of a rectangle, or if it is continuously differentiable). In the same way, for
n such functions φ1, . . . , φn, one gets the joint convergence of {< φ1, Ir >, . . . , <
φn, Ir >} as r → 0. If (x1, . . . ,x2) are n points in [0, 1]2 and for any 1 ≤ i ≤ n,
φi(x) = φ(xi − x) with φ a standard function with bounded support modeling the
sensor of an imaging device, one gets the convergence of the digitization of Ir towards
the digitization of I0.

6. Sample paths properties. In this section, we investigate the regularity of
Ir0 in both cases r0 > 0 and r0 = 0. We first note that the results below can be
generalized to colored dead leaves processes ICr0

but, in general, they would depend on
C. Here we focus on the properties of the model that are only driven by the process
Rr0 . Therefore we only consider the case of Ir0 , for which C is a constant field with
uniform marginals. Similarly, the regularity of Y may influence the regularity of Ir0

(as in the example given at the end of Appendix C) but this will be avoided in our
results by assuming (A-4).

These hypotheses on C and Y are not made only for technical simplicity. The main
reason is that we want to understand how the smoothness of the image is influenced
by the sole presence of small objects at all scales, even though these objects are not
textured and have smooth boundaries. Finally, since we only take interest in local
smoothness and since Ir0 is stationary, we may consider its restriction to the cube
[0, 1]2 without loss of generality.

If r0 > 0, the field Ir0 has paths for which occlusion influences the smoothness in
a simple way. In short, it introduces discontinuities along ∂M(r0, r1) and, within the
interiors of the Vi’s, the field is constant. This simple remark enables to state a first
regularity property of Ir0 . Let us recall that the space BV of functions with bounded
variation on (0, 1)2 is the set of integrable functions f such that

|f |BV := sup
{∫

f div(φ) : φ ∈ C1
c ((0, 1)2, R2) and ‖φ‖∞ ≤ 1

}
< ∞,

where C1
c ((0, 1)2, R2) is the set of C1 functions from (0, 1)2 to R2 with compact support

in (0, 1)2. An important result that we will use below is that if A is a Borel set of
(0, 1)2, then |11A|BV ≤ H1(∂A), where H1 denotes the one-dimensional Hausdorff
measure on R2. In fact, an equality can be achieved using the more involved notion of
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measure theoretic boundary (see [14]) which is included in the topological boundary.
The BV norm is defined as ‖f‖BV := ‖f‖1 + |f |BV , where ‖ · ‖1 denotes the usual L1

norm on (0, 1)2. Since we only consider fields taking values in [0, 1], the L1 part will
always be bounded by one. In the simple case where ∂Y has finite length a.s., so have
all boundaries of visible parts of M(r0, r1) and since it is a tessellation, only a finite
number of visible parts intersect (0, 1)2. It easily follows that Ir0 is locally of bounded
variation a.s. Hereafter we provide a more formal proof and show the corresponding
result in mean.

Proposition 6.1. Let r0, r1 and α be as in Proposition 4.1 (in which case the
associated dead leaves model is well defined). Then Ir0 belongs to BV a.s. If moreover
EH1(∂Y ) is finite, then so is E‖Ir0‖BV .

Proof. Let M =
∑

i δVi
be the dead leaves model used for defining Ir0 , and ∂M

its boundary. Applying the coarea formula (see [14]) and then the above mentioned
bound on |11A|BV , we get

|Ir0 |BV =
∫ 1

0

|11χλ
|BV dλ

≤
∫ 1

0

H1(∂χλ) dλ,

where χλ = {x ∈ (0, 1)2|Ir0(x) ≥ λ}. Now, for all λ in [0, 1], ∂χλ ⊂ ∂M . Indeed, pick
a point x not in ∂M , then it is in the interior of a Vi. As the interior of this Vi has color
Ir0(x), it is included in χλ for λ ≤ Ir0(x) and in its complementary set for λ > Ir0(x).
Hence x /∈ ∂χλ for all λ ∈ [0, 1]. Therefore we get that |Ir0 |BV ≤ H1(∂M ∩ (0, 1)2).
The almost sure result then follows from Lemma B.2 of Appendix B. Moreover, by
Lemma C.3, EH1(∂X) < ∞, so that the result in mean also follows from Lemma B.2.

This regularity result is in contradiction with empirical experiments. Indeed, in
[17], by investigating the distribution of sizes of bilevel sets in natural images (up
to the smallest available scale), it is shown that the bounded variation assumption
fails to capture all the structure of images. In practice, a denoising approach relying
on too smooth an a priori may interpret small objects as noise and, therefore, may
result in a non-negligible loss of information. This is well known in image restoration,
where variational methods in the space of functions with bounded variation, such as
the famous Osher-Rudin denoising scheme, [35], are known to erase textured area. A
recent approach to overcome this difficulty has been proposed by Y. Meyer, see [26],
introducing a new functional space to account for textured regions in images. Here
we take a different approach to the problem of modeling smoothness properties of
natural images: we propose to derive smoothness spaces adapted to the (measurable)
limit model I0. We will take interest in Besov spaces and, as a byproduct, obtain
that I0 is not of bounded variation (at least in a mean sense), which is now coherent
with the previously mentioned empirical results. Besov spaces provide a wide range
of regularity spaces, and are adapted to the study of image processing tasks involving
wavelets, such as compression and denoising, see e.g. [8]. Further insights about the
links between the SDL, Osher-Rudin and Meyer models will be given in Section 7.

Before proceeding, let us mention another related approach, [28], where regularity
notions for natural images are derived from a few basic assumptions. In particular, is is
shown that the scale invariance assumption implies that images should be modeled as
random distributions modulo constants. In contrast I0 is a locally integrable random
function (except in the white noise degenerate case), hence a more regular model. Of
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course these results are not contradictory, since I0 is not scale invariant although it
enjoys some self-similarity (see Proposition 5.2 : scale invariance would correspond to
α = 3 and exact power laws instead of approximations at small or large scales).

Of course not every value of α is relevant for the model I0. First, the model is
only defined for α < 3. Moreover, based on previously mentioned empirical studies,
we will only consider the case where 2 < α < 3. In fact for α ≤ 2 a change of behavior
at small scales occurs, see Proposition 5.2 and Remark 3.

Let s ∈ (0, 1), p ∈ [1,∞] and q ∈ [1,∞]. The Besov space Bs,q
p (see e.g. [13]) is

the Banach space endowed with the following norm

‖g‖Bs,q
p

:= ‖g‖p +
(∫

u>0

(
ω(g, u)p u−s

)q du

u

) 1
q

,

where ‖ · ‖p is the usual Lp norm on (0, 1)2 and ω(g, u)p is the Lp modulus of
smoothness of g at scale u, that is ω(g, u)p := sup|y|<u ‖∆(g,y)‖p, where ∆(g,y)
is the difference operator applied to g with step y on (0, 1)2, that is, the function
x 7→ (g(x + y)− g(x))11(x ∈ (0, 1)2, x + y ∈ (0, 1)2).

Proposition 6.2. Let 2 < α < 3, 0 < r1 < ∞ and assume (A-4). Then ,for all
p ∈ [1,∞) and for all s ∈ (0, 1), we have

E
[
‖I0‖p

Bs,p
p

]
< ∞⇔ s <

3− α

p
. (6.1)

Proof. In this proof we write A � B if there exists a constant c (possibly depending
on the constants s, p, α, r0, r1 and γ) such that 1

cB ≤ A ≤ cB. It is more convenient
to use the modified modulus of smoothness

w(f, u)p :=

(
(1 ∨ u−2)

∫
|y|<u

‖∆(f,y)‖p
p dy

) 1
p

.

which satisfies w(·, ·)p � ω(·, ·)p (see [13]). Because I0 is measurable, we may use the
Fubini Theorem. Hence

E[‖I0‖p
Bs,p

p
] � E[‖I0‖p]p +

∫
u>0

∫
|y|<u

E[‖∆(I0,y)‖p
p] (1 ∨ u−2)u−ps dy

du

u
.

From Corollary 5.5 we compute

E[‖∆(I0,y)‖p
p] =

∫
x∈(0,1)2∩((0,1)2−y)

E|I0(x + y)− I0(x)|p dx � 1− p(0, r1,y).

Inserting this into the previous equation and using the definition of p(0, r1, ·) in (5.3),
we obtain

E[‖I0‖p
Bs,p

p
] � 1 + 2

∫
u>0

∫
|y|<u∧1

∫ r1

0
(γ(0)− γ(y/v)) v2−α dv∫ r1

0
(2γ(0)− γ(y/v)) v2−α dv

1 ∨ u−2

u1+ps
dy du. (6.2)

Lemma C.1 gives that 2γ(0)− γ(x) � γ(0) (independently of x in R2). Since α < 3,
the denominator in the RHS of (6.2) behaves as a constant, namely∫ r1

0

(2γ(0)− γ(y/v)) v2−α dv � γ(0)r3−α
1 /(3− α). (6.3)
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Concerning the numerator, a change of variable gives, for all y 6= 0,∫ r1

0

(γ(0)− γ(y/v)) v2−α dv = |y|3−α

∫ r1/|y|

0

[γ(0)− γ(y/(|y|t))] t2−α dt

Beside, since 2 < α < 3 and γ(0)− γ(x) ∈ ([0, γ(0)], we get, under (A-4),

sup
|z|=1

∫ ∞

0

(γ(0)− γ(z/t)) t2−α dt < ∞.

By (C.1), we have, for all z such that |z| = 1 and for all r ∈ (0, 1/(2a2)),∫ r

0

(γ(0)− γ(z/t))) t2−α dt =
∫ r

0

γ(0) t2−α dt =
γ(0)
3− α

r3−α.

Using again that γ(0)− γ(x) is non-negative for all x, the last three equations finally
give ∫ r1

0

(γ(0)− γ(y/v)) v2−α dv � |y|3−α(|y| ∨ 1)α−3.

From (6.2), (6.3) and the last equation, we obtain

E[‖I0‖p
Bs,p

p
] � 1 +

∫
u>0

(∫
|y|<u∧1

|y|3−α dy

)
(1 ∨ u−2)u−ps du

u
.

Hence the result.
It is well known that B1,1

1 ⊂ BV ⊂ B1,∞
1 ⊂ Bs,1

1 for all s ∈ (0, 1) with cor-
responding inequalities (up to multiplicative constants) for the norms associated to
these spaces. Therefore, as a consequence of Proposition 6.2, and in contrast with the
case r0 > 0 investigated in Proposition 6.1, we have that, as we anticipated before,
for any r1 > 0 and α ∈ (2, 3), E‖I0‖BV = ∞.

We conclude this section with an almost sure smoothness result immediately
following from Proposition 6.2.

Corollary 6.3. Let 2 < α < 3, 0 < r1 < ∞ and assume (A-4). Then, for all
p ∈ [1,∞), for all q ∈ [1,∞] and for all s ∈ (0, 1), we have

s <
3− α

p
⇒ I0 ∈ Bs,q

p a.s. (6.4)

Proof. We simply use that if a non-negative random variable has finite expecta-
tion, it is necessary finite a.s. Then well known inclusions of Besov spaces give the
claimed result for all q ∈ [1,∞].

Remark 5. The reverse implication for (6.4) cannot be deduced from Proposi-
tion 6.2 alone and remains an open question.

7. Links with other functional regularity models. Regularity assumptions
for natural images occur in several tasks of image processing, including image com-
pression, denoising and more recently the decomposition of an image into a geometry
and a texture components.

First, [12] relates the Besov regularity of an image to compression performances
when using wavelet thresholding. In particular, by Corollary 6.3, this result can
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by applied to the SDL. Another interesting point of this paper concerns some ex-
periments, based on empirical compression performances, suggesting that their test
images belong to Besov spaces Bs,p

p with specific values for s and p. These values are
all compatible with the regularity of the SDL I0 given by Proposition 6.2.

Following the first chapter of [26], noisy or textured images are modeled as a sum
f = u + v, where u is the regular component of the image and v contains the noise
and the texture. Many algorithms proposed for denoising or for the texture-geometry
separation problem consist in extracting u from f by minimizing

λ‖f − û‖+ ‖û‖∗ (7.1)

in û. The choice of the norms or quasi-norms ‖ · ‖ and ‖ · ‖∗, and of the weight λ > 0
for a given noise variance, are all related to regularity assumptions on the model
f = u + v. For instance, in the Osher-Rudin algorithm, ‖ · ‖ is the squared L2 norm
and ‖ · ‖∗ is the BV norm. Variants for the norm ‖ · ‖∗ include the B1,1

1 norm ([12]),
the B1,∞

1 norm ([19]) or the Mumford-Shah functional ([29]).
The regularity properties of the random field I0 given by Proposition (6.1) show

that for the range of interest 2 < α < 3 and the above propositions for ‖ · ‖∗, one
has E[‖I0‖∗] = ∞. This indicates that in the denoising problem, if u is an image
generated by our model with 2 < α < 3 and v is the noise, such variational methods
will generally over-smooth the image.

In [26], Meyer also proposed variants for the norm ‖ · ‖ in (7.1), better adapted
for modeling textures, see also [30, 4]. The idea here is to choose norms ‖ · ‖ that will
be small for textures. Let us first remark that any type of textures can be artificially
included in our model by coloring the objects with a textured random field, that is by
considering IC0 with C having a textured component. However, our interest again lies
in the SDL model I0 because it is textured as a result of the presence of objects at
arbitrarily small scales. This is corroborated by the fact that E[‖I0‖∗] = ∞ with the
usual choices for the norm ‖ · ‖∗, implying that the random model I0 should contain a
texture component v. On the other hand, the regularity of the SDL is smoother than
the one induced by the norm ‖ · ‖ that is usually chosen for the v component. This
should not be interpreted as contradictory with the standard regularity assumptions
used for the textured component v in the u + v models. It only means that the
regularity of I0 lies somewhere between the regularities of u and v, see the following
paragraph. The choice of the norm ‖ · ‖ is in fact driven by how one wants to model a
texture. For instance, in [26], norms corresponding to spaces of function larger than
L2 are proposed, not because textures should not belong to L2 but because norms
‖ · ‖ that are smaller than the L2 norm on oscillating functions should be preferred.

We conclude by comparing the regularity of the SDL with another notion in-
troduced by Y. Meyer as a generalization of the space BV in the context of image
denoising. Theorem 15 in Section 21 of [26] characterizes the behavior of a variant of
the Osher-Rudin functional by means of a wavelet expansion. More precisely, set, for
any λ > 0,

ωλ(f) = inf
û
{λ‖f − û‖+ ‖û‖∗} ,

with ‖ · ‖ being the L2 norm (instead of the squared L2 norm in the Osher-Rudin
functional) and ‖ · ‖∗ being the BV norm. Then, this theorem says that, for any
exponent γ ∈ (0, 1), the interpolation norm

‖f‖(γ) = sup
λ≥1

λ−γωλ(f)
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is finite if and only if the sorted (L2 normalized) wavelet coefficients of f have a
decreasing rate nγ/2−1. Functional spaces defined by the norms ‖ · ‖(γ) for γ ∈ (0, 1)
should be seen as interpolation spaces between L2 and BV . The case γ = 0 would
correspond to the BV space, and values of γ in (0, 1) define more irregular functional
spaces, therefore offering a modeling alternative to the Besov spaces Bs,p

q . Using
the wavelet characterization of Besov spaces, we obtain that if E[‖I0‖(γ)] < ∞ then
E[‖I0‖Bs,1

1
] < ∞ for any s < 1 − γ, so that, by Proposition 6.2, 1 − γ ≤ 3 − α, i.e.,

γ + α ≤ 2. It would be interesting to check the following conjecture:
‖I0‖(γ) is finite a.s. if and only if γ + α ≤ 2.

If true, it would give a characterization of α through the behavior of ωλ as λ →∞.

8. A Bayesian prior. In addition to the functional regularity modeling inves-
tigated in Section 7, the limit dead leaves model can be used as a Bayesian prior.
For elaborate tasks such as shape extraction, it is clear that the parameter α is not
sufficient, and that geometrical properties of the model depending on the distribution
of the shapes of objects have to be taken into account. In the context of denoising, the
prior model I0 has meaningful connexions with those introduced by [1] in the context
of Bayesian wavelet shrinkage. More precisely, I0 gives raise to mixture models for
the jumps I0(x)− I0(y) in the image which are very close to those used for prior dis-
tributions on wavelet coefficients, namely a point mass at zero mixed with a standard
unimodal density. The use of an SDL prior in the context of image denoising has been
investigated in [18], where an estimate of the hyper-parameter α of the prior model
I0 is also proposed. There are few attempts ([32] or, more recently, [3]) to take some
dependence structure of wavelet coefficients into account in the prior model. A direc-
tion for future work is to use the SDL I0 as an alternative for modeling dependences
within images.

9. Concluding remarks and open problems. In this paper, we investigated
the implications on the small scales structure of natural images of both the occlusion
phenomenon and the presence of scaling laws. This lead us to define a model, the
scaling dead leaves, containing details at arbitrarily small scales. Several important
issues remain to be tackled. First, the SDL relies on a simplified modeling of the
formation of natural images. An important aspect of image formation that is not
accounted for is the perspective effect. Indeed, the further the objects, the smaller
they appear on the image, with a ratio given by the reciprocal of the distance. A
very simple model in which all objects have the same size and lies on the ground, not
taking occlusion into account, yields a distribution of sizes r−1 on the resulting image,
thus a power distribution with a smaller value of α than those observed on natural
images. A more realistic model consists in incorporating the perspective effect in the
dead leaves model by defining its visible parts as

Vi :=
(

xi + Xi

ti

)
\

 ⋃
tj∈(ti,0)

xj +
◦
Xj

tj

 . (9.1)

It is then of interest to investigate the regularity of such a model and in particular to
compute the effect of perspective on the scaling properties of a potential limit model.
Preliminary computations show that such a study requires a rescaling of the time axis
to yield non-trivial results.

As mentioned earlier, another point concerns the use of the SDL as a prior in a
denoising framework, initiated in [18], and which could benefit from either a better un-
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derstanding of the dependence structure of wavelet coefficients or from an alternative
approach using morphological filtering.

Finally, as detailed in Sections 6 and 7, several open questions remain concerning
the functional regularity of the model and in particular its dual geometry-texture
nature deserves further investigation.

Appendix A. Finite dimensional distribution of colored tessellations
and their limits. Let T be an a.s. continuous random tessellation, C a random field
and I the colored tessellation field associated to T and C. Then the finite-dimensional
distributions of I are mixtures of distributions only depending on the distribution of
C, with weights only depending on the distribution of the partition process R (see
Definition 3.3). The following computations formalize this simple fact and provide
explicit expressions of the mixture distributions.

Let n ≥ 1 and x1, . . . ,xn be n distinct points in Rd. Since T is a.s. continuous,

for all x ∈ Rd, we a.s. have
∑

i 11(x ∈
◦
Fi) = 1. Hence,

(I(x1), . . . , I(xn)) =
∑

i1,...,in

(Ci1(x1), . . . , Cin
(xn))

n∏
j=1

11(xj ∈
◦
F ij

), a.s.

We let Pn denote the set of all partitions of {1, . . . , n}. For any indices i1, . . . , in we
define K(i1, . . . , in) as the element of Pn such that l and m are in the same class of
K(i1, . . . , in) if and only if il = im. Reorganizing the sum above, we obtain, a.s.,

(I(x1), . . . , I(xn)) =
∑

κ∈Pn

∑
K(i1,...,in)=κ

(Ci1(x1), . . . , Cin
(xn))

n∏
j=1

11(xj ∈
◦
F ij

),

where the second sum is taken over all (i1, . . . , in) such that K(i1, . . . , in) = κ. Since
T =

∑
i δFi

is an a.s. continuous tessellation, only one product in this sum is non-zero
in which case it is one, a.s. Using the independence of {Ci} with T , we then get that,
for all A ∈ B(Rn), P ((I(x1), . . . , I(xn)) ∈ A) reads

∑
κ∈Pn

∑
K(i1,...,in)=κ

P ((Ci1(x1), . . . , Cin
(xn)) ∈ A) P

 n⋂
j=1

{xj ∈
◦
F ij

}

 .

For all κ ∈ Pn, we let κj denote the class of j in the partition κ. We let {Cκ,S : κ ∈
Pn, S ∈ κ} be a collection of i.i.d. random fields on RRd

having the same distribution as
C and independent of T . Then, for all n-tuple (i1, . . . , in) such that K(i1, . . . , in) = κ,
(Ci1(x1), . . . , Cin

(xn)) has the same distribution as (Cκ,κ1(x1), . . . , Cκ,κn
(xn)). Hence,

for all A ∈ B(Rn), P ((I(x1), . . . , I(xn)) ∈ A) reads

∑
κ∈Pn

P ((Cκ,κ1(x1), . . . , Cκ,κn(xn)) ∈ A)
∑

K(i1,...,in)=κ

P

 n⋂
j=1

{xj ∈
◦
F ij}

 .

Using again that, a.s., there is a unique (i1, . . . , in) such that xj ∈
◦
F ij

for all j =
1, . . . , n, we finally obtain that (I(x1), . . . , I(xn)) is distributed as the finite mixture∑

κ∈Pn

χ(κ;x1, . . .xn) (Cκ,κ1(x1), . . . , Cκ,κn
(xn)), (A.1)
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where, for all κ ∈ Pn,

χ(κ;x1, . . .xn) :=
∑

K(i1,...,in)=κ

n∏
j=1

11(xj ∈
◦
F ij

) (A.2)

are random weights in {0, 1} among which only one is nonzero, a.s.
Let us now determine χ(κ;x1, . . .xn) as a function of the process R. For this

purpose, we use the partial order on Pn defined by

κ′ � κ ⇐⇒ for all S ∈ κ, there exists S′ ∈ κ′ such that S ⊆ S′.

We will write κ′ � κ if κ′ � κ and κ 6= κ′. We first establish that, a.s., for all κ ∈ Pn,∏
S∈κ

R(S) =
∑
κ′�κ

χ(κ′;x1, . . .xn), (A.3)

where R(S) denote the (Bernoulli) random variable which takes value one if there

exists i such that S ⊆
◦
Fi and takes value zero otherwise, that is,

R(S) :=
∑

i

∏
x∈S

11(x ∈
◦
Fi) . (A.4)

Note that the two sides of (A.3) are either zero or one. Suppose that the LHS is
one. Then for all S ∈ κ, R(S) = 1. By merging the sets S corresponding to the same
Fi, we get a κ′ � κ for which, applying (A.2) gives χ(κ′;x1, . . .xn) = 1. Hence the
RHS of (A.3) also equals one. It can be similarly shown that if the LHS equals zero
then the RHS does as well.

Having shown (A.3), an induction on |κ| (the number of classes in the partition
κ) shows that, for all κ ∈ Pn, there exist weights (wκ′)κ′�κ in Z such that, a.s.,

χ(κ;x1, . . .xn) =
∏
S∈κ

R(S) +
∑
κ′�κ

wκ′

∏
S∈κ′

R(S). (A.5)

The case where κ is the coarsest partition (|κ| = 1) is immediate from (A.3). The
induction then relies on (A.3) and on the fact that κ′ � κ implies either κ = κ′ or
|κ′| < |κ|.

Now observe that, for all m ≥ 2 and for all y1, . . . ,ym ∈ Rd,

R({y1, . . . ,ym}) =
m−1∏
i=1

R(yi,yi+1). (A.6)

Furthermore, we have, for all y ∈ Rd, R({y}) = R(y,y) = 1 a.s. because T is
assumed to be a.s. continuous. It then follows from (A.1), (A.5) and (A.6) that
(I(x1), . . . , I(xn)) is distributed as a finite mixture of distributions depending on the
color field C, with weights depending on the partition process R.

The preceding computations allow for simple conditions to let a sequence (Ij)j∈N
of colored tessellations converge to a limit field in the sense of finite-dimensional
distributions.

Proposition A.1. Consider a sequence of a.s. continuous random tessellations
(Tj)j≥0 and denote by Rj the partition process of Tj for all j ≥ 0. Let (Cj = {Cj(x) :
x ∈ Rd})j≥0 be a sequence of real valued random fields. Let us denote by Ij the colored
tessellation process associated to Tj and Cj for all j ≥ 0. Assume that



MODELING OCCLUSION AND SCALING IN NATURAL IMAGES 23

(i) there exists a random field R∞ defined on Rd × Rd with values in {0, 1} such
that Rj

fidi−→R∞.

(ii) there exists a real valued random field C∞ defined on Rd such that Cj
fidi−→ C∞.

Then there exists a random field {I∞(x) : x ∈ Rd} such that Ij
fidi−→ I∞. Furthermore

the finite-dimensional distributions of I∞ only depend on those of R∞ and C∞.
Proof. Take n ≥ 1 and x1, . . . ,xn n distinct points in Rd. From (i), (A.5)

and (A.6), we have that the distribution of χ(κ;x1, . . .xn) converges for all κ ∈ Pn

as Rj converges to R∞ and its limit distribution only depends on R∞. From (ii), it
follows that the finite mixture defined by (A.1) converges to a finite mixture defined
by the distributions of R∞ and C∞. The result follows.

The bivariate distributions of the limit can be directly derived from (3.3).
Proposition A.2. Under the assumptions of Proposition A.1, for all x,y ∈

Rd, the bivariate distribution (I∞(x), I∞(y)) is a mixture of (C∞(x), C∞(y)) and
(C∞(x), C′∞(y)) with respective weights P(R∞(x,y) = 1) and P(R∞(x,y) = 0), where
C′∞ is an independent copy of C∞.

Of course, the bivariate distributions given above do not determine the distribu-
tion of I∞. However, there are two degenerate cases for which the distribution of I∞
is easily derived.

Corollary A.3. Under the assumptions of Proposition A.1, consider the two
following cases.

(i) If, for all x and y, R∞(x,y) = 1 a.s., then I∞ has the same finite-distributions
as C∞.

(ii) If, for all x 6= y, R∞(x,y) = 0 a.s., then I∞ has the same finite-distributions
as a white noise with same marginals as C∞.

Proof. As in the proof of Proposition A.1, we take n ≥ 1 and x1, . . . ,xn n distinct
points in Rd. From this proof, we see that the finite-dimensional distributions of I∞
are given by the finite mixture (A.1), where terms χ and C are replaced by their
limits χ∞ and C∞. Similarly, weak limits can be taken in Equations (A.5) and (A.6),
yielding equivalent relations with R∞(S) and χ∞ replacing R(S) and χ.

Assume that, for all x,y ∈ Rd, R∞(x,y) = 1 a.s. If κ is the partition consisting
of a single class (|κ| = 1), (A.5) reads

χ∞(κ;x1, . . .xn) = R∞({xj , j = 1, . . . , n}).

From (A.6), we see that χ∞(κ;x1, . . .xn) = 1 for this κ (corresponding to κ1 = · · · =
κn), that is, the mixture (A.1) reduces to (C(x1), . . . , C(xn)).

Now assume that for all x 6= y ∈ Rd, R∞(x,y) = 0 a.s.. Then by (A.6),
R∞({y1, . . . ,ym}) = 0, for all m > 1 and any m distinct points y1, . . . ,ym in Rd.
Let κ now denote the finest partition in Pn (|κ| = n). If κ′ � κ, then there exists S in
κ′ such that |S| > 1, so that, by (A.5), χ∞(κ′;x1, . . .xn) = 0. Therefore the mixture
(A.1) reduces to (C1(x1), . . . , Cn(xn)), where C1, . . . , Cn are i.i.d. copies of C.

Appendix B. Some results on the dead leaves model. In this section,
we give two useful results for the dead leaves model defined in Section 3. We write
M =

∑
δVi for the dead leaves model associated to a random closed set X satisfying

Hypotheses (C-1), (C-2) and (C-3). We let Φ =
∑

i δxi,ti,Xi denote the point process
on R2 × (−∞, 0]×F ′ used to define M .

The following result was established in [6] and gives the probability that n compact
sets are included in the interiors of distinct visible parts of a dead leaves model. It is
a useful result to compute the finite dimensional distribution of the colored model.
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Proposition B.1. Let K1, . . . ,Kn be n non-empty compact sets. Define

Q(n)(K1, . . . ,Kn) := P(∃ti1 < · · · < tin
: K1 ⊂

◦
V i1 , . . . ,Kn ⊂

◦
V in

).

Let us denote

F (n)(K1, . . . ,Kn) = Eν(
◦
X 	 Ǩ1)

n∏
j=2

Eν

(
(
◦
X 	 Ǩj) ∩ (X ⊕ Ǩj−1)

c
)

, (B.1)

and

G(n)(K1, . . . ,Kn) =
n∏

j=1

Eν
(
X ⊕ Ǩj

)
, (B.2)

where, for all j,

Kj =
j⋃

k=1

Kk. (B.3)

Then

Q(n)(K1, . . . ,Kn) =
F (n)(K1, . . . ,Kn)
G(n)(K1, . . . ,Kn)

. (B.4)

For n = 1 we get the original result of Matheron, Formula (3.5).
An important feature of the dead leaves model is that, by construction, the bound-

ary ∂M is a locally finite union of pieces of ∂Xis. The lemma below (that is needed
to compute the expectation of the total variation of the colored dead leaves model)
extends this idea by considering the expectation of the local length of this boundary.

Lemma B.2. Let M be the dead leaves model associated with a random set X,
and K be a compact set. If H1(∂X) is finite a.s., then so is H1(∂M ∩K). Moreover,
if EH1(∂X) is finite, then so is EH1(∂M ∩K).

Proof. Let K be a compact set of R2. By (C-2), we easily get, for all visible parts
Vi (see (3.4)),

∂Vi ⊂ (xi + ∂Xi) ∪
⋃

tj∈(ti,0)

(xj + ∂Xj).

Since ∂M ∩K = ∪i∂Vi∩K, and since the Xi’s such that Vi∩K = ∅ do not contribute
to ∂M ∩K, we get

∂M ∩K ⊂
⋃

Vi∩K 6=∅

(xi + ∂Xi) ∩K. (B.5)

Since M is a tessellation, it is a σ-finite measure on F ′ (see Section 3) so that M(FK)
(i.e. the number of visible parts Vi intersecting K) is finite a.s. for all compact sets
K. Hence the first part of the lemma on the a.s. finiteness of H1(∂M ∩K).

We now bound its expectation. By stationarity of M , and using a finite covering of
K by disks of radius r, it is sufficient to show that for all r such that Eν(X	D(r)) > 0
(e.g., by (C-3), r ≤ a), the following bound holds true

EH1(∂M ∩D(r)) ≤ πr2EH1(∂X)
Eν(X 	D(r))

. (B.6)
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By definition of the visible parts Vi, we have

Vi ∩K 6= ∅ ⇒ K *
⋃

tj∈(ti,0)

(xj +
◦
Xj)

⇒ for all tj ∈ (ti, 0),K * (xj +
◦
Xj). (B.7)

We define, for all t ∈ (−∞, 0), x ∈ R2 and Y ∈ F ′, the following nonnegative
random variables

B1(x, Y ) := H1[(x + ∂Y ) ∩K] and B2(t, Φ) :=
∏

tj∈(t,0)

11[K * (xj +
◦
Xj)].

Using these notations, and from (B.5) and (B.7), we obtain

H1(∂M ∩K) ≤
∑

i

B1(xi, Xi) B2(ti,Φ). (B.8)

We now observe that Φ is a Poisson point process on R2 × (−∞, 0] × F ′ with con-
trol measure µ equal to the Lebesgue measure on R2 × (−∞, 0) multiplied by the
probability distribution of X. Let us denote by Pu the Palm distribution of Φ at
u = (u1, u2, u3). Applying the refined Campbell theorem (see [11]), we write

E
∑

i

B1(xi, Xi)B2(ti,Φ) =
∫

B1(u1, u3) B2(u2, φ) Pu(dφ)µ(du).

Since Φ is Poisson, the Slivnyak’s Theorem (see [41]) applies, giving, for all u =
(u1, u2, u3) ∈ R2 × (−∞, 0]×F ′,∫

B2(u2, φ) Pu(dφ) = EB2(u2,Φ + δu) = EB2(u2,Φ),

where the last equality simply follows from the definition of B2 above. Using the
definition of µ and combining the last two equations, we get

E
∑

i

B1(xi, Xi) B2(ti,Φ) =
(

E

∫
R2

B1(u1, X) ν(du1)
) (∫ 0

−∞
EB2(u2,Φ) du2

)
.

(B.9)
Next we compute ∫

B1(u1, X) ν(du1) = H1(∂X)ν(K); (B.10)

EB2(u2,Φ) = exp(u2 Eν(X 	 Ǩ)). (B.11)

Inserting these expressions in (B.9), (B.6) follows from (B.8) by taking K = D(r),
which will conclude the proof.

Equation (B.10) is a consequence of the following computation which relies on
the translation invariance of H1 and ν, and on Fubini’s Theorem,∫

H1[(u1 + ∂X) ∩K] ν(du1) =
∫
H1[∂X ∩ (K − u1)] ν(du1)

=
∫

11(y + u1 ∈ K) 11(y ∈ ∂X) ν(du1)H1(dy)

= H1(∂X)ν(K).
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For computing (B.11), we note that the number of tj ’s in (u2, 0) such that K ⊆
(xj + Xj) (Xj may replace

◦
Xj in the definition of B2 using (C-2) and the fact that

K is closed) is a Poisson random variable with parameter

E

∫ 0

t=u2

∫
x∈R2

11 [K ⊆ (x + X)] dt dx = −u2 Eν(X 	 Ǩ),

where we used that K ⊆ (x + X) is equivalent to −x ∈ X 	 Ǩ. This Poisson variable
has probability exp(u2 Eν(X 	 Ǩ)) to vanish. Hence (B.11).

Appendix C. Regularity of γ at the origin. In this section, Y is a random
closed set satisfying Assumption (A-1) and γ denotes its geometric covariogram. We
now investigate the scope of validity of Assumption (A-4) in terms of the geometric
properties of Y .

Lemma C.1. The function y 7→ γ(y) is continuous over R2, γ(0) ≥ πa2
1 and, for

all y ∈ R2, 0 ≤ γ(y) ≤ γ(0). Moreover,

|y| ≥ 2a2 ⇒ γ(y) = 0, (C.1)

where | · | is the Euclidean norm.
Proof. The bounds on γ are immediate. Now, y 7→ ν(Y ∩ (y + Y )) is the

convolution of the indicator function on Y with itself. Since Y is bounded, its indicator
function is square integrable with respect to ν and the convolution is continuous.
By the dominated convergence theorem, the continuity is preserved after taking the
expectation.

It is also known, see Proposition 4.3.1 in [25], that if Y is a deterministic convex
set then γ(x) has a one-sided derivative at x = 0 in all directions. We now derive the
following bound.

Lemma C.2. Let K be a compact set. Then for all x ∈ R2,

0 ≤ ν(
◦
K)− ν(

◦
K ∩ (x +

◦
K)) ≤ ν (∂K ⊕ [0,x]) ,

where [0,x] denotes the segment {αx, α ∈ [0, 1]}. In particular, if, for all δ > 0, as
x → 0,

Eν (∂Y ⊕ [0,x]) = o(|x|1−δ),

then (A-4) holds true.
Proof. Let x ∈ R2. We may write

0 ≤ ν(
◦
K)− ν(

◦
K ∩ (x +

◦
K)) = ν(

◦
K\(x +

◦
K))

Let y ∈
◦
K\(x +

◦
K), that is y ∈

◦
K and y − x /∈

◦
K. Thus the line segment [y,y − x]

intersects ∂K, and the claimed bound follows. The sufficient condition for having (A-
4) is then obtained by taking expectations.

The obtained criterion imposed on ∂Y in order to satisfy (A-4) can be further
simplified by using classical tools of measure theory. In the following result, we use
the Hausdorff measure H1. We will then consider the box-counting dimension, and
finally conclude this section by providing a simple example for which (A-4) does not
hold.
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Lemma C.3. Take r0, r1 and α as in Proposition 4.1. Assume that EH1(∂Y )
is finite. Then, so is EH1(∂X) and (A-4) holds true. More precisely, we have, as
x → 0, γ(x) = γ(0) + O(|x|).

Proof. Notice that EH1(∂X) = E[RH1(∂Y )] = E(R)EH1(∂Y ). Under the
conditions on r0, r1 and α assumed in Proposition 4.1, it is easily checked that E(R)
is finite. Hence the finiteness of EH1(∂X). Using that ν coincides with the Hausdorff
measure H2 on Borel sets, it is easily shown that, for all Borel set K, ν (∂K ⊕ [0,x])
is at most |x|H1(∂K). Inserting this into the bound established in Lemma C.2, we
find 0 ≤ γ(0)− γ(x) ≤ |x|EH1(∂X). The result follows.

We now mention a different bound applying in a case where H1(∂Y ) is not nec-
essary finite. For any closed set K, ν (∂K ⊕ [0,x]) may be bounded by relying on the
upper box-counting dimension of ∂K rather than its Hausdorff measure H1. Indeed,
if this dimension is at most one, then (see [15, Proposition 3.2]), for all δ > 0, as
x → 0,

ν (∂K ⊕D(x)) = o(x1−δ),

D(x) being as before the disk of radius x centered at the origin. Of course ν (∂K ⊕ [0,x])
is smaller than ν (∂K ⊕D(x)) and, by Lemma C.2, this bound can be used to in-
sure (A-4).

Finally, in order to illustrate that some smoothness is needed on the boundary of
Y to insure (A-4), even for a deterministic Y , consider the following example. Let h
be a continuous function defined on [0, 1] and let us define

K := {(x, y) : 0 ≤ x ≤ 1, h(x)− 1 ≤ y ≤ h(x)} .

In particular, the boundary of K is made of two copies of the graph of h connected
at their end points by two unit vertical segments. Beside, for all u ∈ (0, 1), letting e1

denote the horizontal unit vector, a straightforward computation yields

ν(
◦
K)− ν(

◦
K ∩ (ue1 +

◦
K)) = ν(

◦
K\(ue1 +

◦
K)) = u +

∫ 1

u

|h(x)− h(x− u)| dx.

Hence in this case, taking say Y = K non-random (it could be made random by taking
h random), (A-4) would imply that, for all positive δ,

∫ 1

u
|h(x)−h(x−u)| dx = o(u1−δ)

as u → 0. This is equivalent to saying that h belongs to all Besov spaces Bs,q
p on (0, 1)

with p = 1, q = ∞ and s < 1 (we provide the definition of Besov spaces on (0, 1)2 in
Section 6; the definition on (0, 1) is similar, see [13]). Now, it is known that there are
continuous (even Hölder) functions h out of Bs,∞

1 (0, 1) for any positive s. Choosing a
continuous h out of Bs,∞

1 (0, 1) for some s ∈ (0, 1), we deduce that the corresponding
Y do not satisfy (A-4). Moreover, in this precise example where the boundary of Y
is constructed as a graph of a function, we see that Assumption (A-4) is equivalent
to precise smoothness assumptions on this function.

Appendix D. Technical proofs.

D.1. Proof of Proposition 5.1.. Case (i) : Take 1 < α < 3 and x ∈ R2.
From Lemma C.1 and since, by (A-1), γ(0) > 0, for any ε > 0, there exists u0 such
that for all u ∈ [u0,∞),

|γ(x/u)− γ(0)| ≤ εγ(0).
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Since the integral
∫ r1

r0
u2−α du diverges as r1 → ∞ and is bounded as r0 → 0, for r1

sufficiently large and for all r0 ≤ r1,∫ r1

r0

u2−α du ≤ (1 + ε)
∫ r1

u0∨r0

u2−α du.

From the last two equations and from (5.2), we get, for all r1 sufficiently large and
for all 0 < r0 < r1,

1 ≥ p(r0, r1,x) ≥
γ(0)(1− ε)

∫ r1

u0∨r0
u2−α du

γ(0)(1 + ε)2
∫ r1

u0∨r0
u2−α du

=
1− ε

(1 + ε)2
.

Hence (i) by letting ε decrease to zero.
Case (ii) : Take α > 3. From Lemma C.1 and (5.2), we have, for all r0 < r1 ≤

|x|/(2a2), p(r0, r1,x) = 0 and, for all r0 ≤ |x|/(2a2) < r1,∫ r1

r0

γ(x/u)u2−α du =
∫ r1

|x|/(2a2)

γ(x/u)u2−α du.

Since γ is bounded by πa2 from above, we get, for all r0 ≤ |x|/(2a2) and for all
r1 > r0,

p(r0, r1,x) ≤
πa2

∫∞
|x|/(2a2)

u2−α du

2γ(0)
∫ |x|/(2a2)

r0
u2−α du− πa2

∫∞
|x|/(2a2)

u2−α du

which does not depend on r1 and tends to zero as r0 → 0. This gives (ii).
Case (iii) : Let α = 3. From (C.1) and the continuity of γ, the numerator of

the RHS of (5.2) behaves as γ(0) log(r1) when r0 and r1 respectively tend to 0 and
∞. For the same reasons, the denominator behaves as γ(0)(log(r1) − 2 log(r0)). We
obtain (iii).

Case (iv) : The limit (5.3) is an immediate application of (5.2) by observing
that γ is bounded (see Lemma C.1). Continuity of x → p(0, r1,x) follows from the
continuity of γ and dominated convergence.

D.2. Proof of Proposition 5.2.. Take α > 3. An obvious change of variable
gives ∫ ∞

r0

γ(x/u)u2−α du = x3−α

∫ ∞

r0/x

γ(1/v)v2−α dv.

Using (C.1) and (5.2), letting x/r0 →∞ gives (i). We now take α < 3. We similarly
have ∫ r1

0

(γ(x/u)− γ(0))u2−α du = x3−α

∫ r1/x

0

(γ(1/v)− γ(0))v2−α dv.

From (5.2) and (5.3) and standard computations, we obtain (ii).
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